
computers

Article

A Methodology for Generating Systems Architectural Glimpse
Statements Using the 5W1H Maxim

Orfefs Voutyras 1,*, Aamir H. Bokhari 2, Akira Tsuge 3, Georgios Palaiokrassas 1 , Takafumi Kawasaki 3,
Xavier Cases-Camats 4, Jin Nakazawa 5, Antonios Litke 1 , Tadashi Okoshi 5 and Theodora Varvarigou 1

����������
�������

Citation: Voutyras, O.; Bokhari, A.H.;

Tsuge, A.; Palaiokrassas, G.;

Kawasaki, T.; Cases-Camats, X.;

Nakazawa, J.; Litke, A.; Okoshi, T.;

Varvarigou, T. A Methodology for

Generating Systems Architectural

Glimpse Statements Using the 5W1H

Maxim. Computers 2021, 10, 131.

https://doi.org/10.3390/

computers10100131

Academic Editor: Paolo Bellavista

Received: 10 September 2021

Accepted: 9 October 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical and Computer Engineering, National Technical University of Athens,
15773 Athens, Greece; geopal@mail.ntua.gr (G.P.); litke@mail.ntua.gr (A.L.); dora@telecom.ntua.gr (T.V.)

2 Research Institute of Environment and Information Sciences, Yokohama National University, Kanagawa,
Yokohama 240-8501, Japan; aamir2b@gmail.com

3 Faculty of Environment and Information Studies, Keio University, Endo, Kanagawa,
Fujisawa 252-0882, Japan; tsuge@sfc.keio.ac.jp (A.T.); drgnaman@sfc.keio.ac.jp (T.K.)

4 R&D Delivery Department, Worldline Iberia SA, 08020 Barcelona, Spain; xavier.cases@worldline.com
5 Graduate School of Media and Governance, Keio University, Endo, Kanagawa, Fujisawa 252-0882, Japan;

jin@sfc.keio.ac.jp (J.N.); slash@sfc.keio.ac.jp (T.O.)
* Correspondence: o.voutyras@mail.ntua.gr

Abstract: Attempts to facilitate and streamline systems architecting have resulted in a great number
of reusable principles, practices, mechanisms, frameworks, and tools. Such a practice is the use of
architectural viewpoints and views. However, as systems change, these practices should also evolve.
The increasing scale and complexity of systems resulting from an ever-growing pool of human needs
and breakthroughs may lead, in some cases, to an increased gap between the abstraction activities
attempting to capture the whole of a system, and the instantiation activities that produce concrete
and detailed descriptions of a system’s architecture. To address this issue, this article introduces a
new notion, that of architectural glimpse statements, fundamental questions acting as the building
blocks for architectural views and products. This notion can help architects ask the right questions
in the right manner to create fundamental statements, the elaboration on which can lead directly to
concrete architectural products. Working on top of standardized and common approaches, the article
introduces a language for the creation of architectural glimpse statements using the 5W1H maxim.
Based on this language, a tool and guidelines are also provided to facilitate the usage of glimpses.
Finally, the overall methodology is demonstrated in two case studies.

Keywords: systems architecture; architectural description; view; viewpoint; 5W1H maxim; five Ws

1. Introduction and Problem Statement
1.1. Systems Architecture and Architecting

Under the context of systems engineering, every system (individual applications, sys-
tems in the traditional sense, subsystems, systems of systems, product lines, product
families, whole enterprises, and other aggregations of interest) can be considered to have
an architecture [1], a conceptual construct that represents the fundamental organization of a
system embodied in its components, their relationships to each other and to the environment,
and the principles guiding its design and evolution [2].

Architecting in general refers to all the activities related to the definition, certification,
maintenance, improvement, and documentation of proper implementations (instantiations)
of architectures. The definition of architectures can be implemented through architectural
analysis (understanding the environment in which a proposed system will operate and de-
termining the requirements for the system) and architectural synthesis (transforming needs
and requirements in a specific design). The certification of an implemented architecture
is supported by architecture evaluation (determining how well the current design or a

Computers 2021, 10, 131. https://doi.org/10.3390/computers10100131 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-8573-1416
https://orcid.org/0000-0002-7658-2559
https://doi.org/10.3390/computers10100131
https://doi.org/10.3390/computers10100131
https://doi.org/10.3390/computers10100131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10100131
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10100131?type=check_update&version=2


Computers 2021, 10, 131 2 of 18

portion of it satisfies the requirements derived during analysis). The maintenance and im-
provement of an architecture refers to the architecture evolution (maintaining and adapting
an existing architecture to meet changes in requirements and environment) [3]. Finally,
regarding the documentation activity, an architecture can be recorded by an architectural
description (AD) [1]. A distinction should be made between the architecture of a system
(conceptual construct) and particular descriptions of that architecture (concrete products or
artifacts). For the same architecture, several ADs can be produced.

The architects are the ones responsible for capturing the systems architecture. Ar-
chitects have to identify the concerns of stakeholders, the mission behind a system to be
developed, the environment characteristics related to the system, etc. and, using a combi-
nation of engineering and intuition (or art), create a series of abstract and specific models,
mostly in a top-down manner [4]. In other words, the main contribution of the architect
is the conceptualization and design of a unique structure to meet specific needs. As such,
the architect’s role in development projects (and not only) is really important, as the ADs
they produce during the concept and design phases set the baseline for steps to be followed
during e.g., the development, implementation, and deployment phases. The ADs can facilitate
communication between the several system stakeholders, provide the basis for analysis of
systems’ behavior before actually building the systems, offer the opportunity of re-using
already available elements, etc.

In an ever-changing world, new needs and breakthroughs constantly appear that
increase both the scale and the complexity of systems. New organizational and social
structures, an expanding spectrum of operations and applications representing all human
activities, and rapid changes in technology act as a driving force for the creation (and,
inevitably, the architecting) of new systems. A characteristic example of such a change is
the appearance of the vision of the creation of the Internet of Things (IoT). The IoT leads to
networks connecting billions of real-time interacting and communicating things, creating
huge ICT systems that expand in a great variety of administrative domains. Another more
recent example is the appearance of the vision of connecting the IoT to Earth Observation
(EO) systems and the geospatially enabled web as investigated in [5].

The increasing scale and complexity of developed and managed systems makes
architecting more and more necessary, but also, more and more challenging. This pertains
to the fact that architecture is an intellectually graspable abstraction of a complex system
which, even though Computer-Aided Software Engineering (CASE) tools are available, is
primarily produced directly by the human intellect and recorded in ADs.

1.2. Motivation, Contributions, and Paper Structure

Given the scale and complexity of systems and the interdisciplinary nature of systems
engineering, in an attempt to facilitate and streamline architecting, a great number of
reusable principles, practices, mechanisms, and tools of identifying, representing, and
materializing architectures have been produced, while specific architecture processes
have been identified and standardized [6]. Such a practice is the use of architectural
viewpoints and views [1]. However, as is discussed in Section 2, such solutions still have
some limitations, whereas, in many cases, it is necessary for architects to create composite
solutions of their own, due to the particularities of the systems they have to design or
analyze [7]. Most importantly though, these solutions tend to follow a primarily top-down
approach, without any further instructions through which architects can move from an
initially abstract view of their system to more concrete and specific results.

To address this issue, this article introduces a new notion, that of Systems Architectural
Glimpses. The resulting architectural glimpse statements are fundamental questions acting
as the building blocks for architectural views and products. As such, the first contribution
of this article is the introduction of the very concept of glimpses as a means to following
a bottom-up approach for producing architectural products. The second contribution is
the definition of a specific language through which glimpse statements can be constructed
methodically. The third contribution is the identification and classification of several



Computers 2021, 10, 131 3 of 18

entities of interest related to systems engineering based on international standards. Finally,
the fourth contribution is a pen-and-paper “generator” of glimpse statements and a set of
guidelines through which the extraction of glimpses can be realized.

The aforementioned contributions are addressed in this article in seven sections.
Section 2 presents the related work on solutions for architecture description extraction,
focusing mainly on architectural views. The section provides all the background informa-
tion needed to identify the necessity of architectural glimpses (complex systems, abstract
approaches). Section 3 introduces the concept of architectural glimpses and architectural
glimpse statements and identifies the relations between them and other related concepts
such as architectural views. Section 4 presents a recommended language through which
it can be ensured that glimpse statements can be well-defined. To that end, the section
suggests the usage of the 5W1H maxim as an appropriate practice for the construction of
glimpse statements, and elaborates further on matters related to the corresponding needed
linguistics, such as the required context identification, vocabulary population, grammar
and syntax formation, and semantics construction. Section 5 presents a tool that codifies
all the language concepts and rules of the suggested glimpse statements language and
produces useful glimpse statements following specific guidelines. Section 6 provides exam-
ples of glimpse statements and shows through two case studies how glimpses can be used
(a) to construct new architectures, and (b) to decompose already identified architectural
products (demonstrating compatibility with other architecting practices). Finally, Section 7
discusses issues related to the usage of the suggested methodology and identifies next
steps for future work, while Section 8 concludes the paper.

2. Related Work: Architectural Views and Other Approaches

As stated above, a great number of reusable principles, practices, mechanisms, and
tools of identifying, representing, and materializing architectures have been produced. By
studying the terms and the corresponding literature cited in [2], the following reusable
notions of interest are identified:

• Architectural design methodology: “Systematic approach to creating an architectural
design consisting of the ordered application of a specific collection of tools, techniques,
and guidelines”.

• Architectural technique: “Systematic procedure to perform an activity to produce
an architectural product, that may employ one or more tools”. An example is the
Structured Analysis and Design Technique (SADT) [8] upon which IDEF0 [9] is based.

• Architectural style: “Definition of a family of systems in terms of a pattern of struc-
tural organization”. Depending on the styles used, an architecture may be layered,
component-based, (micro-) service-oriented, function-oriented, object-oriented, data-
centric, event-driven, rule-based, etc.

• Architecture framework (AF): A reusable architectural design (models and/or code)
that can be refined (specialized) and extended to provide some portion of the overall
functionality of many applications. A framework is usually implemented in terms of
one or more viewpoints or architecture description languages.”

• Architectural model: “A semantically closed abstraction of a system or a complete
description of a system from a particular perspective.”

• Architectural views: “A representation of a whole system from the perspective of a
related set of concerns.”

• Architecture description language (ADL): “Any means of expression used to describe a
software architecture.”

Most architects must operate within the confines of a prescribed architecture frame-
work or architecture description language as dictated by their organization or client [7].
Current architectures and AFs (like the ones presented in [10,11]) and ADLs (such as the
ones introduced in [12,13]) are defined with varying degrees of rigour and offer varying
levels of tool support. Furthermore, these resources are mostly closed: their developers
expect that each framework or ADL is all that an architect will ever need. For example,



Computers 2021, 10, 131 4 of 18

frameworks may be tailored downward, some suggested viewpoints or model kinds may
be omitted in use, etc., but rarely there are means for extension provided.

Compared to AFs and ADLs, architectural viewpoints in general give more flexibility
to architects. The use of architectural views for architectural descriptions is a generally
accepted trend and a common practice followed by various initiatives, also included as
part of the ISO/IEC/IEEE international standards series [14]. Each view addresses a set
of system concerns, following the conventions of its viewpoint, where a viewpoint is a
specification that describes the notations, modeling, and analysis techniques to use in a
view that expresses the architecture in question from the perspective of a given set of
stakeholders and their concerns. A viewpoint can be considered as a template from which
to develop individual views by establishing the purposes and audience for a view and
the techniques for its creation and analysis. Through the use of viewpoints and views,
simplified models can be formed including only those entities of interest (see Section 4.2)
related to the corresponding concerns. For example, a data viewpoint focuses on the data
as they are realized and manipulated within the system. Given the interdisciplinary nature
of systems engineering, architectural viewpoints and views make it easier to organize
entities of interest of complex systems around different domains of expertise that can then
be naturally assigned to the corresponding experts. In other words, views make it possible
to examine a “slice” or a portion of a particular interest area in a system or the system’s
environment, while the complete representation of the corresponding architecture requires
different views.

In literature, several types of system view models can be found, which suggest differ-
ent types of views. Indicatively, in [15], the “4 + 1 View Model of architecture” introduced
by P.Kruchten in 1995 identifies a logical view (the object model of the design), a process
view (concurrency and synchronization aspects of the design), a physical view (mappings
of S/W to H/W), and a development view (static organization of the software in its de-
velopment). The description of architecture can be organized around these four views,
and then illustrated by a few selected scenarios which become a fifth view. In [16], the
Reference Model of Open Distributed Processing (RM-ODP), a joint effort by the inter-
national standards bodies ISO and ITU-T to develop a coordinating framework for the
standardization of open distributed processing, defines the following five viewpoints:
enterprise viewpoint (purpose, scope, and policies), information viewpoint (semantics of
information and information processing), computational viewpoint (functional decom-
position), engineering viewpoint (infrastructure required to support distribution), and
technology viewpoint (choices of technology for implementation). The C4ISR Architecture
Framework document [17] issued by the Department of Defense specifies three views of
information architecture: operational view, systems view, technical, and standards view (a
fourth view can be considered an “Overarching All View”). The authors in [18] are focusing
on providing an IoT Architecture Reference model, and identify a domain viewpoint, an
information viewpoint, a functional viewpoint, and a communication viewpoint. In [19],
the Reference Architecture for Modeling Space Systems (RAMSS) extends the RM-ODP
and identifies more than 20 different views based on viewpoint specifications, expressed in
terms of “objects”. One of the latest additions is [20], which introduces an operational view
as a “forgotten architectural view”.

Different initiatives that introduce views and viewpoints such as the above follow a
top-down approach to define architectures and they often include guidelines on how to
instantiate views. For example, in [17], the authors provide an extensive list of architecture
products (deliverables) that are mapped to specific views. However, sometimes, viewpoints
may be deemed to be too conceptual, and the guidelines to extract final results and products
from them may be insufficient, especially when very complex systems are considered.

3. Architectural Glimpses

In order to generate views, an architect has to extract or represent at some point of
analysis and/or design all the necessary information for all entities of interest within the



Computers 2021, 10, 131 5 of 18

system or the system’s environment. As architects attempt to get clearer and clearer views
of the several elements of the system, they will move from high-level questions (e.g., “What
is the functional view of the system?”) to concrete ones. For example, the requirements view
identified in [19] can be considered to face the challenge of describing the requirements,
goals, and objectives that drive the system and states what the system must be able to do.
There is an unlimited number of concrete questions that can be stated in order to break
down this challenge into more specific sub-challenges. On the same example, questions
that could be extracted are: “What system functional requirements have to be covered,
and what are the constraints for covering them?”, “What are the goals to be fulfilled, how
can or must they be fulfilled, at which date or with what sequence do they have to be
fulfilled exactly?”, “What are the user requirements that have been extracted, with what
means were they extracted, from what stakeholders were they extracted, and by which
stakeholder were they extracted?”, “What are the technical requirements that are already
covered, through which functional component are they already covered, and by whom are
they covered?”, etc. The first question could be answered through a simple populated table
including columns such as “requirement code”, “requirement description”, “constraints
on requirement fulfillment”; the second question could be answered through a table with
similar columns and an accompanying sequence diagram, etc. The more concrete and
well-defined the questions are, the easier it is to identify the content of their answers and
the means to produce them. By asking the right questions in the right manner, it is possible
to create fundamental statements, the elaboration on which can lead directly to concrete
architectural (sub-)products. The answers to these fundamental statements can be seen as
the elemental, building blocks of views. Based on the above, we introduce the notion of
architectural glimpses.

Definition 1: An architectural glimpse is the representation of a detailed answer to a very concrete
(not abstract) and, in some cases, complex (containing more than one interrogatives) question related
to a specific action performed on a particular system entity of interest, so as to facilitate architecting.

As the name suggests, architectural glimpses (referred to as “glimpses” in the re-
mainder of the article) provide a partial view of a system. In other words, glimpses, on a
conceptual level, can be understood as the elemental parts of views. The concrete questions
on which these glimpses are based are referred to as glimpse statements. Glimpse state-
ments are the lowest-level questions that can be asked in order to analyze or design a system
and define the context of glimpses which are represented through documentation artifacts
such as tables, textual descriptions, diagrams, etc. If views can be understood as elements of
top-down approaches, glimpses can be understood as elements of bottom-up approaches.

Given the huge number of entities of interest and of the actions that can be performed
on the said entities, it can be realized that there is a practically infinite number of glimpse
statements that can be produced (this is made more clear in Section 5). For glimpse
statements to be useful during architecting, they should not be ambiguous, and they
should be accompanied by a set of rules through which their creation and selection can
be methodized.

To that end, on one hand we need a concrete definition of concepts and rules (a
language) for the specification of glimpse statements, and on another hand a series of steps
through which an architect can identify which are the possible glimpse statements that
they can use, and which glimpse statements are the ones necessary to be used (guidelines).

Figure 1 provides an informative summary of the relationships between key concepts
introduced in Sections 1 and 2. For this representation, the Unified Modeling Language
(UML) [21] is used. Boxes represent classes of concepts, whereas the different lines con-
necting them represent different types of relations (association, aggregation, composition).
Association relations are not one-way ones in the strict sense, but are presented as such
to simplify the overall view. The figure does not include all of the possible relationships
between these concepts, but focuses on the main ones of interest for this paper. The boxes
in yellow represent concepts as described in [1,2], whereas the boxes in light blue represent



Computers 2021, 10, 131 6 of 18

concepts unique in this paper. The “1..*” symbol means “one or more” (for example, a
System has one or more Stakeholders).

Computers 2021, 10, x FOR PEER REVIEW 6 of 19 
 

(UML) [21] is used. Boxes represent classes of concepts, whereas the different lines con-
necting them represent different types of relations (association, aggregation, composi-
tion). Association relations are not one-way ones in the strict sense, but are presented as 
such to simplify the overall view. The figure does not include all of the possible relation-
ships between these concepts, but focuses on the main ones of interest for this paper. The 
boxes in yellow represent concepts as described in [1,2], whereas the boxes in light blue 
represent concepts unique in this paper. The “1..*” symbol means “one or more” (for ex-
ample, a System has one or more Stakeholders). 

 
Figure 1. Conceptual model of the architectural description, views, and glimpses. 

4. Glimpse Statements Language (GSL) 
4.1. Context: Asking the Right Questions (5W1H Maxim) 

The problem of creating glimpse statements is the same as stating questions related 
to a specific action performed on a particular system entity of interest. Questions function 
as requests for information and the context of the questions per se (how they are inter-
preted) is defined partially by the interrogative words used to express them. In order to 
acquire rich answers, the usage of a combination of interrogative words is necessary. The 
question “What components are deployed on what layer (Where) with what priority/se-
quence (When)” is much richer and more useful than the plain question “What compo-
nents are deployed?”. Of course, there is a tradeoff between expressiveness and complex-
ity that has to be taken under consideration. A very complex question may be too hard to 
answer and should probably be broken down into simpler questions. 

A common, popular, and straightforward way to bring the main interrogatives of the 
English natural language together is by using the “five Ws and one H” maxim (5W1H 
maxim): “What”, “Who”, “Where”, “When”, “Why”, and “How”. Beyond being a (mostly 
informal and non-standardized) rule of conduct used in journalism or problem-solving 
activities, the maxim has also been used to propose frameworks that aid computer-as-
sisted context management and reasoning, as demonstrated in, for example, [22] which 
introduces an ontological context-aware model based on this maxim. 

Considering all of the above, in order to set the basis for identifying the context of 
glimpse statements, in this specific GSL, we choose to use the 5W1H maxim. It should be 
noted that in no way this maxim is considered the only one that can be used to build a 
GSL or even the optimal one. However, from the experience of the authors, this approach 
is considered to achieve a good balance between expressiveness (possible combinations) 
and complexity (ease of use). 

Figure 1. Conceptual model of the architectural description, views, and glimpses.

4. Glimpse Statements Language (GSL)
4.1. Context: Asking the Right Questions (5W1H Maxim)

The problem of creating glimpse statements is the same as stating questions related to
a specific action performed on a particular system entity of interest. Questions function as
requests for information and the context of the questions per se (how they are interpreted)
is defined partially by the interrogative words used to express them. In order to acquire
rich answers, the usage of a combination of interrogative words is necessary. The question
“What components are deployed on what layer (Where) with what priority/sequence
(When)” is much richer and more useful than the plain question “What components are
deployed?”. Of course, there is a tradeoff between expressiveness and complexity that has
to be taken under consideration. A very complex question may be too hard to answer and
should probably be broken down into simpler questions.

A common, popular, and straightforward way to bring the main interrogatives of the
English natural language together is by using the “five Ws and one H” maxim (5W1H
maxim): “What”, “Who”, “Where”, “When”, “Why”, and “How”. Beyond being a (mostly
informal and non-standardized) rule of conduct used in journalism or problem-solving
activities, the maxim has also been used to propose frameworks that aid computer-assisted
context management and reasoning, as demonstrated in, for example, [22] which introduces
an ontological context-aware model based on this maxim.

Considering all of the above, in order to set the basis for identifying the context of
glimpse statements, in this specific GSL, we choose to use the 5W1H maxim. It should be
noted that in no way this maxim is considered the only one that can be used to build a GSL
or even the optimal one. However, from the experience of the authors, this approach is
considered to achieve a good balance between expressiveness (possible combinations) and
complexity (ease of use).

What remains at this point is to identify the context hidden behind each interrogative
used. Under the context of this article, the five Ws and one H are used to represent
the following:

• What: It identifies the main entity of interest that can act as a subject in a glimpse
statement (see Sections 4.2 and 4.3 for further elaboration).

• Who: It addresses concepts such as “role”, “actor”, “stakeholder”, or “beneficiary”.
• Where: It addresses concepts related to physical or conceptual “location”.
• When: It addresses concepts related to “time” (duration, sequence, etc.).
• Why: It addresses concepts related to “purpose”, “goals”, etc.



Computers 2021, 10, 131 7 of 18

• How: It addresses concepts related to “processes”, implementation of “activities”,
ways of conduct, etc.

4.2. Vocabulary: Entities of Interest and Verbs

The provided definition in Section 3 links the concept of glimpses with that of entities
of interest. As “entities of interest” (hereon “entities”), we identify fundamental things of
relevance to the architecture about which information should be kept. Entities can be physi-
cal (discrete, identifiable parts of the physical environment, e.g., humans, animals, plants,
vehicles, store or logistics chain items, electronic appliances, or open environments, etc.),
digital (any computational or data element of an ITC-based system, e.g., a program, data
store, etc.), virtual (computational or data elements representing physical entities), or
conceptual (mental concepts, e.g., a requirement, a goal, time, process, etc.). Each entity
belongs to at least one class of entities, i.e., an Entity Type, and each entity type repre-
sents at least one entity. For example, the term “computer” corresponds to an entity type,
whereas the personal computer of the second author of this article is a specific entity of
entity type “computer”, “equipment”, “machine”, etc. The same definition also mentions
a “specific action performed on a particular system entity of interest”. This action is a
necessary element in our approach, as, together with the 5W1H maxim, it gives context
to glimpse statements. As it will be seen in Section 4.3, the action is the glue between all
the phrases in our grammar. Asking “What data (What) are extracted (Action), by which
end-users (Who)” is a completely different statement from “What data (What) are secured
(Action), by which end-users (Who)”. Nouns and nominal phrases (entity types), and verbs
(actions), together with the interrogatives mentioned in the previous section, and some
more elements to be presented in Section 4.4 constitute the vocabulary used in this GSL.
The more entity types and verbs are identified, the more expressive the GSL becomes and
the more glimpse statements can be created.

There are two processes that took place in order to define the vocabulary of this GSL.
The first one is the extraction of fundamental entity types and actions. The second one is
the formation of simple rules through which more entity types and actions can be produced
by using fundamental entities, verbs, or concepts.

The fundamental entity types and actions were extracted through a very extensive
and meticulous search in the literature. As a first step, specific characteristics by which the
considered literature should abide were identified. The considered sources should:

• Criterion 1: aggregate terms from several systems engineering domains, in order to
provide a holistic view of all the corresponding related concepts and avoid focusing
on terms that are too domain- or application-specific.

• Criterion 2: use as sources standards, in order to support standardization activities
and ensure “interoperability” of the produced vocabulary with other initiatives.

• Criterion 3: have an extensive number of terms and, ideally, the meanings of the terms,
in order to make it possible to work on a big pool of terms.

• Criterion 4: have a public dissemination level, in order to make it possible for the
authors of this article to easily access the said sources on the one hand, and, on other
hand, to freely republish content from the sources.

The ISO/IEC/IEEE International Standard-Systems and software engineering–Vocabulary [2]
fulfills all of the above criteria, and as such, it was selected as the primary source for the
extraction of fundamental entity types and verbs. This International Standard was prepared
to collect and standardize terminology currently in use in the field of systems and software
engineering, and standard definitions for these terms. The source is not only a standard on
its own, but it also uses around 100 other standards sources as references. The definitions in
this International Standard are drawn from normative standards and informative guidance
documents, including ISO Technical Reports (TR). The standard was prepared with the
contributions of the International Organization for Standardization (ISO), the International
Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers
(IEEE), and Project Management Institute (PMI). The version of the standard that was



Computers 2021, 10, 131 8 of 18

studied [23] included 3349 terms and definitions in total. The primary tool for maintaining
this vocabulary is a database publicly accessible at [24]. The copyright notice provided
with the database permits users to copy definitions from the database as long as the source
is cited.

The second step for the extraction of fundamental entity types and verbs was the
filtering of the terms included in the chosen source. From the 3349 terms that were studied,
292 terms were selected as candidate ones from which fundamental entity types and verbs
can be extracted. These terms can be found in Table S1. All terms that appear in this article
in italics can be found in this table with their definitions. This filtering took place in an
intuitive way, but it follows a few loose rules. For example, terms that did not pass through
this filtering were mostly: one-word adjective terms (e.g., “acceptable”), acronyms, terms
with more than three words (e.g., “attribute for quality measure”), terms that referred to
very specific techniques and methods (e.g., “call by value”), terms focusing on a very low
level (e.g., “byte”), etc. In order to check whether the identified terms were enough, we also
used the glossaries included in [17,18]. The glossaries of these two documents were chosen
as extra sources due to the fact that they are both linked to the two case studies of Section 6
(more specifically, [18] is related to Section 6.1 and [17] to Section 6.2). From the 70 terms
included in [18], only 6 were identified as terms not already covered by Table S1. From the
~30 terms in [17], no extra terms (and thus fundamental entities and terms) were identified.

The final step for the extraction of fundamental entity types and verbs was the “scan-
ning” of the produced Table S1. Yet again, a few loose rules were used in order to execute
this process. More specifically, a fundamental entity has to be expressed with one word.
Most fundamental entities are easily recognized by the fact that they have more than one
definition, extensive descriptions, and/or a number of related terms (e.g., “requirement”,
“functional requirement”, “user requirement”, etc.). For the extraction of fundamental
verbs, we either use verbs that are used directly in definitions or we transform mentioned
processes to verbs. Adjectives are transformed, if possible, to their corresponding nouns or
verbs. Words that are part of the same word family of an already identified fundamental
entity type or verb are ignored. A term or definition can provide more than one fundamen-
tal entity type or verb. For example, following the above rules, from the term-definition
pair “abstract data type: a data type for which only the properties of the data and the
operations to be performed on the data are specified, without concern for how the data will
be represented or how the operations will be implemented”, we extract the fundamental
entity types and verbs “abstracted”; “data”; “type”; “property”; “operation”; “performed”;
“specified”; “represented”; “operation”; “implemented”.

The results of the extraction are shown in Tables 1 and 2. Around 250 fundamental
entity types and verbs are recognized. Definitions for all the terms can be found in the
Table S1. It is worth noting that most entity types and verbs were already extracted after
scanning up to the Table S1 terms starting with the letter “E”.

4.3. Semantics: Relations between and Groups of Entity Types and Verbs

Semantics studies the meaning of words combinations, phrases, and sentences (com-
positional semantics) and the meaning of words per se (lexical semantics).

On the subject of compositional semantics, Tables 1 and 2 classify all the identified
entity types into 5 categories. Entity types below the What, Who, Where, When, Why, and
How columns are of the respective 5W1H type, loosely identified by the definitions in
Section 4.1. An entity type of <5W1H> type can also be referred to as <5W1H> entity type
(e.g., “What” entity type). Actual entities of <entity type> inherit the <5W1H> class of
their entity type. Entity types can be mapped to more than one 5W1H type, depending
on the context of the questions we want to ask. For example, in the question “What
functional components (What) are deployed (Verb) in what devices (Where)?”, the entity
type “devices” is of “Where” type. However, in the question “What devices (What) are
deployed (Verb) in what locations (Where)”, the entity type “devices” is of “What” type. As
such, in the above tables, all of the entity types of “Who” type could be moved to the “What”



Computers 2021, 10, 131 9 of 18

column. Depending on the context, all entity types can be identified as of “What” type,
“Who” entity types may be considered as “Where” entity types (but not “When”, “Why”,
or “How” entity types), but “Where”, “When”, “Why”, and “How” entity types may not
exchange entity types between them, with the exception of “When” and “Why” entity
types that may be considered as “How” entity types in some cases. To avoid extensive
repetitions of the same words in all columns of these two tables, we have mapped most
entity types in only one 5W1H type, with the exception of a few characteristic examples
(e.g., “constraint” as a “Why” and “How” entity type).

Table 1. Fundamental entity types of What type, and fundamental verbs.

What Verb

fact, data, information, knowledge, file abstracted, defined, designed, specified, formulated
input, output mapped, categorized, classified

service, function, functionality, capability acquired, bought, purchased, consumed, supplied
activity, task, action, operation, procedure, process produced, developed, created, constructed

product, result, application owned, outsourced, delegated, (re)used, adopted
document, deliverable modified, enhanced, refined, adapted

component, module, unit, subsystem, system collected, aggregated, combined
algorithm, program, code, S/W delivered, documented, inquired, notified

computer, H/W, device, equipment, machine read, written, deleted, edited, changed
sector, domain, industry transferred, communicated, accessed, retrieved

environment, problem, scenario, use case searched, discovered
technology, protocol managed, maintained

asset, resource, artifact (un)installed, configured, deployed
supply, commodity, material, consumable processed, analyzed, transformed

instrument, tool, facility, building stored, saved, encapsulated
budget, fund performed, executed, invoked, called

element, entity, object, Thing, artifact tested, emulated, demonstrated
criterion, class, type, dimension, category verified, checked, evaluated

attribute, characteristic presented, represented, visualized
association, relation, interaction, flow, group digitalized, virtualized, automated

constraint, restriction, limitation protected, secured
interface, node, level, layer considered, faced, mitigated, constrained, limited

error, fault, failure, risk, threat distributed, centralized
event, contingency, condition, probability (de)modularized, connected, integrated

agreement, decision detected, monitored, predicted, forecasted, modeled

Table 2. Fundamental entity types of Who, Where, When, Why, and How types.

Who Where When Why How

role location, place time, date requirement, need action
team, organization space duration objective, goal procedure, process
individual, human address timing, schedule mission, vision rule
actor, stakeholder layer, level, node period Rationale standard
acquirer, supplier device, machine phase strategy, plan constraint, condition
buyer, customer building, facility event, contingency condition, constraint instruction, plan

owner construct scenario, use case restriction, prohibition cost, quality
user, consumer priority rule, law
agent, delegate order, sequence policy

analyst, architect concurrence
expert, engineer synchronicity

On the subject of lexical semantics, going beyond the 5W1H + Verb classification, the
identified fundamental terms have been grouped based on their inherent meaning. In each
column of the tables, words at the same line share a semantic relation (the same line among
all columns though does not link related terms). These semantic relations of our lexical



Computers 2021, 10, 131 10 of 18

items correspond to specific patterns of association. Some types of such relations between
our terms include [25]:

• Synonymy: Synonyms are words that are pronounced/spelled differently but contain
the same meaning (e.g., buyer—customer).

• Relational Antonymy: A pair of words that refer to a relationship from opposite points
of view (e.g., supplier—consumer).

• Graded Antonymy: A pair of words that denotes one end of a scale while the other
term denotes the other end (e.g., centralized-decentralized).

• Complementary Antonymy: A pair of words wherein affirmative use of one entails
the negative of the other with no gradability (e.g., installed—uninstalled).

• Holonymy and meronymy. A meronym is in a part-of relationship with its holonym
(e.g., a “task” includes “activities”).

The identification of compositional and lexical semantics is a useful process through
which the relation between “What” entity types (and as an extension, between glimpse
statements) can be recognized in an early stage and be used to create composite glimpses
(see Section 6.1). These relations can be represented through e.g., classes trees, ontologies,
etc., but the creation of such products is out of the scope of this paper.

Regarding the semantics of our GSL, a final issue that should be noted is that of the
polysemy of the fundamental terms. Some of the words that have been identified may
have two or more (related) meanings, as is demonstrated in Table S1. This issue should be
kept in mind as it can lead to several misunderstandings during the analysis and design
phases. As such, when an architect decides to build a GSL, it is important that they identify
not only the terms to be used but also their definition. Besides, the creation of glossaries in
development projects or other related activities is a common recommended practice that
facilitates smooth communication and documentation.

4.4. Syntax: Asking Questions the Right Way

In Section 4.1, Section 4.2, Section 4.3 the free elements (words) which build up glimpse
statements were recognized. In this section, we formulate rules that dictate how these
words are combined to form larger units such as phrases, and, eventually, statements.

• Rule 1: New entity types or verbs can be extracted from the fundamental entity
types and the verbs in Tables 1 and 2, through processes such as nominalizations,
adjectivization, and combination of terms.

• Rule 2: Each glimpse statement has to include a “What” phrase and a Verb phrase
(in that order), and may include one or more “Who”, “Where”, “When”, “Why”, and
“How” phrases (their order being irrelevant). If more than one phrases (Who, Where,
When, Why, How) of the same type (e.g., two different “Where” phrases) appear, they
should be grouped together and not have phrases of a different type in between them.

• Rule 3: A What phrase consists of the interrogative word “What” and the plural (if it
exists) of a What entity type. For example: “What requirements”, “What functional
user requirements”, “What equipment”, etc.

• Rule 4: A Verb phrase consists of one transitive passive verb (as in Table 1) preceded
by a passive auxiliary verb. For example: “have to be developed”, “can be tested”,
“were transferred”, etc.

• Rule 5: The rest of the phrases have to include a preposition, followed by the word
“what” and an entity type (most of the times, different from that of the What phrase).
For example: “by what process” (how), “due to what requirement” (why), “from what
stakeholder” (who), “with what order” (when), “at what building” (where).

Rule 1 identifies how new terms can be added to the GSL vocabulary. Although
Tables 1 and 2 provide around 250 fundamental entity types, depending on the scenarios,
use cases, and domains within which a system is analyzed and/or designed, many other
terms can be used. For example, adjectivization can be accomplished by using entity types
can be used to create adjectives (e.g., the entity type “functional user requirement” can be



Computers 2021, 10, 131 11 of 18

created by combining the terms “function”, “user”, and “requirement”, all entity types
identified in the tables). Domain-specific adjectives, nouns, verbs, and words in general
can be added by other architects to the tables to enrich the vocabulary that they want/need
to use.

Rules 2 and 3 ensure that the used syntax follows the 5W1H maxim that was described
in Section 4.1. Rules 3 and 4 ensure that the glimpse statements to be produced are
compliant with the definition of glimpses in Section 3. Especially Rule 4 makes it possible
for statements to express ability, permission, possibility, obligation, advice, etc. through
the use of the corresponding auxiliary verbs. Finally, Rule 5 simple defines the structure
through which complex statements can be created in a non-ambiguous, grammatically
correct, and easily understandable way.

Rule 5 hides a very important detail that has to be noted. Who, Where, When, Why,
and How phrases have to include entity types specifically (and not e.g., entities) and the
word “what”. To identify the reasoning behind this rule, we give four examples that present
four different ways through which glimpse statements could be created using the 5W1H
maxim. The question to be asked is “What components are deployed . . . ”

• “ . . . where?” (Approach 1)
• “ . . . to devices?” (Approach 2)
• “ . . . to what devices?” (Approach 3)
• “ . . . to device with ID XYZ.123?” (Approach 4)

All of the above approaches introduce a phrase that addresses the Where aspect of
the What + Verb phrases. Approach 1 just uses the where interrogative and may be too
generic, especially when complex systems are analyzed/designed. Approach 2 uses a
“Where” entity type and is a bit more specific than the previous one. The answer to the
corresponding question would produce just a stub, a list of components (names, IDS, etc.)
with the title “Components deployed on devices”. Approach 3 uses both a “Where” entity
type and the interrogative “what”. Answering the corresponding question (instantiating
the glimpse) would produce a table with one more column compared to the previous
approach, which would add one extra dimension to the information produced by the
glimpse. Instead of a simple list of components, we would get a list of component–devices
pairings. Finally, Approach 4 uses a specific entity. This results in a question that is too
specific and does not provide much information.

From all of the above approaches, Approach 3 gives the richest results, and that is the
reason we consider that glimpse statements should follow Rule 5.

5. Glimpse Statements and Glimpses: Creation Guidelines
5.1. Glimpse Statements Generator

Although Section 4 presents in great detail the Glimpse Statement Language we
choose to use as well the ways through which this language was constructed, the rules (or
the way they were presented) may be too complex for direct use by architects. To tackle this
problem, we provide a glimpse statements generator (a pen-and-paper tool through which
multiple complex glimpse statements can be constructed), an algorithm explaining step
by step how to use the generator, and a corresponding quick-start guide. The generator is
depicted (partially) in Table 3.

Table 3. Glimpse Statements Generator (GSG).

What Phrase Verb Phrase Who Phrase

What Entity Type Auxiliary Verb. Verb Preposition Who Entity Type

functional components have to be collected by Organizations
functional requirements must be extracted from Users

health data have been developed to Individuals
environmental device shall be transferred for Stakeholders



Computers 2021, 10, 131 12 of 18

The above table is missing the “When”, “Where”, “Why”, and “How” phrase columns.
These columns were omitted to make the table more legible. Their structure is exactly the
same with the one of the “Who” phrase columns: a column for prepositions and a column
for Entity Types.

From an algorithmic point of view, to use the table and generate glimpse statements,
the following steps are followed:

• Step 1: Populate the generator with entity types and verbs of interest either by choos-
ing words from Tables 1 and 2, by identifying them intuitively or by following the
methodology in Section 4.2.

• Step 2: From the first column (“What” phrase column) select the entity type for which
a glimpse statement has to be generated.

• Step 3: From the third column, select the verb that expresses the action of interest that
is performed on the chosen “What” entity type.

• Step 4: From the second column, choose the auxiliary verb that adds the desired
context to the statement.

• Step 5: Create a fundamental glimpse statement by writing the question “What
[selected entity type (plural)] [selected auxiliary verb] [selected verb]”.

• Step 6: Decide whether you want to make the statement more complex by adding
(another/) a “Who” phrase. If the answer is yes, move to Step 7. If the answer is no,
move to Step 11.

• Step 7: From the fourth column, select the preposition that you deem it adds appropri-
ate context to the statement.

• Step 8: Based on the chosen preposition in Step 7, select an appropriate “Who” entity
type in the fifth column.

• Step 9: Create a “Who” phrase in the form of “[selected preposition] what [selected entity
type (plural)]” and add it to the formed glimpse statement.

• Step 10: Go back to Step 6.
• Step 11: Decide whether you want to make the statement more complex by adding

(another) a “When” phrase. If the answer is yes, repeat Step 7 to 10 in the context of
a “When” phrase. If the answer is no, repeat this step for all the remaining types of
5W1H phrases, until there are no extra phrases to add to the glimpse statement.

• Step 12: Go back to Step 4 and repeat all Steps from 5 to 11. Then go to Step 13.
• Step 13: Go back to Step 3 and repeat all Steps from 4 to 12. Then go to Step 14.
• Step 14: Go back to Step 2 and repeat all Steps from 3 to 13, until there are no “What”

entity types of interest left.

The quick-guide to the usage of the glimpse statements generator is the following:
After filling in the generator with entity types, verbs, auxiliary verbs, and prepositions
that are of special interest, mentally go through all possible combinations of these ele-
ments by moving from one column of the generator to another, and write down all the
interesting/required glimpse statements that are produced.

5.2. Glimpses Creation Guidelines

This paper does not address methodologies that can be used to extract specific
glimpses of specific glimpse statements. For the purpose of completeness though, we
suggest a series of steps that can be followed during the process of glimpses creation,
regardless of the context of the glimpses per se.

• Step 1: [Optional] Choose a view or perspective that you want to address.
• Step 2: Populate the glimpse statements generator (Table 3) with the corresponding

words deemed sufficient to produce useful and complex statements.
• Step 3: Follow the methodology introduced in Section 5.1 and produce all the necessary

glimpse statements.
• Step 4: Identify the appropriate techniques, methods, means that could be used to

instantiate the glimpses based on the glimpse statements.



Computers 2021, 10, 131 13 of 18

• Step 5: Identify which glimpses could be combined to produce richer and more
complex architectural artifacts.

• Step 6: Identify a schedule/sequence for the actual production of glimpses, keeping
in mind that architecture activities are performed iteratively and at different stages of
the initial software development life-cycle, as well as over the evolution of a system.

• Step 7: Give answers to glimpse statements by replacing the Entity Types with the
corresponding Entities.

• Step 8: Produce the corresponding products (visualizing/describing glimpses) based
on the outcomes of Steps 7 (What), 6 (When) and 5 (How).

• Step 9: [Optional/If Step 1 was skipped]: Group the glimpses/final products in
architectural views.

Regarding Step 4, Table 4 provides a list of common tools that could be exploited for
the description/presentation of glimpses. All of these tools are mentioned in [2] and were
extracted in a similar manner with the one followed to extract the vocabulary terms in
Section 4.2. Their definitions are given in Table S1.

Table 4. Indicative glimpses instantiation/representation tools.

Indicative Glimpses Instantiation/Representation Tools

block diagram, configuration diagram, system resources chart, bubble chart, flowchart, graph,
input-process-output chart, structure chart, box diagram, control flow diagram, Chapin chart,
Nassi-Shneiderman chart, program structure diagram, call graph, call tree, tier chart, context
diagram, decomposition diagram, entity-relationship (E-R) diagram, entity-relationship map,

data structure diagram, flowchart, flow diagram, Gantt chart, Petri Net graph, influence diagram,
organizational breakdown structure, state diagram, timing diagram, use case diagram,

use case model

6. Glimpse Statements and Glimpses Examples in Case Studies
6.1. M-Sec Case Study: A Bottom-Up Approach

In this section, we present some concrete examples of glimpse statements and show
how a composite glimpse can be produced, following a bottom-up approach (glimpse
statements are produced first and foremost, without prior architectural analysis following
a framework or viewpoints). The case study chosen is that of the development of the
functional components of the M-Sec project [26].

M-Sec is an EU&JP R&D Project co-financed by the European Commission under
the H2020 programme, and the National Institute of Information and communications-
National Research and Development Agency which is specialized in the field of information
and communications technology that promotes innovation and research in Japan. The
M-Sec consortium is a partnership of leading European and Japanese universities and
research centers as well as companies in the area of Big Data, IoT, Cloud Computing, and
Blockchain and all of them have an extensive experience in smart city related projects.

The M-Sec solution has as a main goal the development of technologies capable of
ensuring the safety and privacy of the data exchanged in highly connected smart cities
through the development of several protection layers (device level, Cloud level, etc.). At
the device level, M-Sec provides secure elements embedded in the hardware of devices that
store all confidential information using cryptographic keys, perform sensitive operations
more securely and verify the integrity of the system. Data collection and transfer are carried
out in an interoperable and scalable way thanks to the use of protocols and the usage of
an access control mechanism that allows only authorized individuals to read raw data or
interact with IoT devices. Regarding data storage, a layer of security is added on top of the
traditional encrypted data storage systems through the coupled use of blockchain.

The M-Sec system can be considered a relatively complex one for various reasons.
Some of them are the fact that the M-Sec use cases are focused on smart cities (an umbrella
term hiding a large number of applications behind it), its consortium consists of many part-



Computers 2021, 10, 131 14 of 18

ners from various countries and types of organizations, and its technical implementation is
based on several different technologies.

Table 5 provides an indicative list of glimpse statements that focus mostly on the
functional components of the project.

Table 5. Glimpse statements focused mostly on functional components of the M-Sec system.

What Verb Where When How

What components have been developed through what tasks
What

integration points have been materialized between what components through what means

What components have been used on what layers at what project phases
What components can be reused in what external projects at what project phases with what infrastructure

What components are interconnected at what project phases through what
functional groups

What types of data are transferred from what components to
what components

through what
integration points

Glimpses produced by the above glimpse statements can provide a lot of rich informa-
tion related to the functional capabilities of the system, design and development activities,
exploitation of the final results of the project, etc. In all of these glimpse statement examples,
the entity type “component” is always used (as a “What” type or “Where” type). This
common link between the glimpse statements makes it possible to partially merge aspects
of the corresponding glimpses and produce a composite glimpse. A representation of this
composite glimpse is shown in Figure 2.

Computers 2021, 10, x FOR PEER REVIEW 15 of 19 
 

 
Figure 2. A composite glimpse inside the functional and technical architecture of the M-Sec system. 

In a sense, this figure demonstrates why glimpse statements can be a powerful anal-
ysis and/or representation tool enhancing expressiveness. As through glimpse statements 
we can extract the fundamental building blocks of entity-centric related aspects, it be-
comes possible to compose very complex and expressive constructs which would be hard 
to grasp or imagine through a top-down approach. Of course, the composition can take 
place because the glimpse statements abide to a language that defines relatively strict con-
ceptual relations between the several entities of interest. 

6.2. C4ISR Case Study: Compatibility with Other Architectures 
The C4ISR Architecture Framework document [17] issued by the Department of De-

fense specifies three views of information architecture: operational view, systems view, 
and technical view. To each one of these views, the framework maps a specific list of 27 
architectural products that have to be produced. This set of products acts as mechanisms 
for visualizing, understanding, and assimilating the broad scope and complexities of an 
architecture description through graphic, tabular, or textual means. The principal objec-
tive of the effort is to define a coordinated approach, i.e., a framework, for Command, 
Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance 
(C4ISR) architecture development, presentation, and integration. The C4ISR Architecture 
Framework is intended to ensure that the architectures developed by the geographic and 
functional unified commands, military services, and defense agencies are interrelated be-
tween and among the organizations’ operational, systems, and technical architecture 
views, and are comparable and integrable across joint and multi-national organizational 
boundaries. 

Table 6 presents some of these products related to the systems view, while Table 7 
decomposes the scope/context of these same products to glimpse statements. 

  

Figure 2. A composite glimpse inside the functional and technical architecture of the M-Sec system.

In a sense, this figure demonstrates why glimpse statements can be a powerful analysis
and/or representation tool enhancing expressiveness. As through glimpse statements we
can extract the fundamental building blocks of entity-centric related aspects, it becomes
possible to compose very complex and expressive constructs which would be hard to
grasp or imagine through a top-down approach. Of course, the composition can take place
because the glimpse statements abide to a language that defines relatively strict conceptual
relations between the several entities of interest.



Computers 2021, 10, 131 15 of 18

6.2. C4ISR Case Study: Compatibility with Other Architectures

The C4ISR Architecture Framework document [17] issued by the Department of De-
fense specifies three views of information architecture: operational view, systems view,
and technical view. To each one of these views, the framework maps a specific list of
27 architectural products that have to be produced. This set of products acts as mechanisms
for visualizing, understanding, and assimilating the broad scope and complexities of an
architecture description through graphic, tabular, or textual means. The principal objective
of the effort is to define a coordinated approach, i.e., a framework, for Command, Control,
Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) ar-
chitecture development, presentation, and integration. The C4ISR Architecture Framework
is intended to ensure that the architectures developed by the geographic and functional
unified commands, military services, and defense agencies are interrelated between and
among the organizations’ operational, systems, and technical architecture views, and are
comparable and integrable across joint and multi-national organizational boundaries.

Table 6 presents some of these products related to the systems view, while Table 7
decomposes the scope/context of these same products to glimpse statements.

Table 6. Description of C4ISR Architecture Framework system-view Products adapted from ref. [17].

Code Product Name Description

SV-1 System Interface Description Identification of systems and system components and
their interfaces, within and between nodes

SV-2 Systems Communication Description Physical nodes and their related
communications laydowns

SV-4 Systems Functionality Description Functions performed by systems and the information
flow among system functions

SV-5 Operational Activity to System Function
Traceability Matrix

Mapping of system functions back to
operational activities

SV-6 System Information Exchange Matrix
Detailing of information exchanges among system

elements, applications and H/W allocated to
system elements

SV-10b Systems State Transition Description Systems activity sequence and timing—responses of a
system to events

Table 7. Decomposition of C4ISR Architecture Framework system-view products through glimpse statements.

Code Glimpse Statement

SV-1

• What systems are exposed, within what nodes, between what nodes, through what
interfaces?
• What system components are exposed, within what nodes, between what nodes,
through what interfaces?

SV-2 • What communication laydowns are deployed, in what physical nodes?

SV-4 • What functions are performed, by what systems?
• What information is forwarded from what system function to what system function?

SV-5 • What operational activities are supported by what system functions?
• What operational activities are exposed through what system functions?

SV-6
• What H/W is allocated to what system elements?
• What information is forwarded e.g., from what system elements to what
system elements?

SV-10b • What events are handled, by what systems, through what activities, in what sequence,
with what timing?

While the case study in the previous section demonstrates the value of glimpse
statements in composition activities, the case study in this section demonstrates the value
of glimpse statements in decomposition activities. The combined result of Tables 6 and 7
shows that, when we are following a top-down approach, the path of analysis/design



Computers 2021, 10, 131 16 of 18

from frameworks to views and from views to products can be extended even further, by
reaching the level of glimpse statements.

7. Discussion and Future Work

Glimpses are a powerful tool that can be used for both composition and decomposi-
tion activities. Compared to architectural views, architectural glimpses produce directly
concrete, expressive questions that can then be mapped to specific (analysis, design, and/or
documentation) activities. Glimpses can be used on any administrative level of an architec-
tural endeavor—on a project-level, task-level, activity-level, etc. However, glimpses are
not appropriate for all circumstances. Too many glimpses (or too complex ones) may be
hard to extract in a structured manner and also hard to manage, especially when there is
no initial roadmap (e.g., starting from views) or a domain model of the system (identifi-
cation of the relations between entities of interest, see Section 4.3). It is considered that
glimpses are most effective when they are used for relatively small focus activities (not the
entirety of a development project for example), and in combination with other tools, such
as architectural frameworks or views.

It is worth noting that the glimpse statements language and guidelines provided in this
article can be replicated in other domains beyond those of systems engineering (e.g., purely
on a project management level). In any case, through the methodology introduced in
Sections 4 and 5, it is possible for architects to create their own 5W1H statements generator.

A final issue that should be addressed is that of too much “Big Design Up Front”.
Due to the large number of glimpse statements that can be produced, an architect may
be tempted to identify far too many glimpses, sacrificing development and integration
agility. Architecture is mostly an intuitive approach to begin with, so we do not make
any claims about the necessity of the usage of glimpse statements. Under this prism, in
the guidelines offered in Section 5.2 a Step 0 should be added: to determine whether the
glimpse statements approach will benefit the architecting activities of the specific project.

Regarding future work, the presented language, methodology, guidelines, and genera-
tor could be expanded. Studying how the architecture products of various architectures are
mapped to glimpse statements could also lead to the creation of a framework that would
introduce a list of fundamental, necessary glimpse statements to define architectures. The
most interesting prospect though is that of creating a Computer-Aided Software Engi-
neering (CASE) that could transform the pen-and-paper process presented in Section 5.1
to an automated one. This tool could receive as input by the user several entities of in-
terest (through e.g., a checklist) and could then autogenerate a list of suggested glimpse
statements. To accomplish that, the tool would have to use a variation of the algorithm
presented in Section 5.1 and would have to filter out all those glimpse statements that have
no meaning (not all possible word combinations provide meaningful statements) or are not
important enough. That filtering could be implemented through ontology-based reasoning
(Section 4.3), rule-based reasoning (Sections 4.1 and 4.2), and/or Machine Learning tech-
niques on top of crowd-sourced data (e.g., humans noting meaningless statements in an
extracted glimpse statements list). Future work will focus on the implementation of such
a tool.

8. Conclusions

Architectural Views and other similar solutions can support architects and provide
them a baseline for extracting Architecture Descriptions. These solutions follow a primarily
top-down approach and are based on high-level constructs (such as those of the architec-
tural viewpoints). However, these solutions either provide guidelines that are too open
and do not offer many tools for architects to move from the definition of viewpoints to
specific, concrete parts of architectural products, or suggest sets of architectural products
that are too specific and hard to adapt or extend.

To address this issue, we introduced the notion of architectural glimpse statements:
fundamental questions acting as the building blocks for architectural views and products.



Computers 2021, 10, 131 17 of 18

Following a bottom-up approach and starting the architectural analysis from the level of
specific entities of interest rather than that of high level views, glimpse statements offer
architects a technique through which they can ask the right questions in the right manner,
the elaboration on which can lead directly to concrete architectural products. By using the
5W1H maxim, we created a well-defined and flexible language and methodology through
which, as demonstrated in Section 6.1, architectural glimpse statements are created in a way
that makes it possible not only to identify a concrete list of questions to be answered for
the description of an architecture, but also to produce more complex representations and
architectural products through composition. Moreover, due to the nature of the suggested
language and the fact that we worked on top of standardized and common approaches,
architectural glimpse statements can be used for the decomposition of already existing
architectures and architecture frameworks, thus ensuring backward compatibility of our
approach with other attempts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/computers10100131/s1, Table S1: Filtered terms from ISO/IEC/IEEE International Standard-
Systems and software engineering–Vocabulary.

Author Contributions: Conceptualization, O.V.; Formal analysis, O.V.; Investigation, O.V., A.H.B.,
and A.T.; Methodology, O.V.; Project administration, O.V., A.L. and T.V.; Supervision, A.L. and T.V.;
Visualization, O.V.; Writing—original draft, O.V., A.H.B., A.T., G.P., T.K., X.C.-C., J.N., A.L. and T.O.;
Writing—review and editing, O.V., A.H.B., A.T., G.P., A.L and T.V. All authors have read and agreed
to the published version of the manuscript.

Funding: The research leading to these results has received funding from the European Commission
under the H2020 Programme’s project M-Sec (“Multi-layered Security technologies to ensure hyper
connected smart cities with Blockchain, BigData, Cloud and IoT”, grant agreement nr. 814917) and the
National Institute of Information and communications-National Research and Development Agency.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. IEEE. Recommended Practice for Architectural Description for Software-Intensive Systems; IEEE Std. 1471-2000; IEEE: New York, NY,

USA, 2000; pp. 1–30. [CrossRef]
2. ISO; IEC; IEEE. International Standard—Systems and Software Engineering—Vocabulary; ISO/IEC/IEEE 24765:2017(E); IEEE: New

York, NY, USA, 2017; pp. 1–541. [CrossRef]
3. Hofmeister, C.; Kruchten, P.; Nord, R.L.; Obbink, H.; Ran, A.; America, P. A general model of software architecture design derived

from five industrial approaches. J. Syst. Softw. 2007, 80, 106–126. [CrossRef]
4. Rechtin, E. The art of systems architecting. IEEE Spectr. 1992, 29, 66–69. [CrossRef]
5. Percivall, G.; Taylor, T. Connecting the Internet of Things to the eo community and the geospatially enabled web using OGC

standards. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX,
USA, 23–28 July 2017; pp. 5577–5580. [CrossRef]

6. ISO; IEC; IEEE. International Standard—Software, Systems and Enterprise—Architecture Processes; ISO/IEC/IEEE 42020:2019(E);
IEEE: New York, NY, USA, 2019; pp. 1–126. [CrossRef]

7. Hilliard, R.; Malavolta, I.; Muccini, H.; Pelliccione, P. On the Composition and Reuse of Viewpoints across Architecture
Frameworks. In Proceedings of the 2012 Joint Working IEEE/IFIP Conference on Software Architecture and European Conference
on Software Architecture, Helsinki, Finland, 20–24 August 2012; pp. 131–140. [CrossRef]

8. Marca, D.; McGowan, C. Structured Analysis and Design Technique; McGraw-Hill: New York, NY, USA, 1987; ISBN 0-07-040235-3.
9. IEEE. Standard for Functional Modeling Language—Syntax and Semantics for IDEF0.2.1.60; IEEE Standard 1320.1-1998 (R2004); IEEE:

New York, NY, USA, 1998.
10. IEEE. Standard for an Architectural Framework for the Internet of Things (IoT); IEEE Std 2413-2019; IEEE: New York, NY, USA, 2020;

pp. 1–269. [CrossRef]

https://www.mdpi.com/article/10.3390/computers10100131/s1
https://www.mdpi.com/article/10.3390/computers10100131/s1
http://doi.org/10.1109/IEEESTD.2000.91944
http://doi.org/10.1109/IEEESTD.2017.8016712
http://doi.org/10.1016/j.jss.2006.05.024
http://doi.org/10.1109/6.158642
http://doi.org/10.1109/IGARSS.2017.8128268
http://doi.org/10.1109/IEEESTD.2019.8767004
http://doi.org/10.1109/WICSA-ECSA.212.21
http://doi.org/10.1109/IEEESTD.2020.9032420


Computers 2021, 10, 131 18 of 18

11. Reuter, A.; Andrikopoulos, V. Architectures of Cloud-enabled Cyber Physical Systems—A Systematic Mapping Study. In
Proceedings of the 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Portoroz, Slovenia,
26–28 August 2020; pp. 455–462. [CrossRef]

12. Oquendo, F. Formally Describing the Architectural Behavior of Software-Intensive Systems-of-Systems with SosADL. In Proceed-
ings of the 21st International Conference on Engineering of Complex Computer Systems (ICECCS), Dubai, United Arab Emirates,
6–8 November 2016; pp. 13–22. [CrossRef]

13. Cavalcante, E.; Batista, T.; Oquendo, F. Supporting Dynamic Software Architectures: From Architectural Description to Imple-
mentation. In Proceedings of the 12th Working IEEE/IFIP Conference on Software Architecture, Montreal, QC, Canada, 4–8 May
2015; pp. 31–40. [CrossRef]

14. IEEE; ISO; IEC. Draft International Standard for Systems and Software Engineering—Architecture Description; ISO/IEC/IEEE
P42010/DIS; IEEE: New York, NY, USA, 2020; pp. 1–68.

15. Kruchten, P.B. The 4+1 View Model of architecture. IEEE Softw. 1995, 12, 42–50. [CrossRef]
16. ISO/IEC DIS 10746-3. Basic Reference Model of Open Distributed Processing—Part 3: Prescriptive Model; ISO: Geneva,

Switzerland, 1994.
17. C4ISR Architecture Working Group. C4ISR Architecture Framework Version 2.0.; U.S. Department of Defense: Washington, DC,

USA, 1997.
18. Bauer, M.; Boussard, M.; Bui, N.; Carrez, F.; Jardak, C.; De-Loof, J.; Magerkurth, C.; Meissner, S.; Nettstraeter, A.; Olivereau,

A.; et al. Internet of Things—Architecture IoT-A Deliverable D1.5—Final Architectural Reference Model for the IoT v3.0.; European
Commission: Brussels, Belgium, 2013.

19. Shames, P.; Skipper, J. Toward a Framework for Modeling Space Systems Architectures. In Proceedings of the SpaceOps 2006
Conference, Rome, Italy, 19–23 June 2015. [CrossRef]

20. Woods, E. Operational: The Forgotten Architectural View. IEEE Softw. 2016, 33, 20–23. [CrossRef]
21. Object Management Group, Inc. OMG Unified Modeling Language™. Version 2.5. March 2015. Available online: http:

//www.omg.org/spec/UML/2.5 (accessed on 20 August 2021).
22. Jeong-Dong, K.; Jiseong, S.; Doo-Kwon, B. CA5W1H onto: Ontological Context-Aware Model Based on 5W1H. Int. J. Distrib. Sens.

Netw. 2012, 2012, 247346. [CrossRef]
23. ISO; IEC; IEEE. International Standard—Systems and Software Engineering—Vocabulary; ISO/IEC/IEEE 24765:2010(E); IEEE: New

York, NY, USA, 2010; pp. 1–418. [CrossRef]
24. SEVOCAB: Software and Systems Engineering Vocabulary. Available online: www.computer.org/sevocab (accessed on 28

August 2021).
25. Fromkin, V.; Victoria, R. Introduction to Language, 6th ed.; Harcourt Brace College Publishers: Fort Worth, TX, USA, 1998;

ISBN 978-0-03-018682-0.
26. M-Sec. Available online: https://www.msecproject.eu/ (accessed on 30 August 2021).

http://doi.org/10.1109/SEAA51224.2020.00078
http://doi.org/10.1109/ICECCS.2016.012
http://doi.org/10.1109/WICSA.2015.21
http://doi.org/10.1109/52.469759
http://doi.org/10.2514/6.2006-5581
http://doi.org/10.1109/MS.2016.86
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
http://doi.org/10.1155/2012/247346
http://doi.org/10.1109/IEEESTD.2010.5733835
www.computer.org/sevocab
https://www.msecproject.eu/

	Introduction and Problem Statement 
	Systems Architecture and Architecting 
	Motivation, Contributions, and Paper Structure 

	Related Work: Architectural Views and Other Approaches 
	Architectural Glimpses 
	Glimpse Statements Language (GSL) 
	Context: Asking the Right Questions (5W1H Maxim) 
	Vocabulary: Entities of Interest and Verbs 
	Semantics: Relations between and Groups of Entity Types and Verbs 
	Syntax: Asking Questions the Right Way 

	Glimpse Statements and Glimpses: Creation Guidelines 
	Glimpse Statements Generator 
	Glimpses Creation Guidelines 

	Glimpse Statements and Glimpses Examples in Case Studies 
	M-Sec Case Study: A Bottom-Up Approach 
	C4ISR Case Study: Compatibility with Other Architectures 

	Discussion and Future Work 
	Conclusions 
	References

