computers

Article

Evaluating GraphQL and REST API Services Performance in a
Massive and Intensive Accessible Information System

Armin Lawi 1'*

check for

updates
Citation: Lawi, A.; Panggabean,
B.L.E; Yoshida, T. Evaluating
GraphQL and REST API Services
Performance in a Massive and
Intensive Accessible Information
System. Computers 2021, 10, 138.
https://doi.org/10.3390/
computers10110138

Academic Editor:

Robertas Damasevicius

Received: 20 September 2021
Accepted: 22 October 2021
Published: 27 October 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

, Benny L. E. Panggabean 2

and Takaichi Yoshida 3

Department of Information Systems, Hasanuddin University, Makassar 90245, Indonesia

Department of Computer Science, Pancasakti University, Makassar 90132, Indonesia; blep@unpacti.ac.id
Department of Computer Science and Networks, Kyushu Institute of Technology, lizuka 820-8502, Japan;
takaichi@csn kyutech.ac.jp

Correspondence: armin@unhas.ac.id

Abstract: Currently, most middleware application developers have two choices when designing
or implementing Application Programming Interface (API) services; i.e., they can either stick with
Representational State Transfer (REST) or explore the emerging GraphQL technology. Although
REST is widely regarded as the standard method for API development, GraphQL is believed to be
revolutionary in overcoming the main drawbacks of REST, especially data-fetching issues. Nev-
ertheless, doubts still remain, as there are no investigations with convincing results in evaluating
the performance of the two services. This paper proposes a new research methodology to evaluate
the performance of REST and GraphQL API services with two main ideas as novelties. The first
novel method is the evaluation of the two services is performed on the real ongoing operation of
the management information system, where massive and intensive query transactions take place
on a complex database with many relationships. The second is the fair and independent perfor-
mance evaluation results obtained by distributing client requests and synchronizing the service
responses on the two virtually separated parallel execution paths for each API service, respectively.
The performance evaluation was investigated using basic measures of QoS (Quality of Services), i.e.,
response time, throughput, CPU load, and memory usage. We use the term efficiency in comparing
the evaluation results to capture differences in their performance measures. The statistical hypothesis
parameters test using the two-tails paired t-test, and boxplot visualization was also given to confirm
the significance of the comparison results. The results showed REST is still faster up to 50.50% in
response time and 37.16% for throughput, while GraphQL is very efficient in resource utilization, i.e.,
37.26% for CPU load and 39.74% for memory utilization. Therefore, GraphQL is the right choice when
data requirements change frequently, and resource utilization is the most important consideration.
REST is used when some data are frequently accessed and called by multiple requests.

Keywords: information systems; middleware applications; application programming interfaces
(APIs); web services; quality of services (QoS); performance evaluation

1. Introduction

For the past two decades, Representational State Transfer (REST) has been considered
the standard architecture for designing and implementing Application Programming
Interfaces (APIs) as back-end applications or server-side web services. However, it is
believed that the practical use of REST in the API world will soon change due to the
potential emergence of GraphQL. Most middleware application developers today are at
a crossroads whether they should stick with REST or face the challenges of the emergent
GraphQL technology when building and implementing APIs. GraphQL is considered a
revolutionary technology because of its simplicity of use and its ability to reduce workload
problems on the server; hence, it can overcome the main drawbacks of REST in data
retrieval [1-4]. However, there are still a lot of doubts and talk about GraphQL when

Computers 2021, 10, 138. https://doi.org/10.3390/computers10110138

https://www.mdpi.com/journal /computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-1023-6925
https://orcid.org/0000-0001-6805-6463
https://orcid.org/0000-0001-5818-2845
https://doi.org/10.3390/computers10110138
https://doi.org/10.3390/computers10110138
https://doi.org/10.3390/computers10110138
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10110138
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10110138?type=check_update&version=1

Computers 2021, 10, 138

20f16

compared to its predecessor REST. This doubt arises because there have been no convincing
experimental investigation results in evaluating the performance of REST and GraphQL
API services that support Quality of Service (QoS).

The REST API is built on several endpoints to determine data retrieval since those
endpoints are called frequently. Having multiple endpoints increases the number of
client-server calls for data retrieval, which may be more efficient than using a single
endpoint. Therefore, the REST response speed is considered adequate but requires a lot of
computational resources such as process loading and memory consumption [5-7]. On the
other hand, a GraphQL API built with a single endpoint is a little slow at running complex
database queries that have multiple relationships. However, this problem was addressed
by exposing the graph structure for the data service. The advantage of retrieving data
on a single endpoint can result in efficient server resource workloads such as CPU load
and memory usage. Simply put, it is nothing more than a query language for building
API services. Although GraphQL query language is not tied to any particular database
or storage engine, it is supported by existing code and data. GraphQL is positioned on
the server side which executes the query using the system type defined for the data. This
API technology was developed by Facebook in 2012 and immediately boomed among web
application developers when the technology was published in 2015 [8-11].

The performance comparison of REST and GraphQL has been reported in some exper-
imental papers. However, the results were mostly from simulations or execution of simple
application development; therefore, the results were either inconclusive or inconsistent.
Experiments have tested basic operations in network services, i.e., displaying, adding,
editing, and deleting data [12]. The performance tests were measured using the JMeter
tool. The results showed no difference in performance in adding, editing, and deleting data
for both services. Differences in performance for display operations were observed under
heavy load conditions. GraphQL had a better performance in downloading small amount
of data, while REST indicated a higher performance in downloading large amounts of
data [12]. Contradictory results were obtained in [13]: the migration to GraphQL resulted
in an improved performance in terms of the average number of requests per second and
data transfer rate for two-thirds of the applications tested. However, it was found that
the performance of the services after migration for GraphQL was below REST. Both REST
and GraphQL architectures showed a similar performance for more trivial workloads [13].
Another comparative analysis on real website samples using REST and GraphQL architec-
tures in terms of different Internet connection qualities, code complexity, and the required
number of requests is presented in [14]. For different Internet connection speeds, they
analyzed the number of different records in the database and the total time required to
show users the desired content on the website. Their results showed that GraphQL pro-
vides a significant reduction in the total time and number of HTTP requests compared to
REST technology, which is very important for the user experience and the quality of web
applications [14]. A more contrasting result based on a decision model showed more differ-
ences between REST and GraphQL technologies in [15]. In their conclusion, REST results
in a much more flexible and GraphQL solution that is easy to use but more restrictive for
developers. GraphQL also requires an implementation that sets some restrictions on which
languages may be used whereas REST does not [15].

This paper proposes a new research methodology to evaluate the performance of
REST and GraphQL API services with two main ideas as novelties.. The first novel method
is the evaluation of the two services is performed on the real ongoing operation of the
management information system, where massive and intensive query transactions take
place on a complex database with many relationships. The data source for this investigation
is primary data from transaction queries on a Management Information System of the
Hasanuddin University Research and Community Service Institute, called SIM-LP2M [10].
Therefore, the results of the performance evaluations, derived from real client transaction
activities that cannot be repeated, are not simulations, and must be carefully and accurately
conducted in such a way as to not interfere with the operation of the running system. The

Computers 2021, 10, 138

30f16

second novel method is the fair and independent performance evaluation results obtained
for both API services. In this method, the request synchronization node plays an important
role in distributing client requests and synchronizing service responses to two parallel
execution paths for each API service. The execution path resides in a separate virtual
machine connected to a single-database engine hosting two identical and isolated schemas.
For each performance measurement result, the findings of the performance evaluation
are given and discussed. The statistical hypothesis parameters test using the two-tails
paired t-test and boxplot visualization is also given to confirm the significance of the
comparison results. This research is expected to contribute to researchers and developers
working on information systems or middleware applications that use REST services and
the GraphQL APL

The remainder of this paper is organized as follows: Section 2 describes the materials
and methods used in the performance evaluation study of two API service technologies.
The experimental design used in this work, including the evaluated architecture and
implementation of REST and GraphQL, is described in Section 3. Then, Section 4 presents
the experimental performance evaluation results and discusses the comparison of these
results. Section 5 concludes the paper.

2. Materials and Methods
2.1. Evaluated System Architecture

The performance investigation for both REST and GraphQL API services is evaluated
in two independent monolithic information system architectures. The architecture of these
two client-server services only handles requests made to the endpoint as per the REST
and GraphQL specifications. The two services are separated via request sync when a
client triggers a series of actions or transactions using the SIM-LP2M system. The synced
transaction requests from clients are then distributed in parallel to each API gateway for
the respective REST and GraphQL services. The API gateway serves as an entry point
to provide secure and unified access as well as manage incoming and outgoing traffic to
each APl service. Without a gateway, transactions would just be a segmented collection of
related APIs and certainly less effective than a unified API, which can also provide identity
validation services for performance evaluation. The API services are bounded to a single-
database engine that hosts two identical and isolated schemas virtually for both REST and
GraphQL. Thus, we can evaluate the performance of both services fairly and independently.
The connection between the server and the client is made using the Hypertext Transfer
Protocol (HTTP) [16]. The illustration of the evaluated system architecture is depicted in
Figure 1.

The SIM-LP2M is deployed in 3 entities, i.e., web/mobile applications or clients, web
services (server side applications), and database (persistent storage resource). Clients of the
system consist of 7 actors, i.e., rector of the university, chairman of LP2M, members of the
National Research Council of the university, office, staffs, administrators, reviewers, and
researchers. Each actor has their own privileged tasks and some restrictions in accessing
and modifying data. Restriction access to the data attributes in the database is implemented
according to the designed RACI (Responsible, Accountable, Consulted, and Informed)
matrix. This matrix is also used as the basis in designing the class diagrams for database
tables and methods/procedures for each user [16].

Although the proposed method is designed to evaluate the architecture of two inde-
pendent monolithic information systems (due to the aim of this paper being to compare
the performance of REST and GraphQL), this method can be further extended to more
developed work related to evaluate the performance of multiple applications with service
technologies or even microservices. Performance evaluation is important and indispens-
able for optimizing resource services such as cloud computing technology that applies
multi-architectural patterns with various microservices, especially models that provide a
Back-end as a Service (BaaS) platform [17]. To this end, we can take advantage of the API
Gateway’s role in handling requests and responses to manage various transactions in the

Computers 2021, 10, 138

40f16

database engine. The development of this method is very interesting to be discussed and
investigated further to measure the scalability and availability of the provided services. We
leave this issue as one of the most important aspects for the future work.

National Research Council

Administrator Office Staff
Researcher l l Chairman
Reviewer e Rector
—— A D

Mobile/web apps (Clients)

B A

Request Sync

Request and Response
Timestamps are recorded

Throughput, CPU Load
and Memory Usage are
recorded

query Server Side Apps query

A single database engine
hosts two identical and
isolated schemas.

Single
DB Engine

)
e

Figure 1. Illustration of the evaluated system architecture of the SIM-LP2M.

2.2. Data Sources

The primary data source originates from requests directed to the API gateways and
services that generate queries to the database as a result of client activities on the system.
When there are a series of actions or transactions to the database such as CREATE, READ,
UPDATE, and DELETE (CRUD), they are first synchronized and then distributed in parallel
to the REST and GraphQL API gateways, respectively. Therefore, data related to response
time are counted by the differences between request and response timestamps recorded in
the API gateway. Meanwhile, other data related to throughput, CPU load, and memory
utilization are measured on API service activities. The implementation of CRUD actions
from the front-end application to the API gateways are expressed in HTML methods,
i.e., CREATE (PUT/POST), READ (GET), UPDATE (PUT/POST /PATCH), and DELETE
(DELETE). To ensure data validity despite errors and failures, the properties of ACID
(Atomicity, Consistency, Isolation, and Durability) are applied to database transactions.

The performance data are evaluated from the real transaction activities in the SIM-
LP2M system that is quite complex and very diverse. These activities include the research
proposal submissions, administrative desk evaluations, evaluation of research presenta-
tions, budget justification, evaluation of proposal revisions, evaluation of the proposal
score, reviewer selection, decisions of grant recipients, monitoring and evaluation (research
progress and final results), reporting activities, etc. Along with these activities, the SIM-
LP2M system intensively and massively accesses the database server with various actors
and tasks. Since the performance data are primary and they are derived from the real
operational of client transaction activities, they are not simulations, cannot be repeated,
and must be carefully and accurately conducted in such a way that does not interfere with
the operation of the running system.

Computers 2021, 10, 138

50f16

2.3. Application Programming Interface (API)

The context of Application Programming Interfaces (APIs) in the field of software
engineering and information systems is very different and refers to the interface elements
of an application that can be called or executed at various levels of abstraction in a sys-
tem. To further narrow the scope, this paper limits the API in context as a backend-side
functionality that queries specific data on a persistent storage resource via an interface
defined as API web services. The web services concept appears to bridge existing infor-
mation systems (middleware) without disputing the difference in the platforms used by
each source [3,6,15,18]. In building web services, the technologies most often applied are
Simple Object Access Protocol (SOAP), Representational State Transfer (REST), and, most
recently, GraphQL.

2.3.1. Representational State Transfer (REST)

REST is still the popular API design architecture used to implement web services that
use the HTTP protocol for server—client communication in web applications. Creating
an API with this concept is simple, easy, and flexible to accept since it is not bound by a
specific transfer protocol. REST works by providing a path or endpoint to access a resource
(data source), and the endpoint is used whenever a client wants to access the resource. The
server sends a representation of the requested resource state to the client that mostly in
JSON (JavaScript Object Notation) or XML (eXtensible Markup Language) format. REST
API typically gathers data by accessing multiple endpoints. For instance, let a client want
to fetch the data of a researcher that includes the id, research titles, and members of a
research project. Firstly, these could be /data/<id> endpoints to fetch the initial user data.
Secondly, there is a /data/<id>/research endpoint that returns all research titles for a user.
The third endpoint is then /data/<id>/members, which returns a list of members per user.

In essence, the REST APIs server is stateless, which means the client is responsible
for storing all application state-related client side information. The client needs to send
state information to the server whenever needed. The client and server can operate
independently at REST, which means the state information can be overridden and all data
retrieved from the server can be cached on the client side in such a way that the overall
performance can be improved. The REST APIs are based on 5 different HTTP methods,
i.e., GET to retrieve data, POST to update data on the server, PUT to update property
values, PATCH to modify a resource, and DELETE to delete the resource. The main REST
design principles are addressability, uniform interface, and statelessness. REST overcomes
acceptance by specifying an endpoint in the directory structure via various URIs to extract
data [5-7,18,19].

2.3.2. GraphQL

GraphQL is a query language for an API, a new approach that leverages services in
the query language released in 2015 by Facebook [8]. It is not tied to any specific database
or storage engine, but it is instead backed by your existing code and data. In essence,
GraphQL has only one endpoint, which is HTTP POST request. In GraphQL, we simply
send a single query to the GraphQL server that includes the concrete data requirements.
The server then responds with a JSON object where these requirements are fulfilled. For
instance, let us use the same activity explained in the previous REST subsection, where the
client wants to fetch the researcher data that includes the id, research title, and members of
the research project. Then, the client only specifies exactly which data it needs in a query
and sends a request using the HTTP POST method.

In GraphQL, the client sends customized POST request to fetch the only needed
data. In other words, clients have the power to define what type of data to fetch from
the database. It helps when the client needs a flexible response format to avoid extra
massive data transfer. It is also supported in various popular programming languages such
as Python, C#, JavaScript, etc. Two things are the most important part of GraphQL, i.e.,
Schema and Resolver function. GraphQL requires 3 important parts that must be defined

Computers 2021, 10, 138

6 of 16

firstly, i.e., mutation as a place to update, input, and delete data, query for calling data, and
type to describe the type of field /data [8,10,11,20-22].

2.3.3. Architectural Difference of REST and GraphQL

The main difference between REST and GraphQL APIs technology is the availability
of the number of endpoints when they are handling requests. GraphQL tries to collect
every request to one place, whereas the REST is built such that each resource is handled by
some specific endpoints. The REST configuration creates a complicated situation whenever
there is a change on the back-end, and it causes an adjustment to the front-end to query
the exact endpoint for the desired resource. On the other hand, GraphQL takes some time
when the request is handled at a single endpoint to find the right resource [1,3,12,13,16,22].
Figure 2 illustrates the difference between REST and GraphQL architecture.

REST API
/ REST maps URISs resources (multi endpoints)\

< /data/<id>
c® \

G/E\T' /data/<id>/research \
%\ GET _ /data/<id>/members \/

Client 2 ; i
O@» Single Endpoint GraphQL Server
/data/<id>/ Z
/daba/<i.d>/research —» Database
/data/<id>/members

REST is replaced by a query language
GraphQL API

Figure 2. Illustration of the difference between REST and GraphQL architectures.

2.4. Performance Measurements

Web services have proven to be easier to implement and superior to other similar
technologies available today. Web service performance concerns not only how fast re-
quests can be processed and served but also other performances in terms of load, stress,
and service durability. Service speed requirements are mostly determined using through-
put and response time measurements. Meanwhile, web service workload performance
is more easily demonstrated through CPU load and memory usage. Obviously, the re-
sponse time and throughput depend on the workload the web server is experiencing at
the time [12,14,16,23,24]. Therefore, this paper evaluates 4 basic performance measures
that clearly distinguish the two technologies based on their natural purpose. The four
performances are response time, throughput, CPU load, and memory utilization. They
are the most common metrics that can be tracked as good baseline data points and most
needed in achieving QoS. Later in the Results and Discussion section, the efficiency of the
results of the performance evaluation of the two technologies is evaluated because it is
a comparative measure for the discussion of the two technologies. We use the following
Equation (1) to compute the efficiency of performance measures.

min {UREST, WGrathL}

Efficiency = | 1- x 100%, 1

max {UREST/ fIGraphQL }

where #7rpst and 77GraphqL are the results of the REST and GraphQL performance measure-
ments, respectively.

Computers 2021, 10, 138

7 of 16

3. Experiment Design
3.1. Data Model

The performance evaluation is investigated by a multiple experimental method that
represents the differences between the two service technologies. In this case, the same
query operations are performed on the two technologies for retrieving, loading, modifying,
storing, and deleting data on the server side, which are manipulated from the client side. A
comparison of the key performances in differentiating the two technologies is evaluated
by calculating response time, throughput, CPU loads, and memory utilization. Before
performing a data query, all attributes or variables in the database must be declared in a
data model file as illustrated in Figure 3. Performance analysis is carried out using the
Insomnia API testing application. Testing was carried out 20 times on samples repeatedly
for both REST and GraphQL, respectively.

return [
rid' => [
'name' => 'id',
'type' => Type::string(),
'description' => 'id of villages'],
'code' => [
'name' => 'code',
'type' => Type::string(),
'description' => 'code of villages'],
'name’' => [
'name' => 'name',
'type' => Type::string(),
'description' => 'name of villages'],

Figure 3. An illustration of data model for testing.

3.2. REST Implementation

Query of the REST data call is performed on the controller, and the data format is the
same when using GraphQL, i.e., in a JSON format. REST uses Data Manipulation Language
(DML) in the SQL programming language. DML is a collection of query commands that
are used to manipulate data in a database, which is used to append, update, or delete data
in the database. An example of request-response cycle of data query in REST is described
in Figure 4.

Request:
public function index()
{$models = Model::paginate (300);
return response()->json ([Smodels],200); }

Response:
[{
"current page": 1,
"data": [
"id": "07e24b20-355b-4882-b5ee-a22fc0a3cbdb",
"code™: "99354",
"name": "Maruway",

"sub_district id":"907fba9%5-e8ff-412a-8370-5c3037afc681",
"created by": null,

"modified by": null,

"created at": "2016-09-30 05:21:07",

"updated at": "2017-04-12 17:11:40",
"deleted at": null,
"slug": "papua-jayapura-yokari-maruway",

"alt slug": null,

"state ministry code": null,

"state ministry full code": null,
"state post department code": null,
"state ministry name": null,

"dikti name": null },

Figure 4. An example of request-response cycle fragment of REST implementation.

3.3. GraphQL Implementation

GraphQL is a new concept in building open-source query language APIs developed
by Facebook. GraphQL executes server-side queries and only returns data specified by

Computers 2021, 10, 138

8 of 16

the system type to the related web service. Although GraphQL is a query language, it
is indirectly related to the database. In other words, GraphQL is not limited to certain
databases whether SQL or NoSQL. GraphQL is only a translator (query language) and
runtime; thus, it does not depend on any server-side programming language and database.
The variables and fields available for the query are specified in the schema located on
the server side. Specific queries can be built based on GraphQL having predetermined
services available for queries allowing for a single endpoint rather than multiple endpoints.
Figure 5 shows an example of request query and JSON response cycle using GraphQL.

Request:
{LocationVillage (1imit:300) {
data{ id,

code,
name,
slug,
alt slug,
state ministry code,
state ministry full code,
state post department code,
created at, B
updated at,
created by,
dikti name } } }

Response:
{ "data": {

"LocationVillage": {

"data": [{
"id": "5aa7dd98-25d9-49ad-b80c-68f2d14ffed2",
"code": "30117",
"name": "1 Ilir",
"slug": "sumatera-selatan-palembang-ilir-timur-ii-1-ilir",

"alt slug": null,

"state ministry code": null,

"state ministry full code": null,
"state post department code": null,
"created at": null,

"updated at": null,

"created by": null,

"dikti name": null },

Figure 5. An example of request-response cycle fragment of query implementation in GraphQL.

4. Results
4.1. Response Time

Response time is a measure of service performance that refers to the amount of time it
takes for a service to respond when it receives a request. It is important to know the average
and peak response times to services. Tracking both of these allows seeing how the service
fluctuates with more or less load. The average response time is a good metric for gathering
data in system performance tests. It provides an overview of the general user experience
and provides insight into regression in case of changes. It is also important as the ideal
baseline response time such that any lags that should be investigated or considered critical
can be identified. Peak response time allows seeing the performance of the slowest requests.
This creates a look that is different from the overall average. With peak response time,
we can find more specific queries that might be problematic and determine what worst
situation a user is in. Viewing the slowest queries can make it easier to track specific
operations with latency, whereas the average response times are more general and give an
idea of the entire system.

We evaluated 20 groups of ongoing transactions in the system (hereinafter referred
to as trial tests); each of which resulted in an average request-response time difference of
100 trial tests with various HTTP methods. There is no time set for when the trial test group
is started because the focus is on the issue of how much time difference can be obtained

Computers 2021, 10, 138

9o0f 16

between the time the request starts to be sent (which is recorded in the request timestamp)
and the response timestamp of the corresponding request received. Each group of trial
tests is applied in a distributed manner to the REST and GraphQL services, respectively, in
parallel execution. The request and its corresponding response timestamps are recorded on
each API gateway, respectively. The response time is obtained by computing the timestamp
difference between the timestamp request message I was issued, ts(req;), and the timestamp
of the corresponding response message I is received, ts(resp;), in the API gateway. We
use the following Equation (2) to determine the average response time in the jth trial test
group (RTj).

RT; = — Y {ts(resp;) —ts(reqi) }, j=1,2, ..., 20.)
100 1 <7 <100

Response time performance is evaluated synchronously and continuously for both
services, without specific timing for each 20 groups of trial tests consisting of 100 client-
triggered requests. The response time results are shown in Table 1.

Table 1. Response time average per hundred requests in 20 group of trial tests.

Trial Test GraphQL RESTful Trial Test GraphQL RESTful

(ms) (ms) (ms) (ms)
1 1840 938 11 1840 906
2 1830 969 12 1860 907
3 1860 906 13 1840 922
4 1830 907 14 1860 906
5 1860 891 15 1840 891
6 2020 906 16 1810 938
7 1860 907 17 1840 1000
8 1810 922 18 1830 938
9 2130 891 19 1840 921
10 1860 891 20 1830 1000

The resulted response time showed GraphQL has an average 1864.50 ms in the range
of 1810-2130 ms with standard deviation 75.78 ms. The REST has a faster average 922.85 ms
in the time range of 890-1000 ms, and standard deviation is 32.99 ms. Figure 6 shows the
graph of the REST and GraphQL differences of the average response time triggered by
100 requests from 20 trials. It can be seen that the REST was faster in every test run with a
stable response time.

2200
1760
1320

880

440 = GrathL
B RESTful

Response Time (ms)

0
1 23 456 7 8 9101112 13 141516 17 18 19 20

Testing Trial

Figure 6. Response time average with 100 requests in each testing trial.

Computers 2021, 10, 138

10 of 16

4.2. Throughput

We evaluated the throughput as the cumulative number of requests in REST and
GraphQL transactions with data-fetching performance in every interval time of 10 millisec-
onds, respectively, using Equation (3) as follows:

TP = Z #reqy, 3)
|t —i]<10

where TP, is the throughput of the services in the time interval of I and #req; is the number
of messages handled in the range of time ¢, |t — i| < 10, i = 10, 20, ..., 200. The throughput
results are given in Table 2.

Table 2. Throughput results (the number of handled requests per 10 ms).

Time GraphQL RESTful Time GraphQL RESTful
Interval (ms) (#requests) (#requests) Interval (ms) (#requests) (#requests)
00-10 3117 5175 100-110 2818 4545
10-20 3000 4500 110-120 2917 4583
20-30 2666 4666 120-130 2923 4615
30-40 2750 4500 130-140 2857 4571
40-50 2800 4200 140-150 2867 4600
50-60 3000 4333 150-160 2875 4625
60-70 2857 4285 160-170 2823 4584
70-80 2875 4250 170-180 2778 4611
80-90 2777 4555 180-190 2789 4631
90-100 2900 4500 190-200 2750 4600

The throughput resulted for web services using GraphQL can handle an average
of 2856.95 requests/ms with a range of 2666-3117 requests/ms and standard deviation
103.01 requests/ms, whereas the REST can handle an average of 4546.45 requests/ms in
the range of 4200-5175 requests/ms and standard deviation 201.18 requests/ms. In the
first 10 ms, both services can handle many requests, and then they tend to have a steady
number of requests after 100 ms as depicted in Figure 7.

5500
-
2
S 4400
jon
o
Yt
9 3300
p— B —— SRR
S -
= 2200
N
b=}
2 O RESTful
g 1100
2 B GraphQL
H 0 S O O O O O O O O oo o o o o o o o o 9
TRAILTRIEISISAIREE &8 g
A
— N N < VN O T~ 0 ©O O O O O O o o o o o
S S -8 a2 IBEEXS

Time Period

Figure 7. Experimental results of throughput (the number of handled requests).

4.3. CPU Load

We evaluated CPU load without any other loads, services, and processes in the same
setup machine in each API service server separately. The evaluation is conducted at the
same time when evaluating the performance of the throughput. CPU loads of the services
were recorded every 10 ms, and the results are shown in Table 3.

Computers 2021, 10, 138 11 of 16

Table 3. CPU load percentage of GraphQL and REST.

Time GraphQL RESTful Time GraphQL RESTful

(ms) (%) (%) (ms) (%) (%)
10 48.0 82.5 110 47.0 75.8
20 49.0 734 120 48.6 72.0
30 444 77.8 130 48.7 76.9
40 45.8 75.0 140 47.6 76.2
50 46.7 70.0 150 47.8 78.8
60 50.0 72.2 160 479 77.1
70 47.6 70.0 170 47.1 76.4
80 479 70.8 180 46.3 76.9
90 46.3 75.9 190 46.5 75.0
100 48.3 80.8 200 45.8 76.7

In the first 10 ms of our experiment, it resulted that the REST used 82.5% CPU as peak
usage and remained slightly fluctuating in heavy usage and has an average 75.50% within
the range 70-82.45%. Meanwhile, GraphQL is consistently steady with average 47.37%
within the range 44.43-50% and standard deviation 1.27%. CPU usage graph is depicted in

Figure 8.
85%
68%
&
S
g 51%
Q
—
= 34%
O
17% RESTful
@ GraphQL

0%
S O O O O O 0O O O O OO0 O o 0 o o o o9
— AN N I VN O > 0 OO - AN N T VO 0 QN O

— o v e e v e v

Time Si?ice Started

Figure 8. Percentage result of CPU load.

4.4. Memory Utilization

The evaluation of memory usage is computed at the same time with the evaluation of
throughput and CPU load. Memory consumption of the services is stored in every 10 ms,
and the results are shown in Table 4.

Table 4. Memory utilization results of GraphQL and REST.

Time GraphQL RESTful Time GraphQL RESTful

(ms) (MB) (MB) (ms) (MB) (MB)
10 45.20 67.50 110 40.86 65.18
20 43.50 77.63 120 42.30 78.75
30 38.66 69.99 130 42.38 69.23
40 39.88 67.50 140 41.43 68.57
50 40.60 63.00 150 41.57 59.00
60 43.50 65.00 160 41.69 69.38
70 4143 78.33 170 40.93 68.76
80 41.69 63.75 180 40.28 69.17
90 40.27 68.33 190 40.44 79.47

100 42.05 57.50 200 39.88 69.00

Computers 2021, 10, 138

12 of 16

The experiment showed that the average memory consumption of REST is 68.75 MB
in the range of 57.50-79.47 MB with standard deviation 6.06 MB, whereas in GraphQL is
41.43 MB in the range of 38.6-45.20 MB with standard deviation 1.50 MB. Even though
the initial request memory usage is at its peak, especially in the first 10 ms, GraphQL is
very stable and low in memory consumption as depicted in Figure 9. On the other hand,
memory usage at REST tends to fluctuate periodically with alternating peaks and valleys
but still under heavy usage in the range of 55-80 MB.

80
70
60
50
30

20 RESTful
10 B GraphQL

Memory Utiliation (MB)

0

o o O S O O O O o O o o o O
— N o v O >~ 00 O —~ AN N n
— —_—

Time Since Started

(=3
F

160
170
180
190
200

Figure 9. Experimental results for memory utilization.

5. Discussion

This section discusses the performance comparison of the evaluation results of REST
and GraphQL using the statistical parameters of the two-tails paired t-test and boxplot
visualization. We first discuss the p-value results to show the significant difference of the
performance evaluation results for the two technologies. Then, the discussion continues on
the efficiency and stability of the performance variation measure (standard deviation) as
the result of the performance comparative analysis based on the suitability of the nature
and purpose of the technology. A summary table of the boxplot parameters and their
visualization is presented to give an understanding of the distribution of the data, the sym-
metry of the data, how tightly the data are grouped, and how the data are skewed. Boxplot
visualization provides a rough idea regarding the execution pattern of each performance
measure result.

The two-tails paired t-test was used to test the average similarity hypothesis of the
two samples of experimental results being interrelated. The hypothesis is that the average
performance evaluation results for both REST and GraphQL technologies are the same.
The p-value results from Table 5 showed very significant values for rejecting the hypothesis
on all performance measurement results. Thus, it can be concluded that the performance
evaluation results for the two technologies are significantly different in all performance
measurement.

Table 5. Recapitulation two-tails paired t-test of the performance results.

Response Time Throughput CPU Load Memory Utilz.
(ms) (requests) (%) (MB)

GraphQL REST GraphQL REST GraphQL REST GraphQL REST

Average 186450 922.85 2856.95 4546.45 47.37% = 7550% = 4143 68.75
Stdev 75.77 32.99 103.01 20118 1.31% 3.34% 1.49 6.06
p-value 7.37117 x 102! 2.10916 x 10719 2.35697 x 10718 4.69417 x 10714

Recapitulation of the average values in Table 5 showed that REST is superior to
GraphQL in performance with respect to speed. The response time performance at REST is

Computers 2021, 10, 138

13 of 16

50.50% more efficient with a response variation of 32.99 ms. Furthermore, REST throughput
performance is also 37.16% more efficient; however, GraphQL is more stable in handling
requests with a very small variation of 103.01 requests in each 10 ms. This is because
experiments executing REST requests are run per method on multi-endpoints running
on Hypertext Transfer Protocol version 2 (HTTP/2). Furthermore, HTTP/2 has a multi-
plexing feature that allows multiple requests or methods at each endpoint to be executed
simultaneously across their entire connection. Thus, the response time is faster, and the
number of requests/methods handled (throughput) per request is greater. However, this
causes the amount of throughput to vary as the method response has a different amount
of data transferred at each endpoint. Unfortunately, in the worst case, this can lead to
underfetching or overfetching of data as each response returns the full set of data according
to the request field regardless of the balance of data counts. Of course, this mechanism
can cause high fluctuations in CPU load and memory usage. Another reason for this can
also be due to the variable structure of the database table attributes, which is why memory
utilization fluctuates.

GraphQL is superior to REST in terms of performance regarding resource consumption
and utilization. For CPU load performance, GraphQL is 37.26% more efficient and stable
in utilizing processing resources with a variation of only 1.27%. Furthermore, GraphQL
memory consumption is also superior with an efficiency of 39.74% and is very stable with
a variation of only 1.03 MB. The stability of GraphQL in consuming memory and utilizing
CPU usage occurs because the query has selected data fields or properties for specific
requests (or contains complete data requirements). This results in a much smaller and more
efficient utilization of computing resources with certain fixed data. In addition, the request
is only made once at a single endpoint, and the client can specify flexible response formats
to avoid very large data transfers (overfetching) or sparse data response (underfetching),
as can happen with the REST API service.

A summary of the boxplot parameters is given in Table 6 to provide insight into the
distribution of the performance evaluation data through its five values, i.e., minimum,
first quartile (Q1), second quartile (Q2) or median, third quartile (Q3), and maximum. We
also include the mean as the reference in comparison to the normal distribution when the
values of the mean and median, as well as half of the interquartile value (i.e., the result
of, Q3-Q1) and the standard deviation, are the same. Boxplot visualization is given in
Figure 10 to more easily understand the distribution pattern of performance results data
for the two service technologies.

Table 6. Boxplot parameters summary of the performance evaluation results.

Response Time Throughput CPU Load Memory Utilz.
(ms) (requests) (%) (MB)

GraphQL REST GraphQL REST GraphQL REST GraphQL REST

Average 1864.50 922.85 2856.95 4546.45 47.37% 75.50% 41.43 68.75
Maximum 2130 1000 3117 5175 50.00% 82.45% 45.20 79.47
Quartile 3 1860 938 2904 4612 48.08% 76.96% 4211 69.53
Median 1840 907 2857 4577 47.62% 76.05% 41.43 68.66
Quartile 1 1830 906 2786 4500 46.44% 73.10% 40.40 65.13
Minimum 1810 891 2666 4200 44.43% 70.00% 38.66 57.50

The boxplot visualization in Figure 10 provides information that the GraphQL service
pattern is more stable and normal than REST. In the response time boxplot, the density of
REST data is denser at the bottom of the interquartile box or between the first quartile and
the median. This means that the response time value pattern is smaller even though there
are some data outliers after the third quartile. Meanwhile, the response time data pattern
for GraphQL is uneven, and most of them become data outliers after the third quartile. This
means that there are several response times that need time before the response time starts
to stabilize in the interquartile box. In general, the median and mean values of GraphQL

Computers 2021, 10, 138

14 of 16

1010

980

950

milli seconds (ms)

920

890

84.5%

79.5%

Percentage (%)

74.5%

69.5%

for all distributions of performance data (excluding response time) generally coincide and
lie in the middle of the interquartile box. Meanwhile, the pattern of REST performance
evaluation data (especially CPU load and memory usage) are somewhat less balanced
where the dominance of data density is at the top of the interquartile box or it is denser in
the area between the median and the third quartile.

2200 5200 . 3150
- “
2 4990 3050
2100 =1
g
el
% 4780 2950
=1
2000 =
G
o o
5 4570 Y 2850 N
E
¢ 1900 =
4360 2750
J 1800 4150 2650
RESTful GraphQL RESTful GraphQL
(A) (B)
50.0% T 80 - 46
74 44
48.0%
m
* > ~
Q 68 42
. 2 ¢
an
46.0% 5}
p=
62 40
44.0% 56 38
RESTful GraphQL RESTful GraphQL
© (D)

Figure 10. Boxplot of evaluation results for the performance measurement on REST and GraphQL services; (A) response
time (ms), (B) throughput (handled requests), (C) CPU Load (%), and (D) memory utilization (MB).

6. Conclusions

We have successfully designed and implemented a new performance evaluation
method for REST and GraphQL web services based on two main ideas as novelties. The
performance of both services was successfully evaluated on the actual ongoing opera-
tion of the LP2M management information system, where massive and intensive query
transactions were taking place on a complex database with many relationships. Fair and
independent performance evaluation results were also obtained by distributing client
requests and synchronizing service responses on two virtually separate parallel execu-
tion paths for each API service, respectively. There were some differences in developing

Computers 2021, 10, 138 15 of 16

applications that implement REST and GraphQL web service technologies in monolithic
information systems or web-based backend applications. In GraphQL, three important
parts must be defined before using Data Manipulation Language (DML), i.e., mutations,
queries, and types, while REST uses DML directly in SQL programming language. The
performance evaluation in our experiment revealed some differences between the two
API services. The statistical two-tails paired t-test has confirmed the difference is very
significant with very small p-value. In terms of speed, REST is superior by 51% in response
time and 37% in throughput. In the context of resource utilization, GraphQL is the best
choice with 37% superior in CPU load and 40% superior in memory utilization since its
process structure can manage queries on single endpoints. REST uses multiple endpoints
to improve performance when retrieving data. We can conclude that the use of REST and
GraphQL services depends on the requirements of the system and the particular applica-
tion. GraphQL is a good choice when data requirements change frequently and resource
usage is a concern, while REST is used when some data are frequently retrieved on demand
and is therefore very suitable for monolithic information systems.

Author Contributions: Conceptualization, A.L., B.L.E.P. and T.Y.; Formal analysis, A.L., B.L.E.P. and
T.Y,; Funding acquisition, T.Y.; Investigation, A.L. and B.L.E.P.; Methodology, A.L., BLEP. and T.Y.;
Validation, A.L., BL.E.P. and T.Y,; Visualization, B.L.E.P; Writing—original draft, A.L.; Writing—review
& editing, B.L.E.P. and T.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: The authors wish to thank the Institute of Research and Community Services
(LP2M) of the Hasanuddin University for providing the opportunity to design and build the SIM-
LP2M application with API services and then execute the application in their environment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brito, G.; Valente, M.T. REST vs GraphQL: A Controlled Experiment. In Proceedings of the 2020 IEEE International Conference
on Software Architecture (ICSA), Salvador, Brazil, 16-20 March 2020; pp. 81-91.

2. Vadlamani, S.L.; Emdon, B.; Arts, J.; Baysal, O. Can GraphQL Replace REST? A Study of Their Efficiency and Viability. In
Proceedings of the 2021 IEEE/ACM 8th International Workshop on Software Engineering Research and Industrial Practice
(SER&IP), Madrid, Spain, 4 June 2021; pp. 10-17.

3. Eizinger, T. API Design in Distributed Systems: A Comparison between GraphQL and REST. Master’s Thesis, University of
Applied Sciences Technikum Wien, Vienna, Austria, 4 May 2017. Available online: https://eizinger.io/assets/Master-Thesis.pdf
(accessed on 9 March 2021).

4. Ghebremicael, E.S. Transformation of REST API to GraphQL for OpenTOSCA. Master’s Thesis, Universitdt Stuttgart, Stuttgart,
Germany, 8 November 2017.

5. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D. Thesis, University California
at Irvine, Irvine, CA, USA, 2000. Available online: https:/ /www.ics.uci.edu/~{}fielding /pubs/dissertation/fielding_dissertation.
pdf (accessed on 21 June 2021).

6. Lyu, S. REST APIs. In Practical Rust Web Projects, 1st ed.; Lyu, S., Ed.; Apress: Berkeley, CA, USA, 2021; pp. 55-102.

7. Ozdemir, E. A General Overview of RESTful Web Services. In Applications and Approaches to Object-Oriented Software Design:
Emerging Research and Opportunities, 1st ed.; Altan, Z., Ed.; IGI Global: Hershey, PA, USA, 2020; pp. 133-165.

8. Facebook Inc. GraphQL Specification (Draft). Available online: http://spec.graphql.org/July2015/ (accessed on 9 March 2021).

9. Jamil, H.M. Design of declarative graph query languages: On the choice between value, pattern and object based representations
for graphs. In Proceedings of the IEEE 28th International Conference on Data Engineering Workshops, Arlington, VA, USA, 1-5
April 2012; pp. 178-185.

10. Welch, N. An Introduction to GraphQL. In Proceedings of the SREcon19Americas, USENIX Association, Brooklyn, NY, USA,

25-27 March 2019; Available online: https:/ /www.usenix.org/conference /sreconl9americas/presentation/welch (accessed on
10 September 2021).

https://eizinger.io/assets/Master-Thesis.pdf
https://www.ics.uci.edu/~{}fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~{}fielding/pubs/dissertation/fielding_dissertation.pdf
http://spec.graphql.org/July2015/
https://www.usenix.org/conference/srecon19americas/presentation/welch

Computers 2021, 10, 138 16 of 16

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Byron, L. GraphQL: A Data Query Language. FACEBOOK Engineering, Core Data, Developer Tools. 2015. Available online:
https:/ /engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/ (accessed on 9 March 2021).

Mikuta, M.; Dzierikowski, M. Comparison of REST and GraphQL web technology performance. J. Comput. Sci. Inst. 2020, 16,
309-316. [CrossRef]

Seabra, M.; Nazario, M.E,; Pinto, G. REST or GraphQL? A Performance Comparative Study. In Proceedings of the ACM XIII
Brazilian Symposium on Software Components, Architectures and Reuse (SBCARS), Salvador, Brazil, 23-27 September 2019;
pp. 123-132.

Vesi¢, M.; Nenad Koji¢, N. Comparative Analysis of Web Application Performance in Case of Using REST versus GraphQL.
In Proceedings of the Fourth International Scientific Conference on Recent Advances in Information Technology, Tourism,
Economics, Management and Agriculture (ITEMA), Online-Virtual, 8 October 2020; pp. 17-24. Available online: https://www.
itema-conference.com/wp-content/uploads/2021/03/0_Itema-2020-Conference-Proceedings_Draft.pdf#fpage=23 (accessed on
21 June 2021).

Gustavsson, K.; Stenlund, E. Efficient Data Communication between a Webclient and a Cloud Environment. Master’s Thesis, Dept.
Electrical and Info. Technology, Faculty of Engineering, LTH, Lund University, Lund, Sweden, 23 June 2016. Available online:
https:/ /lup.lub.lu.se/luur/download?func=downloadFile&record Old=8885754&fileOId=8885760 (accessed on 21 June 2021).
Hartina, D.A.; Lawi, A.; Panggabean, B.L.E. Performance analysis of GraphQL and REST in SIM LP2M of the Hasanuddin
University. In Proceedings of the IEEE 2nd East Indonesia Conf. on Computer and Information Technology (EIConCIT), Makassar,
Indonesia, 6 November 2018; pp. 237-240.

Dudjak, M.; Martinovi¢, G. An API-first methodology for designing a microservice-based Backend as a Service platform. Inf.
Technol. Control 2020, 49, 206-223. [CrossRef]

Muehlen, M.Z.; Nickerson,].V.; Swenson, K.D. Developing web services choreography standards—The case of REST vs. SOAP.
Decis. Support Syst. 2005, 40, 9-29. [CrossRef]

Choi, M. A performance analysis of RESTful open API information system. In Proceedings of the International Conference on
Future Generation Information Technology (FGIT 2012), Gangneug, Korea, 16-19 December 2012; Lecture Notes in Computer
Science. Kim, T., Lee, Y., Fang, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7709, pp. 59-64.

Cederlund, M. Performance of Frameworks for Declarative Data Fetching: An Evaluation of Falcor and Relay+ GraphQL.
Master’s Thesis, KTH, School of Information and Communication Technology (ICT), Stockholm, Sweden, 4 July 2016. Available
online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1045900&dswid=9212 (accessed on 9 March 2021).
Hartig, O.; Pérez, J. An initial analysis of Facebook’s GraphQL language. In Proceedings of the 11th Alberto Mendelzon
International Workshop on Foundations of Data Management and the Web, Montevideo, Uruguay, 7-9 June 2017; pp. 1-10.
Available online: http:/ /repositorio.uchile.cl/handle/2250/169110 (accessed on 21 June 2021).

Wittern, E.; Cha, A.; Davis, J.C.; Baudart, G.; Mandel, L. An Empirical Study of GraphQL Schemas. Service-Oriented Computing;
ICSOC 2019. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2019; Volume 11895. [CrossRef]

Helgason, A.F. Performance Analysis of Web Services: Comparison between RESTful & GraphQL Web Services. Master’s Thesis,
School of Informatics, University of Skovde, Skovde, Sweden, 11 June 2017. Available online: https:/ /www.diva-portal.org/
smash /record.jsf?pid=diva2%3A1107850&dswid=8398 (accessed on 21 June 2021).

Cha, A.; Wittern, E.; Baudart, G.; Davis,].C.; Mandel, L.; Laredo, J.A. A principled approach to GraphQL query cost analysis. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Online, 4-9 November 2020; pp. 257-268. [CrossRef]

https://engineering.fb.com/2015/09/14/core-data/graphql-a-data-query-language/
http://doi.org/10.35784/jcsi.2077
https://www.itema-conference.com/wp-content/uploads/2021/03/0_Itema-2020-Conference-Proceedings_Draft.pdf#page=23
https://www.itema-conference.com/wp-content/uploads/2021/03/0_Itema-2020-Conference-Proceedings_Draft.pdf#page=23
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8885754&fileOId=8885760
http://doi.org/10.5755/j01.itc.49.2.23757
http://doi.org/10.1016/j.dss.2004.04.008
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1045900&dswid=9212
http://repositorio.uchile.cl/handle/2250/169110
http://doi.org/10.1007/978-3-030-33702-5_1
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1107850&dswid=8398
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1107850&dswid=8398
http://doi.org/10.1145/3368089.3409670

	Introduction
	Materials and Methods
	Evaluated System Architecture
	Data Sources
	Application Programming Interface (API)
	Representational State Transfer (REST)
	GraphQL
	Architectural Difference of REST and GraphQL

	Performance Measurements

	Experiment Design
	Data Model
	REST Implementation
	GraphQL Implementation

	Results
	Response Time
	Throughput
	CPU Load
	Memory Utilization

	Discussion
	Conclusions
	References

