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Abstract: Technological advances have allowed hand gestures to become an important research field
especially in applications such as health care and assisting applications for elderly people, providing
a natural interaction with the assisting system through a camera by making specific gestures. In
this study, we proposed three different scenarios using a Microsoft Kinect V2 depth sensor then
evaluated the effectiveness of the outcomes. The first scenario used joint tracking combined with
a depth threshold to enhance hand segmentation and efficiently recognise the number of fingers
extended. The second scenario utilised the metadata parameters provided by the Kinect V2 depth
sensor, which provided 11 parameters related to the tracked body and gave information about three
gestures for each hand. The third scenario used a simple convolutional neural network with joint
tracking by depth metadata to recognise and classify five hand gesture categories. In this study,
deaf-mute elderly people performed five different hand gestures, each related to a specific request,
such as needing water, meal, toilet, help and medicine. Next, the request was sent via the global
system for mobile communication (GSM) as a text message to the care provider’s smartphone because
the elderly subjects could not execute any activity independently.

Keywords: elderly care; hand gesture; embedded system; Kinect V2 depth sensor; simple convolu-
tional neural network (SCNN); depth sensor

1. Introduction

The aged population in the world is increasing by nine million per year and is expected
to reach more than 800 million by 2025 [1]. Therefore, an increase in the demands of
the various sponsorship programs is expected. In addition, home care is cost-effective,
especially for long-term care provided inside specialised facilities. Additionally, it has a
positive effect on elderly people when provided care service in their own homes. This
paper proposes a remote natural interaction system for elderly disabled people who are
speechless due to sudden stroke, medical accident or who are already deaf-mute, who have
difficulty communicating with other family members at home, especially for providing
daily routine needs.

Previously, human-computer interaction (HCI) based on camera imaging systems used
a variety of techniques and provided natural interaction using hand gestures by making
particular gestures in front of a camera. Where this technique has some challenges, such
as complex background [2], lighting conditions [3], occlusions [4], detection distance [5]
and in cases using RGB cameras the system cannot work in dim or dark environments
regardless of algorithms.

Many research systems have proposed different hand gestures with regard to com-
puter vision techniques for different applications which have shown some drawbacks, as
mentioned in the previous paragraph that effect recognition rate. However, the Kinect
sensor offers a sensor modality that helps to overcome some challenges with a depth sensor
that gives 3D x, y, z coordinates of an object by analysing data returned by the depth
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sensor based on an infrared projector, that effectively overcomes lighting and background
limitations.

This study proposes a non-contact natural interaction system for assisting elderly
people by performing specific gestures in front of a camera in any light conditions, where
these gestures are translated as a request and sent via SMS to the care provider or family
member’s smartphone. In addition, the study provides a comparison between three
different techniques using the Kinect V2 sensor in order to validate the system.

The rest of this paper is arranged as follows: Section 2 presents the related works and
mentions the weaknesses of former works. Section 3 describes the materials and methods,
including the participants and experimental setup, hardware design and hand gesture
scenarios. Section 4 shows the experimental results and discusses the obtained results.
Finally, conclusion and future research directions are provided in Section 5.

2. Related Works

In the last decade, many papers with regard to processing hand gestures were pub-
lished and have become an interesting topic for researchers. Where some of these studies
have considered a range of different applications. However, the hand gesture interaction
systems depend on recognition rate which is affected by some factors, including the type
of camera used and its resolution, the technique utilised for hand segmentation and the
recognition algorithm used. This section summarises some key papers with respect to the
use of the Microsoft Kinect depth sensor for hand gesture recognition techniques, as shown
in Table 1.
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Table 1. A set of research papers that used Kinect depth sensor for hand gestures.

Author Type of
Camera Resolution Techniques/Methods

for Segmentation
Feature Extract

Type
Classify

Algorithm
Recognition

Rate No. of Gestures Application
Area Invariant Factor Distance from

Camera

Ren et al. [6]
2011 Kinect V1 640 × 480

320 × 240
depth map & colour

image finger

Near-convex
Decomposition &

Finger-Earth Mover’s
Distance (FEMD)

93.9% 10-gesture HCI
applications No No

Wen et al. [7]
2012 Kinect V1 Depth–

640 × 480

skin colour
segmentation and

depth joint
fingertip K-means clustering &

convex hull No fingertip gesture

human-
computer

interaction
(HCI)

No No

Li et al. [3]
2012 Kinect V1 640 × 480

320 × 240 Depth thresholds fingertip
K-means clustering

algorithm
convex hulls

90% 9-gesture

real-time
communication
such as chatting

with speech

the difficulty of
recognising one

of the nine
gesture

0.5 to 0.8 m

Lee et al. [8]
2013 Kinect V1 640 × 480

320 × 240 3D depth sensor fingertips shape bases matching 91% 6-gesture
finger painting

and mouse
controlling

low accuracy in
rough

conditions
0.5 to 0.8 m

Ma et al. [9]
2013 Kinect V1 640 × 480

320 × 240 depth threshold fingertip k-curvature algorithm No 5-gesture human-robot
interactions No No

Marin et al.
[10]
2014

Kinect V1 depth–
640 × 480

depth and colour
data

& leap motion

Position of the
fingertips

multi-class SVM
classifier 91:3% 10-gesture

a subset of the
American
Manual

Alphabet

Leap motion is
limit while

Kinect provides
the full depth

map.

No

Bakar et al.
[11]
2014

Kinect V1 depth–
640 × 480 threshold range hand gesture No No hand gesture

hand
rehabilitation

system
No 0.4–1.5 m

Bakar et al.
[12]
2015

Kinect V1 depth–
640 × 480

depth threshold and
K-curvature finger counting depth threshold and

K-curvature 73.7% 5
gestures

picture selection
application

detection
fingertips

should though
the hand was

moving or
rotating

No

Karbasi et al.
[13]
2015

Kinect V1 depth–
640 × 480 distance method hand gesture No No hand

gesture

human-
computer

interaction
(HCI)

No No
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Table 1. Cont.

Author Type of
Camera Resolution Techniques/Methods

for Segmentation
Feature Extract

Type
Classify

Algorithm
Recognition

Rate No. of Gestures Application
Area Invariant Factor Distance from

Camera

Kim et al. [14]
2016 Kinect V2 depth–

512 × 424
operation of depth

and infrared images
finger counting
& hand gesture

number of separate
areas No

finger count &
two hand
gestures

mouse-
movement
controlling

No <0.5 m

Pal et al. [15]
2016 Kinect V1 640 × 480

320 × 240

skin and motion
detection & hu

moments

dynamic hand
gesture

Discrete Hidden
Markov Model Table

single handed
postures

combination of
position,

orientation
& 10-gesture

controlling DC
servo

motor action

backward
movement

gesture effect
recognition rate

No

Desai et al.
[16]
2017

Kinect V1 depth–
640 × 480

range of depth
image

hand gestures
1–5

kNN classifier &
Euclidian distance 88% 5

gestures
electronic home

appliances No 0.25–0.65 m

Desai et al.
[17]
2017

Kinect V2

RGB–
1920 × 1080

depth–
512 × 424

Otsu’s global
threshold finger gesture kNN classifier &

Euclidian distance 90% finger count

Human
computer

interaction
(HCI)

hand not
identified if it’s
not connected
with boundary

0.25–0.65 m

Xi et al. [18]
2018 Kinect V2 1920 × 1080

512 × 424

threshold and
recursive connected
component analysis

hand skeleton &
fingertip

Euclidean distance
and geodesic distance No hand motion

controlling
actions and
interactions.

occlusions may
have

side effects on
the depth data.

No

Li et al. [19]
2018 Kinect V2

RGB–
1920 × 1080

depth–
512 × 424

double-threshold
segmentation and

skeletal data
fingertip

fingertip angle
characteristics & SIFT

key points
No 10-gesture (HCI)

some constraints
are set in hand
segmentation

No

Ma et al. [5]
2018 Kinect V2 1920 × 1080

512 × 424

threshold
segmentation

& local neighbour
method

fingertip convex hull detection
algorithm 96 % 6-gesture

natural
human-robot
interaction.

Some small
noise spots
around the
hands will

reduce
the detection

performance of
fingertips

0.5 to 2.0 m

Bamwenda
et al.
[20]
2019

Kinect V2 depth–
512 × 424

skeletal data stream
& depth & colour

data streams

hand
gesture

support vector
machine (SVM) &

artificial neural
networks (ANN)

93.4% for
SVM 98.2%
for ANN

24 alphabets
hand gesture

American Sign
Language No 0.5–0.8 m
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A study by Ren et al. [6] proposed a new method based on the finger earth mover
distance (FEMD) approach that was evaluated in terms of speed and precision and then
compared with a shape-matching algorithm using the depth map and colour image ac-
quired by a Kinect camera. Wen et al. [7] proposed a gesture recognition system in order
to segment the hand based on skin colour and used K-means clustering and convex hull
to identify hand contour and finally detect fingertips. In another study by Li et al. [3],
where a depth threshold was used to segment the hand and then a K-mean algorithm was
applied to obtain pixels from both of the user’s hands. Next, Lee et al. [8] presented a
developed algorithm that used an RGB colour frame and converted it to a binary frame
using Otsu’s global threshold. After that, a depth range was selected for hand segmen-
tation, and then the two methods were aligned. Finally, the k nearest neighbour (kNN)
algorithm was used with Euclidian distance for finger classification. Another study by
Ma et al. [9] proposed a wireless interaction system for a robot through translating hand
gesture information into commands, where a slot algorithm was utilised to identify finger
gestures. Marin et al. [10] used two techniques together to detect finger regions such
as leap motion and Kinect devices to extract different feature sets. The system accuracy
was increased by combining the two device features, where the leap motion provides
high-level data information but lower reliability than the Kinect sensor, which provides
a full depth map. In a study by Bakar et al. [11], the segmentation used 3D depth data
selected based on a threshold range. Bakar et al. [12] used fingertips selected using depth
threshold and the K-curvature algorithm based on depth data. In Karbasi et al. [13], the
hand was segmented based on depth information using a distance method and background
subtraction method. Iterative techniques were applied to remove the depth image shadow
and decrease noise. A study by Kim et al. [14] proposed a new method based on a near
depth range of fewer than 0.5 m where skeletal data was not provided by the Kinect. This
method was implemented using two image frames: depth and infrared. Next, Graham’s
scan algorithm was used to detect the convex hulls of the hand in order to merge with the
result of the contour tracing algorithm to detect the fingertips. In a study by Pal et al. [15],
the skin–motion detection technique was used to detect the hand, and then Hu moments
were applied for feature extraction, after which HMM was used for gesture recognition.
Another study by Desai et al. [16] proposed a home automation system for facility control
by senior citizens who face disabilities, using a computer vision system based on a Kinect
sensor. Desai et al. [17] introduced an algorithm based on an RGB colour and Otsu’s global
threshold. After that, a depth range was selected for hand segmentation, and then the two
methods were aligned. Finally, the kNN algorithm was used with Euclidian distance for
finger classification. Another study by Xi et al. [18] used a skeleton tracking method to
capture the hand and locate fingertips, where a Kalman filter was used to record the motion
of the tracked joint. The cascade extraction technique was used with a novel recursive
connected component algorithm. Another study by Li et al. [19] presented a developed
system to combine depth information and skeletal data, facing the challenge of complex
background and illumination variation, rotation invariance, in which some constraints
were set in hand segmentation. Another study by Ma et al. [5] improved depth threshold
segmentation by combining depth and colour information using the hierarchical scan
method, and then hand segmentation was used based on the local neighbour method.
This approach gave results over a range of up to 2 m. Bamwenda et al. [20] used depth
information with skeletal and colour data to detect the hand. The segmented hand was
then matched with the dataset using a support vector machine (SVM) and artificial neural
networks (ANN) for recognition. The authors concluded that ANN was more accurate
than SVM. Extensive review on this subject can be found in [21].

3. Materials and Methods
3.1. Participants and Experimental Setup

This study was investigated with three different experiments, where each experiment
evaluated with the same group of elderly participants, including two males and one female
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with different ages 65 to 75 with one adult aged 35 years. This study adhered to the
Declaration of Helsinki ethical principles (Finland 1964) where written informed consent
forms were obtained from all participants after a full explanation of the experimental
procedures. All participants trained individually according to every proposed scenario.
All scenarios were tested indoors, and it took a half-hour for every participant where the
Kinect sensor set up at a fixed distance on each experiment from (0.5–4.5 m). Figure 1
shows the proposed system experimental setup.
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3.2. Hardware

Figure 2 represents the design of the practical circuit that utilised in each experi-
ment, which consisted of a Kinect V2 depth sensor, DC-DC chopper (buck), Arduino
microcontroller type-Nano and GSM module Sim800L.
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Figure 2. Practical circuit of the system.

3.2.1. Microsoft Kinect Sensor

The Kinect V2 sensor, shown in Figure 3, was released by Microsoft in 2014. It is
considered an enhanced version of the Kinect V1 model. In this study, the Kinect V2 sensor
was utilised because it offers high-resolution image capture for RGB and depth to provide
body joints information. Moreover, it has enhanced specifications compared with the older
version. The most important features of the Kinect sensor V2 are listed in Table 2. More
detail can be found in [22–28].
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Table 2. A list of Kinect sensor V2 specifications.

Feature Description

Body tracking Up to 6 persons
Joint detection Up to 25 joint per person
Depth sensing 512 × 424 resolution 30 Hz
Active infrared 3 IR emitter
Colour camera 1920 × 1080 resolution 30 Hz

Depth range 0.5 m to 4.5 m
Field of view 70-horizontal and 60-vertical

Microphone array Four microphone sensors linearly aligned

3.2.2. Arduino Nano Microcontroller

An Arduino-Nano type microcontroller was the heart of the proposed system, where it
received a command from computer via serial port and controlled the GSM module. It had
suitable specifications such as small size with a clock frequency 16 MHz [29]. The Nano
connected with a GSM-module via a transmitter and receiver through two digital pins and
with the computer via a mini-B USB cable. The microcontroller task was to receive data
from MATLAB 2019 and control on the GSM-module to send proper messages according
to the type of hand gesture performed by participants.

3.2.3. GSM Module Sim800L

The GSM-module Sim800L was utilised in the practical circuit of the proposed system
because it has a small size and can be used for making calls, sending messages and give
GPRS data. The module transmitter and receiver pins connect with microcontroller via
two digital pins. The module feed with suitable voltage level (3.7 Volt) through connecting
Vcc and GND with a DC-buck chopper LM2596 [30,31] because the Arduino digital pin
provides 40 mAmp which is not sufficient for GSM proper function [30].

3.2.4. DC-DC Chopper (Buck)

A DC-to-DC step-down converter was used. The simplest way to reduce the voltage of
a DC supply is to use a linear regulator (such as a 7805) yet linear regulators waste energy
as they operate by dissipating excess power as heat. Buck converters, on the other hand,
can be remarkably efficient (95% or higher for integrated circuits). It utilises a MOSFET
switch (IRFP250N), a diode, an inductor and a capacitor. Some resistors are also used
in the circuit for the protection of the main components. When the MOSFET switch is
“ON” current rises through inductor, capacitor and load. The inductor is used to store
energy. When the switch is “OFF”, the energy in the inductor circulates current through
the inductor, capacitor freewheeling diode and load. The output voltage will be less than
or equal to the input voltage. In this study, an LM2596 dc-dc buck converter step-down
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power module with a high-precision potentiometer for adjusting output voltage was used
that is capable of driving a load up to 3A with high efficiency.

3.3. Software

In this study, the following software and tools have been used:

1. MATLAB R2019a (Image processing toolbox, Computer vision toolbox, Deep learning
toolbox).

2. Microsoft standard development kit (SDK) for Kinect V2.
3. Kinect for Windows Runtime V2.
4. Arduino program (IDE).

3.4. Methods
3.4.1. The First Scenario: Hand Detection Using Depth Threshold and Depth Metadata

The Kinect V2 sensor provides depth information and skeleton data for up to six
human bodies at once. A threshold-based segmentation to the depth frame using the z-axis
was adopted in order to extract the hand mask. The resulting image was then smoothed by
using a median filter [20]. The filtered image was combined with the cropped hand based
on joint tracking to improve the result of hand segmentation. The diagram that describes
the process for the first scenario is shown in Figure 4.
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The steps illustrated in Figure 4 can be summarised as follows:

• After acquiring the depth frame from the Kinect depth sensor, it can be easy to locate
the centre of the palm of the hand from depth metadata using the joint position
property. This point is mapped onto the depth map, and their depth values are saved
for the next step.

• As every skeleton point in 3D space is associated with a position and an orientation,
we can obtain the position of the central palm in real-time.

• The depth metadata returned by the depth sensor gave body tracking data so that
the body index frame property enabled segmentation of the full human body into
six bodies.

• After segmenting the body, a rectangular region was selected (for example, with size
200 × 200) around the central point of the hand/palm in the depth images. Initial
segmentation was conducted based on the hand crop using the tracking point of the
central palm. Because the right hand conforms more to the habit of human-computer
interaction, we chose the right hand as the identification target.
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• The depth threshold was provided for the depth map and the hand segment using a
z-axis threshold.

• The hand cropped result was combined with the depth threshold result to improve
the outcome.

• The binary image was smoothed using a median filter, and we set 5 as the linear
aperture size.

• Using some morphological operations, such as erosion and dilation and image sub-
traction to extract the palm by drawing a circle covering the whole area of the palm
using a tracked joint of the central palm. The fingers were then segmented, where the
number of fingers counted appear as a white area and were then connected with a
specific request.

• Finally, five fingers carried out five requests according to finger count that was sent by
the microcontroller as a numeric value via the serial port to control the GSM module.

3.4.2. The Second Scenario: Hand Detection and Tracking Using Kinect V2
Embedded System

The Kinect V2 depth sensor has one specific property associated with body tracking,
where the depth sensor collects body metadata by turning on the body tracking property,
while the metadata provides the parameters of the body data as listed in Table 3.

Table 3. The metadata fields related to tracking the bodies.

No. Parameters of the Body Data Obtained by
the Depth Sensor Struct Array

1 IsBodyTracked [1 × 6 logical]

2 BodyTrackingID [1 × 6 double]

3 BodyIndexFrame [424 × 512 double]

4 ColorJointIndices [25 × 2 × 6 double]

5 DepthJointIndices [25 × 2 × 6 double]

6 HandLeftState [1 × 6 double]

7 HandRightState [1 × 6 double]

8 HandLeftConfidence [1 × 6 double]

9 HandRightConfidence [1 × 6 double]

10 JointTrackingStates [25 × 6 double]

11 JointPositions [25 × 3 × 6 double]

Using the “get data” property provided by depth sensor, we can easily access to
body tracking data as metadata on the depth stream. The function returns frames of size
512 × 424 in mono 13 formats and uint16 data type. We look at the metadata to see the
parameters in the body data which bring eleven different properties; these metadata fields
are related to tracking the bodies as listed in Table 3.

The Kinect depth sensor provides metadata parameters such as the left-hand state and
right-hand state which is a 1 × 6 double array that identifies possible states for both the
left and right hands of the tracked bodies. Where the values returned by the depth sensor
include information on the body hands state as the following:

0 = unknown (indicate the body not tracked)
1 = not tracked (indicate the detected body but not tracked)
2 = open (indicate the hand fingers extended all)
3 = closed (indicate the hand fingers collapsed all)
4 = lasso (indicate the hand index finger is extended)

In this scenario, the metadata parameters were encoded for three different gestures
performed by the right hands and two gestures performed by the left hands in order to
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represent five different requests and sent via GSM. The requests represented by the right
hand are open hand, closed hand and lasso gestures, which indicate “Water”, “Meal”,
“Toilet”, respectively. Whereas the remaining two requests represented by the left hand
using (open hand and closed hand) that indicate “Help” and “Medicine”, respectively. This
experiment used both hands to implement five different gestures, where every gesture
indicates a specific request as a reverse of the first experiment that used only one hand to
perform these five requests.

3.4.3. The Third Scenario: Hand Gestures Based on SCNN and Depth Metadata

In this scenario, the experiment was conducted using a deep learning classifier based
on a simple convolutional neural network (SCNN). CNN is a suitable tool for building an
image recognition system.

The hand image samples were captured by an automatic program created by the
author, where the image data was resized and stored in one folder to separate into different
categories related to five gestures manually. These categories were named image data-store.
The image data-store in this folder category was labelled based on folders’ names with
storage of the image as an object. The images data-store can store a large amount of image
data and efficiently read a batch of images while training the CNN.

The data store includes 1000 images for every category of hand gestures from 1–5
and a total of 5000 images for all categories. The number of classes was specified at the
last fully connected layer in the output of the network. Additionally, the input image
size was specified at the input layer. Each image must be stored as 28-by-28-by-1 pixels.
Figure 5 shows five hand gestures used in this experiment, where the dataset categories
were created by the authors using the Kinect depth sensor.
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The image dataset was separated into training and validation data-sets, where the
training-set includes 70 images and the remaining images for a validation-set. Each label
splits the data store into two new data stores, training hand gestures data and validation
hand gestures data.

• Specify Training and Validation Sets

The image dataset is separated into training and validation data-sets, where the
training set includes 700 images and the remaining images for the validation set. Each label
splits the data store hand gestures data into two new data stores; train hand gestures data
and validation hand gestures data.

• Define Network Architecture

The architecture of CNN can be defined as follows:

1. Input Layer Image

At the first layer of the network, the size of the input image was specified by 28-by-28-
by-1, which indicates the height, width and channel size, respectively. The channel size is 1
related to the binary image processed. Moreover, the trained network shuffles the image
data at the beginning of the training process and for every epoch while it trains.
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2. Convolutional Layer

At the convolutional layer, the filter was used to make a scan along with the image at
the training function to extract features. In this experiment, the filter size was specified to
be 3-by-3 high and wide, respectively which can specify different sizes for the filter used.
The number of filters indicated the number of neurons that have the same connection point
at the input. The number and size of the filter play an important role in determining the
number of feature map extracted.

3. Batch Normalisation Layer

Batch normalisation layers enhance the activations and gradients propagating in the
network, where the network is easy to train. To increase the speed of network training, the
Batch normalization layers were used between convolutional layers and ReLU layers.

4. ReLU Layer

The nonlinear activation function is located after the batch normalisation layer. The
most common activation function was used which is the rectified linear unit (ReLU).

5. Max Pooling Layer

The function of the max-pooling-layer was used for downsampling operation which
was used to decrease the spatial size of the feature map and also eliminate the redundant-
spatial-information. The benefits of downsampling are to increase the number of filters in
the deeper layers of the convolutional network while maintaining computation per layer.
The max-pooling layer is often placed after convolutional-layers and gives the max value
of the rectangular region of the input. In this experiment, the rectangular region size was
[2, 2].

6. Fully Connected Layer

The fully connected layer is preceded by the convolution layer and down-sampling
layer. It is fully connected with all neurons in the preceded layers and works to merge all
the learned-features by the preceded layers into the image to introduce the biggest pattern.
In the last fully connected layer, all features are merged to classify the images. The network
output size is equal to the number of classes, where the output size is 5 with regard to
five classes.

7. Softmax Layer

The softmax activation function is responsible for printing the output of the fully
connected layer which preceded it. Where the softmax-layer includes positive-numbers
in which the sum of these numbers is equal to one. This number is used for classification
probability.

8. Classification Layer

The last network layer is the classification layer. Its output value takes the softmax
activation function for each input to match the input with one of the matching classes and
compute the error.

• Specify Training Options

To specify the training based on a CNN structure build, this step needs to determine
the training parameters, where the network trained using stochastic gradient descent with
momentum (SGDM) with a learning rate initially of 0.01 and max-epoch number 4. The
epoch is the full training cycle for the input training dataset.

• Train Network Using Training Data

The network was trained using the GPU by default. Otherwise, it would use only the
CPU. Figure 6 shows the deep-learning-training-progress and plots the mini-batch-loss
(cross-entropy loss), the validation loss and accuracy (percentage of images classified by
the network correctly).
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4. Experimental Results and Discussion
4.1. Experimental Results

For the 1st scenario, the hand detection method based on depth threshold and depth
metadata was used. The experimental results for the first scenario are shown in Figure 7 at
which shows five different gestures based on finger counting.
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Figure 7. Finger count interpreted as patient requests (a–e).

Table 4 shows the experimental results for all participants with every single gesture.
The results were recorded for all participants and we took the mean of these recorded
results. The recognition rate for the overall gestures was 83.07% at detection distance
between 1.2–1.5 m.
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Table 4. The results analysis for the total number of tested gestures for each participant (First scenario).

Hand Gesture
Type

Total Number of
the Sample per
Tested Gesture

Number of
Recognised

Gestures

Number of
Unrecognised

Gestures

Percentage of Correct
Recognition for Total
Number of Sample

Gesture %

Percentage of Fault
Recognition for Total
Number of Sample

Gesture %

0 65 65 0 100.00 0

1 65 55 10 84.62 15.38

2 65 52 13 80.00 20.00

3 65 50 15 76.92 23.08

4 65 49 16 75.38 24.62

5 65 53 12 81.54 18.6

Total 390 324 66 83.07% 16.94%

The confusion matrix was adopted to analyse the results of Table 4, which provide
predicted and actual results for all tested gestures. Figure 8 shows the results of the
confusion matrix and summaries of the predicted results and actual results in the form of
row and column.
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For the 2nd scenario, the hand detection method using Kinect V2 embedded system
was used. Figure 9 shows five gestures provided by the left and right hands, whereas
Figure 10 shows the detection range between 0.5~4.5 m for applying this scenario.
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Figure 9. The results of the proposed method for the second scenario for both hands (a–c).

Table 5 shows the experimental results for all participants regarding every single
gesture performed by both hands together. The recognition rate for the overall gestures in
this scenario was 95.2% at flexible detection distance between 0.5~4.5 m.

Table 5. The results analysis for the total number of tested gestures for each participant (second scenario).

Hand Gesture
Type

Total Number of
Sample per Tested

Gesture

Number of
Recognised

Gestures

Number of
Unrecognised

Gestures

Percentage of Correct
Recognition for Total
Number of Sample

Gesture %

Percentage of Fault
Recognition for Total
Number of Sample

Gesture %

1 50 47 3 94.00 6.00

2 50 48 2 96.00 4.00

3 50 47 3 94.00 6.00

4 50 48 2 96.00 4.00

5 50 48 2 96.00 4.00

Total 250 238 12 95.2% 4.8%

The confusion matrix was adopted so as to analyse results of Table 5, which provides
the predicted and actual results for all tested gestures. Figure 11 shows the result of the
confusion matrix and summarises the predicted and actual results in the form of row
and column.
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For the 3rd scenario, the hand detection method based on SCNN and depth metadata
was used. Figure 12 shows five gestures provided by the left and right hands.

Table 6 shows the experimental results for all participants regarding every single
gesture performed by both hands together. The recognition rate for the overall gestures in
this scenario was 95.53 % at detection distance between 1.5~1.7 m.

Table 6. The results analysis for the total number of tested gestures for each participant (third scenario).

Hand Gesture
Type

Total Number of
Sample per Tested

Gesture

Number of
Recognised

Gestures

Number of
Unrecognised

Gestures

Percentage of Correct
Recognition for Total
Number of Sample

Gesture %

Percentage of Fault
Recognition for Total
Number of Sample

Gesture %

1 65 64 1 98.46 1.54

2 73 73 0 100.00 0.00

3 49 49 0 100.00 0.00

4 65 53 12 81.54 18.46

5 61 60 1 98.36 1.6

Total 313 299 14 95.53% 4.47%

The confusion matrix was adopted so as to analyse the results of Table 6, which gives
the predicted and actual results for all tested gestures. Figure 13 shows the result of the
confusion matrix and summarises the predicted and actual results in the form of rows
and columns.
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4.2. Discussion

A comparison of three scenarios results were discussed in this section. The three
different hand gestures recognition scenarios were conducted using the Microsoft Kinect
V2 sensor. These scenarios can be categorised into three main approaches: Finger counting,
the embedded system provided by Kinect V2 and deep learning based on a simple CNN.
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In this section, the key points for these three categories are compared and summarised in
Table 7.

Table 7. The key points of every approach for three scenarios and their performance.

Method Type of
Gesture Principle Classification Image Pixel Recognition

Rate

Distance
from the
Camera

Scenario 1
Finger count

(0–5)
Single hand

Depth threshold and
skeleton joint tracking

using metadata
information

Appearance of
white area 512 × 424 83.07% 1.2~1.5 m

Scenario 2 Specific gesture
both hand

Metadata
parameter

Hand left state,
hand right state

parameter by
Kinect depth

512 × 424 95.2% 0.5~4.5 m

Scenario 3

Finger count
image features

(1–5)
Single hand

SCNN
Depth metadata CNN Dataset

28 × 28 × 1 95.53% 1.5~1.7 m

From Table 7, it can easily be observed which is the best approach with regard to
recognition rate, distance from the camera and ease to perform hand gestures.

However, taking consideration of some challenges facing every category can be illus-
trated as follows:

• The first scenario offers acceptable results, but has limitations in regard to classification,
where the number of fingers recognised is based on the apparent white area and results
are affected by any white speckle.

• The second scenario provides a high recognition rate because it offers better flexibility
in regard to distance during capturing the gestures in real-time if compared with
other categories. However, the only type of gestures that can be read are three active
gestures for every hand (from the default of the embedded system provided by the
Kinect) and five hand gestures must be performed by both hands using three gestures
for each hand, respectively.

• The third scenario provides a good recognition rate but suffered due to the distance
limitation related to the range sensor used when the dataset was created.

4.3. Comparison Result with Related Work

The main goal of this paper was to investigate the natural interaction system per-
formed by hand gestures with the use of camera imaging-based technologies at real-time
interaction to control messages sent via the GSM module. The goal was motivated by
the challenges associated with current monitoring systems under different assumptions,
including the distance from the camera, recognition rate, and real-time interaction. Table 8
summarises and compares the research results with the closest related work.
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Table 8. Comparison research results with the related work.

Ref Camera Number of
Gesture Principle Classification

Algorithm Issues Recognition
Rate

Distance
from the
Camera

Ganokr-
atanaa et al.

[32] 2017
RGB camera 6

gestures

optical flow
and blob
analysis

blob analysis
technique

error pre-
processing

stage because
shadow

under the
hand

good
results

Not
mentioned

Norah et al.
[33]
2019

Mobile
Camera

7
gestures CNN CNN backgrounds,

illumination
accuracy is

99%
short

distances

This paper Depth
camera

5
gestures

Depth
threshold

Connected
component

White
speckle 83.07% 1.2~1.5 m

embedded - - Depth range 95.2% 0.5~4.5 m

CNN CNN Depth range 95.53% 1.5~1.7 m

The comparison results can be summarised as follow:

• The two proposed methods presented in the first and second row by [112, 88] cannot
use a dim environment because they use RGB and mobile cameras and effected by
lightning conditions while this paper proposed three methods that can be used in a
dim environment.

• The two proposed methods presented in the first and second row by [112, 88] can be
used only at the short distance while this paper proposed three different methods
with flexible distance.

• The two proposed methods presented in the first and second row by [112, 88] carried
out only hand gesture recognition while this thesis proposed three hand gestures
recognition methods with a practical circuit that send text message according to these
gestures.

5. Conclusions

In conclusion, this study explored the feasibility of extracting hand gestures in real-
time using the Microsoft Kinect V2 sensor under three scenarios: finger counting, the
embedded system provided by the Kinect itself, and deep learning based on CNN. The
proposed methods used the same practical circuit for each scenario, which reports that
the correct SMS message sent to the care provider smartphone correlated directly with
the results and accuracy of the recognition system. The experimental evaluation of the
proposed methods has been conducted in real-time for all participants under three different
scenarios. The experimental results were recorded and analysed using a confusion matrix
which gave acceptable outcomes making this study a promising method for future home
assisting care applications.
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