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Abstract: Interpersonal trust mediates multiple socio-technical systems and has implications for
personal and societal well-being. Consequently, it is crucial to devise novel machine learning methods
to infer interpersonal trust automatically using mobile sensor-based behavioral data. Considering
that social relationships are often affected by neighboring relationships within the same network,
this work proposes using a novel neighbor-aware deep learning architecture (NADAL) to enhance
the inference of interpersonal trust scores. Based on analysis of call, SMS, and Bluetooth interaction
data from a one-year field study involving 130 participants, we report that: (1) adding information
about neighboring relationships improves trust score prediction in both shallow and deep learning
approaches; and (2) a custom-designed neighbor-aware deep learning architecture outperforms a
baseline feature concatenation based deep learning approach. The results obtained at interpersonal
trust prediction are promising and have multiple implications for trust-aware applications in the
emerging social internet of things.

Keywords: deep learning; neighbor-aware deep learning; phone data; trust inference

1. Introduction

Interpersonal trust is defined as “a willingness to accept vulnerability or risk based
on expectations regarding another person’s behavior” [1]. It facilitates multiple socio-
technical systems with implications for social and physiological well-being. The emerging
growth of social networks, mobile computing, and the social internet of things necessitates
understanding and modeling people’s interpersonal trust as they interact with one another
to undertake tasks in domains ranging from shared economy to media consumption. For
instance, a person may want to rent out homes only to somebody they trust or prefer to
receive news stories recommended by their trusted ties. Broadly, an ability to understand
and model trust using machine learning and phone-based data would have implications
for multiple social and sensor-based systems being studied under the unified vision of
human-centered “Internet of Things”, sometimes also called the “Internet-of-People” [2].

Understanding human behavioral and physiological states at scale could also revo-
lutionize the study of trust in the social sciences. Traditional studies on trust had to be
undertaken in lab settings or deal with only self-reported data. Thus, these approaches
contend with various issues such as scalability, cost, and self-report bias [3,4]. Hence,
as highlighted in the smartphone psychology manifesto, “smartphones could transform
psychology even more profoundly than PCs and brain imaging did [5].” Today, as billions
of individuals use smartphones as the primary internet connection, social connection, and
IoT coordination device, they leave traces of behavioral data as they interact with them.
Hence, there has been a tremendous interest in mining mobile sensor-based behavioral
data to automatically infer different attributes about a person (e.g., their personality traits)
or their relationships (e.g., identify their colleagues) [6-10].
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One useful concept utilized in this process is the idea of homophily, i.e., birds of a
feather flock together, which motivates the use of data from one’s neighbors to better infer
specific properties about them. While this idea has already been applied in ubiquitous and
social computing literature to infer some individuals’ properties, it is yet to be utilized
to infer some properties of their relationships [11]. We posit that social relationships are
also affected by neighboring relationships within the same network. Hence, utilizing
the behavioral data from neighboring relationships could provide vital clues for better
inference of trusted relationships in a network.

To make this inference of trusted ties, we use the recently emerging direction of using
deep learning approaches for sensor and ubiquitous data [12-15]. However, while current
deep learning architectures are typically well-designed to handle low-level neighborhood
notions within an entity of interest (e.g., neighboring pixels within an image or the next
Bluetooth reading within a stream), they typically do not consider the inter-entity notions of
aneighborhood. While this may be less of an issue when dealing with intra-entity problems,
e.g., labeling objects within an image, this becomes a significant limitation in tackling
problems related to human relationships as they are almost always affected by neighboring
relationships within the same network. Hence, there is a need to custom-design deep
learning architectures that can effectively utilize behavioral data from neighboring edges
to predict some properties (e.g., interpersonal trust) for the target edge.

Taking this into cognizance, this work makes two contributions:

1. First effort to use neighboring relationships’ behavioral features for inferring interper-
sonal trust between two people.

2. First effort to custom-design a deep learning architecture that leverages neighboring
relationship properties to better model interpersonal trust.

2. Related Work

Interpersonal trust has significance in various fields (e.g., computer science, infor-
mation science, sociology, psychology, political science, economy) [16-18]. In this effort,
the related work directly associated with this work’s scope, i.e., modeling interpersonal
trust in interconnected social settings using phone sensor-based data, is discussed. We
discuss the related work, which facilitates clarifying the terminology and suggests various
ways to measure interpersonal trust, focusing on computational models of trust. Addition-
ally, we review the current use of one’s peers’ information to model individuals and use
smartphone data and machine learning to understand individuals or relationships.

2.1. Trust as a Field of Study

Trust is essential in understanding human behaviors in several fields whose presence
preserves various relations and produces much good [19]. For example, trust may enable
low-cost informal agreements instead of expensive complex contracts [20]. Furthermore,
individuals dwelling in more trusting communities feel habitually happier and are more
content with their lives, more involved with their local communities, and have more
caring friends [21]. In computational settings, trust plays a role in influencing online
purchases in online commerce [22]. Trust is also an essential mediator in managing individ-
uals’ security, dealing with online service agreements, and undertaking mobile commerce
transactions [23-26].

Although trust is prominent in various fields, a precise scientific definition is not obvi-
ous [27]. Interpersonal trust, trust propensity, and trustworthiness are various terms that
are frequently confused [19,28,29]. To alleviate such confusion, we present the following
definitions for these terms:

Trust propensity: “a dispositional willingness to rely on others” [28].

Trustworthiness: “the willingness of a person B to act favorably towards a person A,
when A has placed an implicit or explicit demand or expectation for action on B” [19].

Interpersonal trust: “a willingness to accept vulnerability or risk based on expectations
regarding another person’s behavior” [1].
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A person’s trust propensity measures the overall willingness to take risks and people’s
overall expectations to behave well generally. In contrast, interpersonal trust is some-
thing specific to a particular relationship between two people. In this work, we focus on
interpersonal trust.

2.2. Measuring Interpersonal Trust

Several recent works have made efforts to elicit a person’s propensity to trust other
people [27,30]. Nevertheless, many of these efforts have either mainly focused on demo-
graphic traits (e.g., gender, race) or used lab-based experiments (e.g., Dictator Game) [31,32].
Unfortunately, using such approaches for understanding trust scores often constrains stud-
ies’ scope to factors that can be elicited in the lab settings. Other approaches include asking
users survey questions. For instance, some efforts have directly asked users if they trust a
person “X” [33]. While direct, such approaches are often critiqued on the validity of the
metric. Human beings are known not to be very good at answering questions directly
about such metrics. A direct question involving “trust” as an operative term leaves it
open for each person to interpret what they mean by “trusting person X”. Hence, some
of the efforts ask pointed scenario-based questions (e.g., “Would you ask person X to
babysit for you?”). Lastly, there are research efforts that define behavioral metrics for
interpersonal trust. For instance, Adali et al. define retweeting a message from person X
as a metric for trusting person “X” [34]. While practical and useful, such a definition has
little support from the traditional social science trust literature. In this work, we follow
Shmueli et al. [27] and study the interconnections between a survey-based definition of
interpersonal trust and phone-based behavioral features. The key contributions here lie
in proposing a neighbor-aware deep learning approach, allowing for automatic inference
of trust scores based on phone-based interaction features. We hope that the results based
on trust’s current operationalization will motivate further work with varied methods for
quantifying trust.

2.3. Computational Modeling of Trust

Numerous recent efforts have attempted to model trust in computational settings.
Notable examples include the following: Adali et al. describe a computational model for
interpersonal trust in [35], which can treat trust as a social tie between a trustor and a
trustee [34]. In their model, trust develops as a part of an emotional relationship between a
pair of people similar to the concepts of emotional and relational trust. Likewise, Farrahi
and Zia have studied the dissemination of trust as a probabilistic stochastic process [36].
Roy et al. have suggested using a pair of complementary measures to determine trust
scores of actors in social networks [37]. Zolfaghar and Aghaieb have studied the devel-
opment of trust in social networks [38]. The authors in [39] tackle the task of trust-aware
recommendation provision using deep learning. Similarly, the authors in [40] use deep
learning to identify trusted ties in online social networks. A key insight in this line of work
is transitivity between trusted ties which has intersections with our proposed neighbor aware
approach. However, this line of work is quite different from ours. While “link prediction”
focuses on identifying unknown trust scores based on known trust scores in the network,
we focus on the task of trust score prediction based on behavioral or communication (call,
SMS (short message service), face-to-face) data. Even when using neighbors” communica-
tion features, we do not assume that their corresponding trust scores are available to the
predicting algorithm.

There have been a couple of recent studies focusing on studying trust using mobile
or ubiquitous sensors [27,30]. Shmueli et al. [27] focus on shallow learning to model
interpersonal trust but do not have neighbors’ notion of modeling trust scores. Bati et al. [30]
focus on modeling trust propensity, a person’s trait to trust others in general, rather than
trusting a particular person. Bati et al. [30] also do not use deep learning or neighbors’
notion to model trust scores.
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2.4. Modeling Individuals and Relationships Based on Their Neighbors

Homophily is a well-studied concept in the social sciences and social network analysis.
Simply put, one often makes friends with others who are similar to them [41]. This idea has
been studied in offline and online social networks to understand an individual’s attributes
ranging from personality traits to movie preferences [11,42—44]. Some early results in
ubiquitous computing literature have recently utilized a neighbor’s properties to infer an
individual’s personality traits and actions [45]. For instance, Lane et al. [45] have studied
“the various social phenomena and environmental factors that cause people to develop
correlated behavioral patterns, especially within communities connected by strong social
ties”. Simply put, while current efforts (e.g., [11,45]) argue that people are affected by other
people in their network, we posit that relationships are also affected by other relationships
in the network.

2.5. Using Phone Logs and Machine Learning to Understand Individuals and Relationships

Smartphones have become a primary communication and internet connection de-
vice used by billions of people globally. The majority of contemporary smartphones
are equipped with several sensors, and there exists significant literature utilizing smart-
phone sensors to automatically infer individuals’ cooperation propensities and personality
traits [7,46—48]. Indeed, this work builds upon a recent line of work in ubiquitous comput-
ing literature on phoneotypic modeling [47], which defines a phoneotype as the “composite
of an individual’s traits as observable via a mobile phone”. Hence, it argues that a combi-
nation of phone-based behavioral features could build a unique signature for an individual
that can predict facets of the individual’s life (e.g., propensity to cooperate).

There has been a rich array of recent work on modeling human activities using sensors
and deep learning [13,14,49,50]. These efforts range in applications from health to activities
of daily living and employ a wide variety of deep learning approaches, including deep
neural networks (DNN), convolutional neural networks (CNN), autoencoders, restricted
Boltzmann Machines, restricted neural networks (RNN), and long-short term memory
(LSTM). Rather than activity recognition, where the output varies over time, interpersonal
relationships are typically modeled over a cumulative period. This implies that only one
score is predicted (and one learning instance) even if the dataset contains one-year worth of
human activities. This changes the learning instances available and the kind of architecture
suitable for many of the problems at hand.

3. Datasets

The MIT (Massachusetts Institute of Technology, Cambridge, MA, USA) Friends and
Family dataset was part of a year-long study utilizing the “Funf” framework [51] and
surveys to collect data about the lives of 130 individuals (about 64 families), recruited in
two batches: Spring and Fall 2010, living in a families-only housing on the campus of
a North American University. All community members were couples, in which at least
one of the members was affiliated with this university. The community comprised over
400 residents, half of whom had children. The community had many ties of friendship
among its members. Thus, most of the participants had kids or at least were couples living
in close proximity with kids. The Funf platform can collect various types of data although
we focus here on the call, SMS, and Bluetooth logs and the trust surveys that determine
trust ties between the subjects [27].

To accommodate the various definitions of trust occurring in three important hypo-
thetical but daily life-pertinent scenarios (health, wealth, and family), the participants were
asked the following three questions [27]:

1. “Would you ask person X for help in sickness?”
2. “Would you ask person X for a hundred-dollar loan?”
3. “Would you ask person X for babysitting?”

While we have access to the answer to question (3) for all participants, we have
answers to the first two questions only for the participants from the Spring batch, not the
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Fall batch. We note this as a limitation of this work and report the results for both datasets
(i.e., smaller N with all questions and larger N with only question #3). We refer to the
dataset with all the three questions about health, wealth, and family as TrustHWF and the
second dataset as TrustF throughout the paper.

To capture several aspects of human relations in the dataset, Bluetooth (BT), calls, and
SMS logs were collected. Explicitly, using call logs facilitate understanding the synchronous
interaction between two individuals despite their distance. Additionally, using SMS logs
enable understanding the non-synchronous interaction between two individuals regardless
of their distance. Bluetooth logs facilitate understanding of the participants’ spatial patterns
by approximating face-to-face interactions between the participant and others. For each
pair of users, the number of co-location scans is counted and used as a proxy for the actual
time they spend in physical proximity. The logs get updated every five minutes (to detect
social interaction while preserving the phone’s battery) based on scanning for adjacent
Android phones [27].

We focus only on the interactions within the community (e.g., disregarding external
calls). The participants collectively have recorded the following interactions during the
study, as shown in Table 1.

Table 1. Summary of calls, SMS, and BT Made by the users during the study.

Feature Total Mean Median
BT 474,340 4351.74 3864
Call 58,554 476.05 407
SMS 17,369 231.59 88

3.1. Mobile Phone (Smartphone) Data Features

Trust and socio-mobile behavior have been connected in previous research, both
conceptually and empirically. For instance, an individual’s propensity to trust others has
been connected conceptually with social capital and empirically with phone data [30].
Similarly, interpersonal trust has been connected conceptually with the strength of ties and
empirically with phone data [27,52]. Interpersonal trust, as reported by the ith person A;,
is often a function of the trust propensity of person A; and the interactions between person
Aj and the target entity B;.

Here, we consider a global network G = (V; E), which consists of nodes V and edges
E, where nodes V refer to all participants in the study and E refers to all edges drawn
between participants (e.g., A, B;) based on interactions observed between them. In the rest
of this work, we consider the nearest neighbors based on Bluetooth (proxy for face-to-face)
scans. However, the proposed approach is generic and will work with other types of
interactions, such as calls, SMS messages, Facebook messages, and retweeting. We are
interested in modeling the “interpersonal trust score” for a specific edge (A; — B;) € E
based on the behavioral features observed for node A; € V as well as the edge (A; — B;)
€ E. Further, let Uj; and Uj; be the two closest neighbors of node A; e.g., those with the
highest number of Bluetooth co-locations with A;. We posit that knowing the behavioral
features for edges (Uj; — B;) and (Uj; — B;) will help improve the quality of prediction for
the trust beyond that possible with the behavioral data for A; and (A; — B;). For simplicity
of notation, we write U;; and Uj; as U; and U, here onward.

To define behavioral features that represent the nodes and edges using social-mobile
data, we have surveyed the related literature which focuses on connecting phone behavior
with social outcomes (e.g., [27,46,53,54]). For instance, some researchers have suggested
that social capital is connected with phone use behavior [53] and trust [55]. Social capital
often contains two variations: bridging and bonding [56]. Thus, we link the notions of weak
and strong ties to bridging and bonding social capital to infer interpersonal trust [25,47,57].
We use call, SMS, and Bluetooth (BT) logs to represent the features that carry “social traits”
concepts for mobility and interpersonal trust and their interconnections [36,53,58]. Based
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on the BT, call, and SMS metadata collected from the app, we define the following set of
phone-based features (n = 23).

Note that while many deep learning approaches do not utilize “handcrafted” features,
there remain multiple scholars who have argued that theory-driven (or handcrafted)
features are useful even when using deep learning architecture [59-61]. While availing of
the sophisticated non-linear interactions between features using the neural networks, such
approaches still allow system designers to better understand the rationale for their models.
Further, such features allow for a more interpretable comparison between shallow and
deep learning approach results and work well in scenarios where the available number
of instances is not exceptionally large [62]. In the current scenario, where there is only
one interpersonal relationship score per edge, we have opted to use handcrafted features
at the input layer even though they may interact for over a year. This also allows for a
comparison across deep and shallow learning strategies for using neighbor’s sensor data
for inferring interpersonal trust—neither of which has been reported in the past literature.

The features have been designed to capture two different aspects—(1) the traits
(e.g., trust propensity) of the person A; who is giving the trust rating, and (2) the re-
lationship between A; and B;. While the traits of the person A; indeed remain common
across all Ai relationships, this is only one part of the equation; the second part is the
specific relationship between the two nodes (e.g., A; and B;). This mimics real-world
scenarios, where an individual’s traits when combined with their interactions with others,
shape the trusted and non-trusted ties they have with others. In terms of the network
representation described earlier, we try to capture the person’s traits using node properties
and the relationship using edge properties.

3.1.1. Node Properties

Social Activity Level. Social activity level signifies a person’s activity determined in this
work by counting the number of exchanged phone calls, SMS messages, and Bluetooth
scans. An active user is expected to have a high count of social activity level [47]. Several
works have linked an individual social activity level with their social capital and/or trust.
Additionally, high social activity has been associated with dropping relational uncertainty
and is considered a means of establishing trust in interpersonal relationships [24,27,63,64].
Thus, we consider the following features:

Social Activity (BT, call, SMS) = Z Activity;

"2

where “i” is the individual being considered and activity is the number of BT scans, calls,
and SMS that the individual is part of.

Diversity. We quantify the total number of calls, SMS messages, and Bluetooth scans
in the previous set of features. Here, we also determine the diversity measured as Shannon
Entropy for each one of them. Various studies have associated diversity with multiple
personal well-being outcomes and personality traits [65,66]:

D; = — ) _pij log, pij
]

a2 20
1

where p;; is the proportion of social events relating to person “i” and contact “j”, whereas
“b” is the total amount of these interactions.

Tie Strength. Earlier works have correlated strength of ties and trust propensity [30].
The same literature underlines the importance of preserving relations with a person’s
strong and weak ties. Each may yield various types of social capital, and probably, over
time, interpersonal trust. Following Williams [57], we link the notions of “bonding” and
“bridging” social capital to those of “strong” and “weak” ties proposed by Granovetter
and other researchers [25,67-69]. We posit that the relative spread (or concentration) of
communication with strong (respectively weak) ties might be an indicator of trusting other
individuals. It is estimated that an individual dedicates at least 33% of their time with their
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top-third most recurrent contacts (a proxy for strong ties) [47]. Nevertheless, a great score
like 90% might indicate a person’s preference to deliberately engage more with strong ties
more willingly than spreading the communication effort more equally among all ties. Thus,
we define the following features:

(Z Communication with Highest 1/3 Contacts % 100)
Y All Communication

(Z Communication with Lowest 1/3 Contacts % 100)
Y- All Communication

Strong /Weak Tie Ratio (SWIR) =

Reciprocity. A vital property of a person’s social behavior is the ease of communicating
with others. Previous research has suggested that the approachability of individuals
is related to social capital levels [53]. Moreover, social capital has been associated with
trust [55]. Thus, we compute the ratio of incoming to outgoing calls and SMS text messages.

Incoming Communication Count
Outgoing Communication Count

In Out Ratio (Call, SMS) : IOR =

Loyalty. Loyalty means how frequently participants engage with their favorite people
in terms of calls, SMS messages, and Bluetooth scans. Past research has connected this
loyalty feature with individual well-being and propensity to trust [30,70]. Precisely, we
calculate the percentage of time spent with their top three frequented communication (BT,
call, SMS) out of all communication.

Y. Time Spent with Top Three Contacts
Y. Time Spent with All Contacts

Loyalty = x 100

Temporal Rhythms. Preceding research has associated circadian cycles, Dark Triad
(i.e., narcissism, Machiavellianism, and psychopathy) and trust [71,72]. An individual’s
chronotype, i.e., the propensity for a person to sleep at a specific time during a day-and/or-
night period (24-h), has been linked with cheating and Machiavellianism [73]. Additionally,
Cai et al. have shown the importance of temporal dynamics in social trust prediction [74].
Hence, we consider temporal rhythms to be useful for predicting interpersonal trust.

The daily business hours in the USA are 8§ AM—5 PM; thus, we compute daily patterns
of activity and the differences between different phases of the day by defining the following
features:

Y. Activity (8AM to 5PM)

Diurnal Activity Ratio (BT, Call, SMS) DAR = S Activity (5PM fo SAM)

Another layer of characterization for the abovementioned two states of the daily
activity ratio is added to give more insights out of these circadian rhythms by enumerating
the weekdays (Monday to Friday) to weekends (Saturday and Sunday) communication
(BT, call, SMS) ratio:

Y. Activity (Weekdays)
Y. Activity (Weekends)

Weekday /Weekend Activity Ratio (BT, Call, SMS) WWAR =

3.1.2. Edge Properties

Past research has connected the number of interactions between users conceptually
with the strength of ties [4,67] and this feature has empirically been found to be predictive
of interpersonal trust [27]. Hence, we consider the social activity level based on the three
modalities (BT, call, SMS) as the features to characterize the edges in the network:

Social Activity (BT, Call, SMS) = Z Activity;;

"2 "2

where “i” and “j” are the individuals whose relationship is being considered. The features
are represented visually in Figure 1 and summarized in Table 2.
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Node Features
Ai |
Edge Features
Social Activity Level
(BT,Call,SMS)
3 Features ‘
Diversity S BT S Call S SMs
(BT,Call,SMS) 1 Feature 1 Feature 1 Feature
3 Features ‘
Tie Strength
(BT,Call,SMS)
3 Features ‘
Reciprocity Ai } { Bi
(Call,sms) ‘

Ai € Bi Ai € Bi Ai € Bi

2 Features
Loyalty
(BT,Call,SMS)
3 Features ‘
Temporal Rhythms
(BT,Call,SMS)
6 Features ‘

Figure 1. Summary of phone-based features in a network representation.

Table 2. Definition of phone-based features used in this paper.

Node/Edge Feature Name Definition
SOClaé‘;Z‘zt‘ﬁzsLe"el Social Activity (BT, Call, SMS) = Y_ Activity;
Diversity
3 Features Di=- ?P i 108y P
Tie Strength Strong/Weak Tie Ratio (SWTR) =
Y. Communication with Highest 1/3 Contacts
3 Features ( )y AII Communication _ x 100)
i (o ey G T (/GO 00
S = Reciprocity In Out Ratio (Call, SMS):
) _ Incoming Communication Count
e 2 Features IOR = Outgoing Communication Count
Loyalty Y. Time Spent with Top Three Contacts
3 Features Loyalty = Y. Time Spent with All Contacts 100
Diurnal Activity Ratio (BT, Call, SMS) DAR =
Y. Activity (8AM to 5PM)
Temporal Rhythms ¥ Activity (5PM fo 8AM)
6 Features Weekday /Weekend Activity Ratio (BT, Call,
_ ¥ Activity (Weekdays)
SMS) WWAR = Y. Activity (Weekends)
)
%5 Social Activity Level . .. .
50 5 ocial Activity _ )
B dg 3 Features Social Activity (BT, Call, SMS) = }_ Activity;;
=
4. Method

4.1. Dealing with Class Imbalance in the Datasets

To clean our datasets (TrustF and TrustHWF), we have removed all instances without
any logs for BT scans, Calls, and SMS messages altogether, resulting in 13,163 instances
for TrustE. 12,998 of these instances have a low interpersonal trust (zero), whereas the rest
of the instances (165) have a high interpersonal trust (one). For TrustHWF, 2492 instances
have a low interpersonal trust (zero), whereas the rest of the instances (447) have a high
interpersonal trust (one). Here, following Shmueli et al. [27], we define trust level as high
when the respondents answer any of the three questions about health, wealth, or family
as true.
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We notice significant skew in the dataset towards not trusting in both datasets, as
shown in Figure 2. This seems reasonable as individuals are likely to trust only a small
ratio of all the people they encounter.

Class 0 Class 1 Total Class 0 Class 1 Total
TrustHWE 2492 147 2039  1rustF 12,998 165 13,163

2492

m Class 0
m Class 1

165

Figure 2. Class imbalance of the interpersonal trust scores (TrustHWF and TrustF).

The most common way of dealing with the class imbalance in datasets is to (artificially)
balance the training set to allow for better learning opportunities before the learned model
is tested out on the imbalanced test set as is expected in the real world. The most common
ways for balancing a training dataset are (1) over-sampling, (2) under-sampling, and
(3) a combination of over and under-sampling [75]. Here, we split the dataset into two
(train/test) subsets (70/30%), respectively, and chose SMOTE+Tomek links [76] to balance
the training data. In this technique, SMOTE [77] is used first which generates new minority
class instances. These minority class instances are based on a hyperspace projection and
are not direct copies of the existing instances. Then, Tomek’s links method is used to under-
sample the dataset whose primary motivation is to balance the training data and remove
noisy examples lying on the wrong side of the decision border [76]. We have chosen
these resampling approaches following various recent studies showing their potential
in enhancing the accuracy of the classification in similar contexts [78,79]. We use the
implementation as described in [75], which is inspired by [80].

4.2. Identifying Appropriate Neighbors for Better Interpersonal Trust Modeling

In this work, we would like to study the novel idea of determining neighbors” impact
in enhancing shallow and deep learning algorithms’ performance in inferring interpersonal
trust. Following the results in [27], we consider face-to-face interactions to be the most
important determinants for considered trusted relationships and, hence, identify the two
nearest neighbors in terms of face-to-face frequency (Bluetooth) interactions. Note, however,
that the proposed network-based inference approach is generic and can work with other
types of interactions (e.g., calls, Facebook messages).

The underlying intuition of using a neighbor’s information can be applied to any
arbitrary number of neighbors. However, including all the neighbors would quickly
become exorbitant in terms of data size and the effects of additional user data are unlikely
to be useful after a threshold. Given the significance of triads as an important building
block in social network literature [81,82] and “triangulation” in signal processing literature,
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we focus on using data from two additional neighbors to have a total of three edges whose
data is considered in this work.

To study the impact of adding the two similar neighbors based on the number of
Bluetooth scans in predicting one’s interpersonal trust, we have created the following
additional features, as presented in Figure 3.

Edge Features J \ L11/2

N
N
N
N

3 (BT, Call, SMS)
3 Features

U1l € - Bi

N

| y B,'/
== 4 S

7%

3> (BT, Call, SMS)
3 Features

U2 €< - Bi

* Uz)//

Figure 3. Additional phone-based features in a network representation after adding two neighbors
(nodes U1 and U2).

4.3. NADAL: A Neighbor-Aware Deep Learning Architecture

In this work, we build upon recent work in ubiquitous computing literature by Radu
et al. [83], which defines a novel deep learning approach to utilize multimodal sensor
data for human activity recognition. An important insight from their work was the idea
to avoid both the extremes of fusion techniques, i.e., early fusion (feature concatenation)
and late fusion (decisions derived separately from single modalities are combined in the
final layer). Instead, they argue a case to allow for two kinds of hidden layers. The first of
which are targeting a specific sensor type, and the second of which are capturing unified
concepts across sensor types. In their structure, separate architectures are constructed for
each modality to learn initially sensor-specific information before the resulted concepts
are unified through representations that bridge across all sensors (i.e., shared modality
representations).

We consider the neighbors’ data to be an additional “channel” or modality of infor-
mation regarding the phenomena of interest. In that sense, our work follows that of Radu
et al. [83]. However, the “channels” in our setup are quite different from those in Radu
et al. [83]. While in their context, different channels were observing the same activities via
different modalities, in our case the additional channels provide contextual information
regarding different activities, which nevertheless could indirectly influence the prediction
task at hand.

Specifically, we consider the interpersonal trust between user A; and a target B; (see
Figure 3) to be a function of the behavioral features that characterize the edge (A; — B;)
(e.g., the number of phone Calls between them) as well as the node A; (e.g., number of
overall phone Calls made by A;). While the node properties give a clue to the personality
or the traits of A;, the edge properties characterize the relationship between A; and B;.

Now, let us also consider two neighbors for A;: U; and Up. We posit that the properties
of the edges connecting these users with Bi, i.e., {U1aBi; U2aBi} could provide additional
context on the relationship (A; — B;) and thus be useful to predict the interpersonal trust
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between them. However, we do not expect the node properties (e.g., personality or trust
propensity) of U; and Uy, to influence the relationship between A; and B; significantly.

Hence, taking inspiration from Radu et al. [83] and considering the different applica-
tion contexts here, we define a novel architecture, as shown in Figure 4. This architecture
builds upon feedforward neural networks and contains separate architectural branches
for user A;’s node and edge features as well as U;’s and Uj’s edge features without any
inter-branch connections between layers until later unifying cross-channel layers that con-
nect the node and edge features for the A;, and the three types of edges, respectively. It
allows for the node properties of user A; to go through several layers of neural networks to
allow for different features and the interactions among them to become part of the model.
The same thing happens to the other “channels” of information, i.e., the edge properties
of (A; — By), (U — Bj), and (U, — B;). Each of these properties goes through several
layers of neural networks without any interaction across channels. Next, to learn the
(potentially non-linear) interaction effects between the A;’s node and edge parameters, the
corresponding layers are merged and the resulting layer passes through multiple layers
of networks to allow for learning of the appropriate parameters. Similarly, there could be
interaction effects between the edge-based features for (A; — B;), (U; — B;j), and (U, —
B;), which can be learned by combining the corresponding layers and letting them pass
through two layers of neural networks.

Ai
20 Features Dense (20) Dense (20)
| Relu ™ Relu
| (Node Features)
— Dense (40) L | Dense (40) Dense (20)
Relu Relu Relu
Ai)Bi
Dense (20) Dense (20
3Features ( )__) (20)
| Relu Relu
(Edge Features)
Dense (40 Dense (40) Dense (20) Dense (1)
Relu Relu Relu Sigmoid
U1 Bi
3 Features Dense(20) | | Dense (20)
| Relu [ Relu
| (Edge Features)
| Dense(40) | | Dense 40) Dense (20)
Relu Relu Relu
U8 &
Dense (20) Dense (20)
3 Features
[ Relu > Relu
| (Edge Features) ‘

Figure 4. NADAL architecture schematic.

5. Results
5.1. Classification Results

We used Scikit-learn [84] and Keras [85] running in Google Colab Notebooks to build
various models capable of automatically inferring the interpersonal trust of a user classified
into two classes: “Low Interpersonal Trust (0)” or “High Interpersonal Trust (1)”. We
split all datasets into a 70% training dataset and a 30% test set. We analyze the results
with and without sampling, as well as with and without considering the neighboring
edges. Lastly, we consider both shallow and deep learning methods, namely: decision
trees, random forest, logistic regression, standard feature concatenation-based deep neural
network (FC-DNN), and our proposed NADAL architecture.
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5.1.1. TrustHWF Dataset

We consider multiple variants of the dataset to quantify the effect of various factors
on the classification performance. Table 3 compares all (subsets of) TrustHWF dataset
considered in this work and the number of features/rows in each one of them. (Note that
while the training data (70%) is balanced between the two classes by creating artificial
samples (SMOTE+Tomek), the testing (30%) is done on the imbalanced dataset as consistent
with the real-world scenario where such an algorithm is likely to be applied.).

Table 3. Summary of subsets of the TrustHWF dataset considered in this study.

Dataset Neighbor Awareness = Features Instances Class0 Class1
ORIGINAL Only Main Edge (100%) 23 2939 2492 447
Main Edge + Two
ORIGINAL Neighbors (100%) 29 2939 2492 447
TRAINING SET: AS-IS ~ Only Main Edge (70%) 23 2057 1739 318
. Main Edge + Two
TRAINING SET: AS-IS Neighbors (70%) 29 2057 1739 318
TRAINING SET: After Only Main Edge (70%) 23 3388 1694 1694
Resampling
TRAINING SET: After Main Edge + Two
Resampling Neighbors (70%) 29 3388 1694 1694
TEST SET Only Main Edge (30%) 23 882 753 129
Main Edge + Two
TEST SET Neighbors (30%) 29 882 753 129

1.  Sampling Technique: As-Is vs. SMOTE+Tomek Resampling

As mentioned in Section 4.1, we try to counter the problem of class imbalance by
creating more balanced training datasets using SMOTE+Tomek resampling. To quantify the
performance difference based on the resampling, we run two versions for each experiment—
one with and one without the resampling.

2. Neighbor Awareness: Individual Path (Non-Neighbor-Aware) vs. Neighbor-Aware

We consider the models’ performance if they only utilize the individual node and
its edge connecting the target node features vs. utilizing the edge data from two of the
closest neighbors. While all the individual path approaches had access to 23 features
(20 node features + 3 edge features), the neighbor-aware approaches had access to 29
(20 node features + 3 x 3 edge features). While the difference in the number of features
made little impact on the architectures for shallow learning approaches and FC-DNN, the
NADAL architecture was adapted to consider only the layers that lie in the path of the
abovementioned 23 features for the computation.

3. Machine Learning Approach: Shallow Learning (Random Forest) vs. Deep Learn-
ing (FC-DNN and NADAL)

The first step in the classification process is to compare multiple shallow learning
algorithms for predicting interpersonal trust to select the best one to be compared to deep
learning approaches, as shown in Table 4. Note that AUCROC stands for area under
the receiver operating characteristic curve and Acc stands for accuracy. While a higher
score is better for each of these metrics generally, multiple researchers have suggested
in contradiction of using classification accuracy to interpret results in highly imbalanced
datasets [86,87]. For instance, a simple baseline (Majority Zero-R) algorithm which classifies
all ties as “not trusted” will achieve an accuracy of 84.79% in TrustHWF dataset and 98.75%
in TrustF dataset. However, such an algorithm would be useless in practice. Hence, we
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use AUCROC, which balances the majority’s performance and the minority class as the
primary metric to compare algorithms.

Table 4. Average results of interpersonal trust using various shallow algorithms and sampling
methods (TrustHWF). Data in bold shows the best results.

Individual Path
Sampling Algorithmic (Non-Neighbor- Neighbor-Aware
Approach Approach Aware)
Acc AUCROC Acc AUCROC
AS-IS Decision Tree 60.29% 67.78% 60.69% 67.99%
AS-IS Logistic Regression 85.15% 49.87% 85.26% 50.25%
AS-IS Random Forest 61.87% 68.90% 62.64% 69.03%
SMOTE+Tomek Decision Tree 61.81% 66.84% 64.07% 67.33%
SMOTE+Tomek Logistic Regression 69.05% 63.56% 66.33% 63.58%
SMOTE+Tomek Random Forest 61.93% 69.00% 62.32% 69.13%

As can be seen, logistic regression performs the worst in all four combinations of paths
and sampling approaches. Random forest is the best in terms of consistently achieving the
highest AUCROC compared to decision tree and logistic regression in all four combinations
of paths and sampling approaches.

Next, we consider three types of machine learning approaches. First is random forest
as a representative of shallow algorithms, which will be useful for comparison. Next is the
baseline deep learning approach, which builds upon feature concatenation in the first layer
(FC-DNN). Lastly, the NADAL approach, which has been custom-designed to capture the
interactions between neighboring nodes’ edges.

After running each experiment 10 times, the average results summarized in Table 5
show the following trends:

Table 5. Average results of interpersonal trust using various classification and sampling methods
(TrustHWEF). Data in bold shows the best results.

Sampling Algorithmic Indlv.ldl:l al Path (Non- Neighbor-Aware
Approach Approach Neighbor-Aware)
Acc AUCROC Acc AUCROC
AS-IS Random Forest 61.87% 68.90% 62.64% 69.03%
AS-IS FC-DNN 85.36% 53.66% 85.31% 55.41%
AS-IS NADAL 85.34% 59.40% 84.90% 68.98%
SMOTE+Tomek Random Forest 61.93% 69.00% 62.32% 69.13%
SMOTE+Tomek FC-DNN 47.31% 62.58% 47.57% 64.01%
SMOTE+Tomek NADAL 61.29% 68.08% 62.11% 70.38%

For FC-DNN, we passed all the features through a multilayer perceptron (23/40/40/
20/40/40/1), all activated by ReLu (rectified linear unit) except the output layer that was
activated by Sigmoid with a 16 batch size and 50 epochs as presented in Figure 5. For
NADAL, the features were passed through different layers, as shown in (Figure 4). All
layers in NADAL are activated by ReLu except the output layer which is activated by
sigmoid with a 16 batch size and 50 epochs.
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Figure 5. Standard feature concatenation based deep neural network (FC-DNN) architecture
schematic.

For the same algorithmic approach and level of neighbor awareness, the models cre-
ated with SMOTE+Tomek re-sampling scored higher in AUCROC. This trend is consistent
with the expectation and recent research on dealing with imbalanced datasets [86]. When
considering the SMOTE+Tomek results (lower half of the table), we notice that the neighbor-
aware approaches consistently outperformed the non-neighbor-aware approaches. The
proposed architecture (NADAL) outperformed the shallow learning approach and the base-
line deep-learning approach within the neighbor-aware approaches. The best performing
algorithm overall is the one with SMOTE+Tomek sampling, neighbor-aware features and
NADAL deep learning architecture which is found to be statistically significantly better
using two-tailed unpaired t-tests (at o« = 0.05 level) than all comparisons with (Random
Forest and FC-DNN) algorithmic approaches together with different data consideration
(i.e., Individual Path vs. Neighbor-Aware). This outcome shows the importance of using
neighboring edge properties and custom-designed deep learning architecture (NADAL) for infer-
ring interpersonal trust between two people, thus supporting the two key contributions of
this work.

However, we note that this model still has a relatively modest performance (70.38%
AUCROC). We posit that this may be because machine learning approaches, especially
deep learning approaches, tend to need large datasets before they start performing well.
Acknowledging this as a limitation, we move to the larger TrustF dataset to examine
various models’ performance over a larger dataset.

5.1.2. TrustF Dataset

Table 6 shows all (subsets of) TrustF dataset and the number of features/rows in each
one of them, which follows the same approach described in Section 5.1.1.
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Table 6. Summary of subsets of TrustF dataset considered in this study.
Dataset Neighbor Awareness  Features Instances Class0 Class1
ORIGINAL Only Main Edge (100%) 23 13,163 12,998 165
Main Edge + Two
ORIGINAL Neighbors (100%) 29 13,163 12,998 165
TRAINING SET: AS-IS ~ Only Main Edge (70%) 23 9214 9103 111
) Main Edge + Two
TRAINING SET: AS-IS Neighbors (70%) 29 9214 9103 111
TRAINING SET: . o
After Resampling Only Main Edge (70%) 23 18,170 9085 9085
TRAINING SET: Main Edge + Two
After Resampling Neighbors (70%) 2 18,168 9084 9084
TEST SET Only Main Edge (30%) 23 3949 3895 54
Main Edge + Two
TEST SET Neighbors (30%) 29 3949 3895 54

Table 7 shows that the decision tree performs the worst in all four paths and sampling
approaches. Between random forest and logistic regression, both perform better than
the other in two of the four scenarios. However, random forest is better at achieving a
consistently high AUCROC in all four combinations of paths and sampling approaches.

Table 7. Average results of interpersonal trust using various shallow algorithms and sampling
methods (TrustF). Data in bold shows the best results.

Individual Path

Sampling Algorithmic (Non-Neighbor-Aware) Neighbor-Aware
Approach Approach
Acc AUCROC Acc AUCROC
AS-IS Decision Tree 98.55% 67.58% 98.57% 69.05%
AS-IS Logistic Regression 98.61% 49.99% 98.63% 50.00%
AS-IS Random Forest 92.48% 79.84% 93.12% 81.08%
SMOTE+Tomek Decision Tree 93.04% 76.11% 93.47% 77.88%
SMOTE+Tomek Logistic Regression 77.94% 80.60% 78.12% 81.60%
SMOTE+Tomek Random Forest 93.78% 77.85% 94.67% 78.94%

Next, we consider three types of machine learning approaches again. First is random
forest; next is the baseline deep learning approach (FC-DNN); and lastly the NADAL
approach.

Table 8 shows the average results of running experiments with each of the abovemen-
tioned settings 10 times. It compares the representative shallow method (random forest)
with the proposed deep learning approach (NADAL) as well as a baseline deep learning
approach (FC-DNN).
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Table 8. Average results of interpersonal trust using various classification and sampling methods
(TrustF). Data in bold shows the best results.

Individual Path

Sampling Algorithmic (Non-Neighbor-Aware) Neighbor-Aware
Approach Approach
Acc AUCROC Acc AUCROC
AS-IS Random Forest 92.48% 79.84% 93.12% 81.08%
AS-IS FC-DNN 85.37% 50.72% 98.63% 60.48%
AS-IS NADAL 98.64% 51.31% 98.67% 85.39%
SMOTE+Tomek Random Forest 93.78% 77.85% 94.67% 78.94%
SMOTE+Tomek FC-DNN 73.67% 78.28% 93.35% 82.16%
SMOTE+Tomek NADAL 92.54% 90.63% 94.55% 93.23%

The results summarized in Table 8 show the following trends. For the same algorith-
mic approach and level of neighbor awareness, the models created with SMOTE+Tomek
re-sampling scored higher in AUCROC. The only exception was the Random Forest.
When considering the SMOTE+Tomek results (lower half of the table), we notice that the
deep learning approaches (both FC-DNN and NADAL) outperform the shallow learning
approach (random forest). This finding is again along expected lines as deep learning
approaches tend to have more opportunity to capture linear and non-linear associations
between different features and create comprehensive models.

Further, the neighbor-aware approach yields better performance in both shallow
and deep machine learning approaches. All comparisons between the same algorithmic
approaches but different data considerations (i.e., individual path vs. neighbor-aware)
showed that the neighbor-aware approaches obtained higher scores. In the case of NADAL
and random forest, these gains were found to be statistically significant using two-tailed
unpaired t-tests (at = 0.05 level). This outcome validates the first major contribution of
this work, i.e., proposing the use of neighboring edge properties for inferring interpersonal
trust between two people, whether in shallow or deep learning.

Lastly, the proposed deep learning architecture (NADAL) was statistically signifi-
cantly higher than a baseline deep learning (FC-DNN) and the Random Forest shallow
learning approach when using the neighboring edge properties, which validates the sec-
ond contribution. This finding suggests that early fusion of features might not allow for
the same channel’s interrelationships to be learned adequately without other channels’
influence. The stepwise unification of different channels across the architecture seems to
have provided better opportunities for the social channels to learn both intra-channel and
inter-channel relationships.

The highest overall AUCROC score of 93.23% was obtained using SMOTE+Tomek
sampling, neighbor-aware features, and NADAL architecture. A score of 93.23% indicates
that the model could learn both the majority and minority classes reasonably well and
could be useful in practice where the interpersonal trust needs to be inferred using phone-
based metadata. Lastly, the noticeable improvement in the models’ performance that has
access to more training data (TrustF compared to TrustHWF) suggests that the proposed
approach might work well in scenarios where there are a large number of rows in the
dataset. A scenario that we expect to become increasingly common in the future.

6. Discussion
6.1. Methodological Considerations

The work presented here tackles the problem of inferring interpersonal trust auto-
matically using phone log data. Such a problem requires dealing with highly imbalanced
datasets and also takes place in a socially rich setting. Hence, this work proposes and
empirically tests multiple techniques to improve automatic prediction quality. While a
SMOTE+Tomek approach allows better learning based on a balanced training set, the
neighbor-aware approach allows for the use of neighboring connections’ data for better
inference. Finally, the growth in such data allows for deep learning techniques to obtain
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better performance. However, the architectures for deep learning need to be defined in
a manner that is responsive to the task’s nature. In particular, the NADAL architecture,
which allows for learning appropriate features from neighboring edges while also giving
due credit to the primary node in question, was found to yield the best results. As the
first effort in this direction, we have chosen to use deep neural networks (DNN) using
artificial neural networks (ANN), which are relatively simple and well-studied in the deep
learning literature. The positive results obtained here on utilizing neighboring relationships
motivate the exploration of other techniques for future work.

6.2. Privacy of User Data and Ethical Considerations

This study’s data come from the MIT Friends and Family study [51], which has been
adopted by multiple research groups to study questions pertaining to social and ubiquitous
computing. We use a version of the dataset where all data were anonymized and hashed.
Under no circumstance was the content of the calls or SMS messages available to the
authors. We recognize the ethical concerns related to the automatic generation of scores to
quantify human ties and interpersonal trust. Similar concerns have been raised in the past
for the automatic generation of mental health scores for individuals or even survey-based
quantification of interpersonal relationships [88]. In each case, the potential positives and
negatives of the approach need to be weighed.

Whom one trusts is a critical mediator for almost all goods, services, and information
that one procures or exchanges in technology-mediated spaces. The neighbor-aware
approach yields higher confidence in inferring trusted ties in networked settings and
hence can have significant implications on the flow of goods, services, and information.
While access to neighbor’s data is not typically feasible for an end-user, access to neighbor-
based information is often available to the central organizations providing the network
for transmission of goods, services, or information. This includes studies where data is
collected in organizational settings (e.g., in companies and campus communities), or as
available to social networking companies (e.g., Twitter, Facebook), mobile or mobile service
providers (e.g., AT&T, Orange, Apple, Google) and trust-based recommendation sites (e.g.,
Epinions).

Nevertheless, we acknowledge potential privacy issues in the above approach. We
strongly recommend an opt-in approach for the collection and use of such data. Next, we
would like to raise awareness of the possibilities of using neighbor aware approaches for
higher accuracy in inferring interpersonal trust. While waiting for the development of
better-accepted privacy and ethics policies, we believe that it takes various studies like this
to facilitate a broader understanding of the visions of using ubiquitous data and enrich the
discussion in the research community around them [89,90]. Overall, this paper’s findings
give confidence that the use of neighboring relationship data to identify trusted ties is
practical and useful, and this represents one vital way to move the literature forward.

6.3. Limitations

The current study has some limitations. Firstly, it has a relatively small sample size of
130 individuals. Hence, we are careful not to generalize the results until they are re-verified
with a larger sample population. Another limitation is the sample’s homogeneity. Although
the sample’s homogeneity stops us from generalizing the results to larger populations,
it enables isolating socio-mobile behavior as a predictor. The final limitation is using a
specific question-based trust metric in this work, including the one with a single question
in the TrustF dataset, due to missing data in the first two questions in the version available
to us. We notice that the proposed approach’s performance is modest with the smaller
(TrustHWF) dataset but increases quite noticeably with the availability of more data. This
finding suggests that the proposed approach might work well in scenarios where there exist
a large number of rows in the dataset—something which is likely to become increasingly
common in the future.
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Despite these limitations, this study’s value lies in the new ground it breaks in multiple
ways. To our knowledge, there have been no previous studies undertaken that utilize
a neighbor-based approach to infer interpersonal trust. Correspondingly, the proposed
NADAL architecture is the first deep learning-based attempt to utilize neighboring relation-
ship properties to better infer aspects associated with a primary relationship. We hope that
the results obtained in this work will motivate more work that applies the abovementioned
techniques to settings with diverse trust measurement methods and sampled populations.

6.4. Implications

With more validation, this line of work might have several implications for individuals
and communities. The users who voluntarily opt-in to such automated interpersonal trust
scoring apps could receive improved and tailored recommendations for social activities,
news, and mobile commerce apps; whom one trusts is a critical mediator for almost
all goods and services that one exchanges in networked settings. For instance, while
sharing health and exercise information with others has been shown to improve health
outcomes [91], most positive outcomes are obtained when sharing such data with trusted
ties [27]. Similarly, while participation in multiple shared tasks (e.g., sharing security
camera footage for neighborhood safety, peer-to-peer file transfer) has significant societal
benefits, a peer-to-peer notion of trust is essential to enabling such applications. Lastly,
inferring trusted ties is important for internet content providers to recommend better
products and services. Hence, with enhancements, the proposed automatic approach can
become a vital cog in the technology-mediated lives of millions of individuals [92].

At a communal level, such apps might complement the need to run costly yearly
surveys to assess the trust-based “state of the nation”, as proposed by [20]. As an alterna-
tive, automated approaches might be used to create a real-time nation-wide trust census
facilitating the decision-making process. Moreover, understanding the phenomenon of
interpersonal trust and its “in the wild” dynamics at scale can noticeably advance the
literature in various fields (e.g., economics, psychology) that study trust. For instance, this
work underscores the networked structure’s role (e.g., strong/weak ties, neighboring ties)
and temporal variations in the development of interpersonal trust.

7. Conclusions and Future Work

In this work, we have proposed a new approach to automatically infer interpersonal
trust via phone sensor-based features with a deep learning approach. This is the first effort
to suggest and validate the use of behavioral features from neighboring relationships to
better predict the interpersonal trust ties of the target relationship. The above problem’s
best results were obtained with the larger TrustF dataset based on a novel deep learning
architecture (NADAL), which efficiently uses neighboring relationship data yielding an
AUCROC of 93.23%. Hopefully, these results will motivate more research that leverages
ubiquitous sensing data in studying the links between socio-mobile behavioral data and
interpersonal trust using diverse approaches applied in various settings.

We plan to extend this work in the future by studying the impact of demographic
features (e.g., gender) on our model while keeping an eye on the fairness of the machine
learning processes. There are also opportunities for improving the work by creating more
advanced deep learning architectures that are also neighbor-aware. With enhancements,
the proposed approach can support multiple applications in domains ranging from well-
being to the shared economy. More generally, the approach presented here could allow
for better modeling of social relationships based on ubiquitous sensing and support a
trust-enabled internet of things.
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