
computers

Article

Requirements Elicitation for an Assistance System for
Complexity Management in Product Development of SMEs
during COVID-19: A Case Study

Jan-Phillip Herrmann 1,* , Sebastian Imort 1, Christoph Trojanowski 2 and Andreas Deuter 1

����������
�������

Citation: Herrmann, J.-P.; Imort, S.;

Trojanowski, C.; Deuter, A.

Requirements Elicitation for an

Assistance System for Complexity

Management in Product

Development of SMEs during

COVID-19: A Case Study. Computers

2021, 10, 149. https://doi.org/

10.3390/computers10110149

Academic Editor: Paolo Bellavista

Received: 11 October 2021

Accepted: 1 November 2021

Published: 10 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Production Engineering and Wood Technologies, OWL University of Applied Sciences and
Arts, 32657 Lemgo, Germany; Sebastian.Imort@th-owl.de (S.I.); Andreas.Deuter@th-owl.de (A.D.)

2 Department of Informatics, Communication, and Economics, University of Applied Sciences,
10318 Berlin, Germany; Christoph.Trojanowski@HTW-Berlin.de

* Correspondence: Jan-Phillip.Herrmann@th-owl.de; Tel.: +49-5261-702-5474

Abstract: Technological progress, upcoming cyber-physical systems, and limited resources confront
small and medium-sized enterprises (SMEs) with the challenge of complexity management in prod-
uct development projects spanning over the entire product lifecycle. SMEs require a solution for
documenting and analyzing the functional relationships between multiple domains such as products,
software, and processes. The German research project FuPEP “Funktionsorientiertes Komplexitäts-
management in allen Phasen der Produktentstehung” aims to address this issue by developing an
assistance system that supports product developers by visualizing functional relationships. This
paper presents the methodology and results of the assistance system’s requirements elicitation with
two SMEs. Conducting the elicitation during a global pandemic, we discuss its application using
specific techniques in light of COVID-19. We model problems and their effects regarding complexity
management in product development in a system dynamics model. The most important require-
ments and use cases elicited are presented, and the requirements elicitation methodology and results
are discussed. Additionally, we present a multilayer software architecture design of the assistance
system. Our case study suggests a relationship between fear of a missing project focus among project
participants and the restriction of requirements elicitation techniques to those possible via web
conferencing tools.

Keywords: complexity management; assistance system; product development; systems engineering;
design structure matrix; asset administration shell

1. Introduction

Product variety, technological change, and process agility are a few of the many com-
plexity drivers in product development and work systems, having substantial effects on
time, cost, quality, and flexibility of development projects [1,2]. Adopting early definitions
of complexity from a systems theoretic perspective [3,4], a high number of elements and
relationships within domains such as products, software, processes, and the organization
of manufacturing enterprises varying dynamically over time constitute a complex sys-
tem. With such systems involved in product development projects and manufacturing
processes, small and medium-sized enterprises (SMEs) fail to oversee all complex relation-
ships, leading to missing reconciliation between decision makers and uninformed decision
making. Due to engineering changes and iterations, product development misses time
and cost objectives [5]. Knowledge about dependencies and propagation of engineering
changes through the system resides in domain experts’ mental models. Enterprises do
not explicitly represent product and software functions in their enterprise information
systems, with software being one item in a bill of materials at most. However, functions are
the starting point for customer-oriented development, modular system development, and

Computers 2021, 10, 149. https://doi.org/10.3390/computers10110149 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-8875-1890
https://orcid.org/0000-0002-6529-6215
https://doi.org/10.3390/computers10110149
https://doi.org/10.3390/computers10110149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10110149
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10110149?type=check_update&version=1

Computers 2021, 10, 149 2 of 17

concretizing the solution space of new product developments [6,7]. The upcoming trend of
cyber-physical systems integrating intelligent software functions into physical products
adds to the abovementioned challenges [8,9].

Design Structure Matrices (DSMs) represent a promising approach for system decom-
position, analyzing product architecture and change propagation through systems, and
modeling relationships between multiple domains. However, no existing software toolset
allows user-friendly and versatile modeling and analysis of DSMs [10]. From a managerial
perspective, Systems Engineering and Product Lifecycle Management (PLM) are two disci-
plines trying to tackle the challenge of complexity by guiding the development process
and managing products over their entire lifecycle [11,12]. A key consideration of these
disciplines is engineering change [13], an alteration made to drawings, parts, or software
released in the product design process [14]. Additionally, here, current methodologies such
as process- and organization-based approaches or computer-aided engineering systems for
supporting these disciplines in developing cyber-physical systems reach their limits [8,9].

This paper presents the methodology and results of a requirements elicitation and
software design process for developing an assistance system that supports complexity
management in SMEs. Such assistance system shall provide a user-friendly and intuitive
graphical user interface for visualizing the elements and relationships of complex systems
over their entire lifecycle and implement different functions for analysis.

Requirements engineering is a success factor in software projects [15], and the quality
of software requirements is strongly related to projects’ success [16]. Several methods for
requirements elicitation exist, such as ethnography, which involves actively participating
in the activities to be optimized, or observation, which involves observing the execution
of processes [17]. During the COVID-19 global pandemic, social distancing rules and
obligations to work from home restricted the repertoire of requirement elicitation tech-
niques to those that can be executed via web conferences in virtual teams. Employing
requirements elicitation techniques requires knowledge sharing in virtual teams, which
may be vulnerable to communication breakdowns, mistrust, or conflicts [18]. Therefore,
this paper presents a methodology for requirements elicitation that can be applied entirely
remotely and discusses its advantages and drawbacks. The paper addresses three subgoals:

1. To describe and discuss the methodology and results of a requirements elicitation
for an assistance system for complexity management with two SMEs during the
COVID-19 global pandemic;

2. To model the cause-and-effect relationships of complexity management problems in
the product development activities of SMEs;

3. To present the assistance system’s software architecture using the Asset Administra-
tion Shell as a data basis.

The assistance system acts as a supporting tool for SMEs that manufacture complex
products and services. Its applicability does not depend on the industrial sector but strongly
focuses on companies with an active research and development department. The assistance
system is developed in the context of the research project FuPEP “Funktionsorientiertes
Komplexitätsmanagement in allen Phasen der Produktentstehung”.

In Section 2, an overview of related work in requirements elicitation under COVID-19,
existing assistance systems for product development, and visualization of complex systems
is given. Gaps in complexity management capabilities and functionalities of existing ap-
proaches are identified, and our assistance system’s necessity is outlined. The requirements
elicitation methodology and results are described in Section 3. A system dynamics model
is presented to illustrate cause-and-effect relationships of SMEs’ product development
problems related to complexity management. The most important requirements and the
aggregation of all requirements in several use cases are described. In Section 4, the software
architecture is presented based on elicited requirements and use cases, and it is explained
how the assistance system uses the Asset Administration Shell as a data management
system. Results of Sections 3 and 4 are discussed in Section 5. A conclusion and outlook
for future works close the paper in Section 6.

Computers 2021, 10, 149 3 of 17

2. Related Work

The literature discusses requirements elicitation without face-to-face communication
between participants in distributed and global requirements elicitation, sometimes referred
to as virtual teams. The authors in [19] suggest a set of strategies to deal with communica-
tion problems in global requirements elicitation related to cultural differences, means of
communication such as ontologies, and technology selection. The authors in [20] evaluate
the effectiveness of different requirements elicitation techniques in a distributed setting
using groupware (software for collaboration), with the question-and-answer method and
use cases as the two most popular. More generally, several studies discuss problems
of knowledge sharing, collaboration challenges, and strategies for mitigation in virtual
teams [18,21], with more recent studies considering the challenges of virtual teams in the
context of a global pandemic [22]. Few studies were identified dealing with requirements
elicitation under the COVID-19 global pandemic directly. Closest to our contribution
come [23], reviewing cost-effective requirements elicitation techniques during COVID-19
where requirements engineers are unable to interact with the customer of the final sys-
tem. The authors conclude with introspection as the most cost-effective method, followed
by surveys, brainstorming, interviews, and joint application development. The authors
identified no further previous works about requirements elicitation during COVID-19. In
particular, there was a lack of works trying to apply and report the success of requirements
elicitation techniques under these circumstances. This leads us to present a case study in
which we perform all requirements elicitation activities via web conferencing tools with
two SMEs.

Previous works that present actual functionalities of assistance systems for product de-
velopment deal with specific optimization activities during the development process. One
data-driven assistance system aims at closing the gap between expected and actual product
properties in new product development. The assistance system helps product developers
to reapply expert knowledge and solutions to meet the desired properties by analyzing
the historical data of past product generations using machine learning methods [24,25]. A
self-learning and knowledge-based assistance system described in [26] supports product
developers in product design for the manufacturing process of sheet-metal parts in the early
phases of product development. The assistance system offers design features for a sheet-
metal part to the design engineers in a synthesis step. In an analysis step, it evaluates the
sheet-metal part consisting of the design features, quantitatively considering a set of target
values. The assistance system incorporates data mining methods for knowledge discovery
using data stored in its database to enable the analysis. Explicit support for engineering
change management and different functionalities for helping product developers provides
the PLM software Teamcenter developed by Siemens [27]. Offered capabilities are, e.g.,
managing designs, managing revisions, and establishing relationships between different
artifacts. However, this software does not aim at intuitively visualizing and analyzing
change propagations of complex systems as a complexity management support for product
developers. Considering the assistance systems in product development reviewed above
implies the same gap of such missing functionality.

Studies that investigate visualizing complex systems build on DSMs and represen-
tations from graph theory. In [28], a link connection plot (also referred to as molecular
diagram elsewhere [29]) illustrates the system elements as labeled nodes and their rela-
tionships as directed edges. A component connection plot shows a specific component
of a system at its center surrounded by all components with a direct relationship. Using
the same graphical visualization technique, [30] present the capabilities of DSMs and
network analysis to visualize complex systems as organized and clustered graphs. Freely
available tools such as Gephi (open source) [31] or Pajek [32] for non-commercial use
exist, providing functionalities for network analysis and visualization. To the best of the
authors’ knowledge, no assistance system for complexity management exists, providing
an intuitive and user-friendly visualization of complex systems, integrating network and

Computers 2021, 10, 149 4 of 17

change propagation analyses, and management functionalities for its implementation in an
organizational context.

3. Requirements Elicitation in SMEs for a Complexity Management Assistance System

3.1. Methodology

The requirements elicitation was carried out from 18 January 2021 until 5 May 2021
with two German medium-sized enterprises by conducting semi-structured interviews via
the web conference tool Cisco Webex. Company A is involved with the development and
prototyping of complex systems in the aerospace industry. Company B is a manufacturer
of complex systems in the drive technology and automation industry.

In twelve interviews, eleven employees of Company A from the product develop-
ment, manufacturing, and quality assurance department were interviewed individually
(one employee was interviewed twice). In two group interviews, five employees from
the product development and manufacturing department and the managing director of
Company B were interviewed. Next to the employees of Company A and Company B, two
PLM experts from two additional companies offering components, systems, and software
solutions for electronics, automation and industrial digitalization were interviewed.

The employees and experts were asked for concrete problems arising due to engi-
neering changes and their effects on other products, departments, or processes and their
requirements for the assistance system. An interview guide was developed oriented at
recommendations and guidelines from the literature [33–35], with seven open questions
and additional follow-up questions supporting the interviews. Following the recommen-
dations of [36], a pilot test of the interview guide was conducted with two professors of
the Ostwestfalen-Lippe University of Applied Sciences and Arts for its adaptation and
optimization. The interview guide starts by introducing the interviewee to the topic and
interview purpose as well as a warm-up question about the interviewee’s function in the
enterprise. The first open question asks for concrete situations in day-to-day business,
in which engineering changes had significant effects, e.g., in the form of errors in other
departments or activities. This question shall motivate the interviewee to give detailed
verbal insights to past events as a basis for further questions and adopts the ideas of the
Critical Incident Technique and Grand-Tour Question [34,37].

One person conducted the interview by asking questions using the developed in-
terview guide. A second person protocolled the interview, and a third person listened
carefully for optionally asking follow-up questions. Additionally, all interviews were
recorded using the recording functionality provided by Cisco Webex to capture all rel-
evant information mentioned. Two persons documented problems, their causes, needs,
requirements, and potential use cases of the assistance system, while listening to each inter-
view one more time individually and independently, ensuring a four-ears-principle. For
requirements documentation, Rupp’s formulation template [38], extended by the events
and states of a requirement according to the Easy approach to requirements syntax [39],
was used. Afterward, the two persons merged their documented requirements in a re-
quirements stack. In a web conference meeting, the requirements stack (a word document
with empty tables for each requirement, including meta-information such as requirement
ID, author, date of creation) was shared using screen sharing. The two persons presented
their requirements in alternating order. For each requirement readout, it was checked if the
requirement was already part of the requirements stack. If the readout requirement was
not a new one or did not contribute to any requirement of the requirements stack, it was
neglected. Otherwise, it was added to the requirements stack, or the new content extended
an existing requirement. Merging the requirements stack in that manner was perceived
to be manageable and efficient for the two persons up to a number of 100 requirements.
However, the more this number was exceeded, the more checking if a requirement already
exists required significant effort. The formulation of each requirement was conducted
considering a checklist of quality characteristics for requirement formulation [40].

Computers 2021, 10, 149 5 of 17

After requirements formulation, as proposed in [41], a revision for identifying and
eliminating inconsistencies, conflicts, and incompleteness in the requirements was con-
ducted for requirements validation. Due to the high number of requirements, use cases
each aggregating a set of requirements were formulated. In two separate web conference
meetings, these use cases were presented, discussed, and revised with the interviewees
from Company A and Company B.

Next, each use case was prioritized using a standardized table. Each interviewee from
Company A and Company B was asked via e-mail to assess the priority and severity of
each use case in the standardized table on a three-level ordinal scale. The higher the priority
(levels: “low”, “medium”, “high”) of a use case, the earlier it was implemented into the
assistance system in the implementation phase. Three levels of severity were defined: (1)
“nice to have”, wishes that should not necessarily be implemented but would contribute to
end-user enthusiasm; (2) “should have”, wishes, which can be implemented; and (3) “must
have”, required, must be implemented into the assistance system. After receiving the use
case prioritization from the interviewees, requirements elicitation was completed.

3.2. Results
3.2.1. System Dynamics Modeling of Complexity Management Problems in SMEs

Before describing the requirements and use cases, we present problems related to com-
plexity management in the product development of SMEs. Next to eliciting requirements
from the interviews with Company A and Company B, the cause-and-effect relationships of
these problems could be retrieved. We use the concept of a system dynamics model (SDM)
developed by Jay Wright Forrester [42]. SDMs help to model the structure and behavior
of systems, in particular, modeling socioeconomic systems for supporting management
decisions. An SDM is a causal loop diagram for the qualitative representation of cause-
and-effect relationships. SDMs are generally auto- and cross-correlated and contain loops
and delays as relationships between the systems’ components. Figure 1 shows the SDM
elicited through interviews with Company A and Company B. The SDM contains positive
relationships only and no loops. “Relationships unknown” between system elements
represents a major source and sink for variables, and “deviations between implementation
and requirements” a major sink. Figure 2 illustrates the first and second-order effects of
unknown relationships on time, cost, and quality variables.

3.2.2. Requirements Overview

From the interviews, 130 requirements could be retrieved. Because of the high number
of requirements, the most important ones are presented here. On the one hand, require-
ments are considered important when they were mentioned by at least four interviewees,
called multiply mentioned requirements in the further course, and on the other hand,
requirements that are part of high priority and high severity use cases. Requirements with
multiple mentions are listed by name in Table 1.

Computers 2021, 10, 149 6 of 17

Figure 1. SDM of problems related to complexity management in Company A and Company B.

Computers 2021, 10, 149 7 of 17

Figure 2. Effects of unknown relationships on variables related to time, cost, and quality.

Table 1. Overview of multiply mentioned requirements (REQ) with their respective title.

Multiply Mentioned Requirements

REQ 02—Documentation and communication of artifact changes
REQ 05—Representation of relationships between artifacts
REQ 10—Role and department view
REQ 19—Documentation of artifact changes
REQ 23—Display the product life cycle status of a product
REQ 46—No pressure to decide
REQ 55—Support for compliance with standardized product development processes
REQ 60—Communication of artifact changes to affected departments
REQ 81—Communicate change impulse

The requirements can be divided into organizational (REQ 10, REQ 23, REQ 55),
artifact-related (REQ 02, REQ 05, REQ 19), where REQ 60 and REQ 81 can be interpreted as
child-requirements of REQ 02, and non-functional requirements (REQ 46). Artifact-related
requirements refer directly to the artifacts or their change. In the project context, artifacts
include all elements that can be subject to changes: requirements, documents, products or
components, (software) functions, and processes. The requirements that form the basis of
the prioritized use cases can be found in Table 2, associated with the underlying use cases
that are examined in more detail in the following section.

Computers 2021, 10, 149 8 of 17

Table 2. Requirements assigned to the most important use cases (UC).

Use Case Requirements

UC001—
Making

dependencies
visible

REQ 005—Representation of relationships between artifacts
REQ 006—Representation of relationships between documents and construction files
REQ 007—Traceability of defective materials
REQ 042—Representation of relationships between documents of the development manual
REQ 043—Traceability from requirements elicitation to design
REQ 054—Display of legally indispensable components for new developments
REQ 061—Display of most recent documents during documentation viewing
REQ 064—Display of effects in case of requirement change
REQ 071—Comply and display reporting channels
REQ 079—Differentiation of requirements in development phases
REQ 082—Provide test relevant information
REQ 085—Overview of documents associated with the component
REQ 092—Material usage statement
REQ 096—Relationship between requirements, designs and test cases
REQ 100—Point-and-click-action
REQ 117—Graphical representation of assemblies
REQ 121—Information display in assembly structure
REQ 122—Relationships between departments of the product development process
REQ 125—Show information when opening artifact

UC008.a—
system function
give approval

REQ 026—Automatic assignment of document number
REQ 039—Digital release of documents
REQ 115—Error prevention through release, check and test processes

UC012.a—
Find information REQ 044—Top-down and bottom-up view of relationships between documents

UC012.b—
Represent

information

REQ 023—Display the product lifecycle status of a product
REQ 051—Information display via dashboard
REQ 052—Error management via dashboard
REQ 068—Categorization of document relationships by subject area in tree structure
REQ 073—Display and compare artifact versions
REQ 091—Traffic light system at taskbar
REQ 094—Change impact analysis checklist
REQ 107—Theme classification on dashboard
REQ 108—Traceability matrix
REQ 121—Information display in assembly structure

UC012.f—
Represent
changes

REQ 089—Display change warning
REQ 091—Traffic light system at taskbar
REQ 094—Change impact analysis checklist

3.2.3. Use Cases Overview

Based on the 130 requirements, 30 use cases were created. Each use case aggregates a
set of requirements. However, use cases do not necessarily aggregate the same number
of requirements, and one requirement can belong to more than one use case. A use case
documents its ID, name, purpose, trigger, outcome, and a sequence of activities description.
All requirements were clustered according to subject areas and then described in use cases.
The use cases formulated are given with their ID, description and actor in Table 3.

Computers 2021, 10, 149 9 of 17

Table 3. 30 use cases formulated based on the requirements.

Use Case ID Description Actor

UC001 Making dependencies visible Developer
(Product)

UC002.a Manage user roles Administrator
UC002.b Configure rights management Administrator
UC002.c Subscribe to artifacts System user
UC002.d Configure notifications System user
UC003.a Submit changes System user
UC003.b (Organizational) evaluation and traceability of a change System user
UC003.c (Lifecycle) traceability of change effects System user
UC003.d Changes by external source External users
UC003.e Limit change options System user
UC003.f Show status of change System user
UC004.a Communicate change System user
UC004.b Communicate change via warning System user
UC004.c Communicate change—Task management System user
UC005 Communicate errors System user
UC006 Create templates System user
UC007 Perform tests Quality assurance

UC008.a System function—Give approval System user
UC008.b System function—Create comments System user

UC008.c.1 System function—Create plausibility checks Developer
(Software)

UC008.c.2 System function—Carry out plausibility checks System user
UC009 System function—Make or carry out decision proposals System user
UC010 System function—Obtain external system data Third-party system
UC011 System function—Start third-party systems Third-party system

UC012.a Find information System user
UC012.b Represent information System user
UC012.c Filter information System user
UC012.d Show notifications System user
UC012.e Display artifact status System user
UC012.f Represent changes System user

The use cases describe possible scenarios in which the assistance system can sup-
port employees in managing complexity in their companies. The actors comprise those
determined by the interviewees and those determined based on the third-party systems
used in the companies or their external partners. The actor System User comprises the
roles: Engineer, Administrator, Quality Assurance, and Developer. The roles Engineer and
Developer further subdivide into enterprise-specific actors such as Systems Engineer or
Materials Manager, which we consider too specific for including them in the overview.

The prioritization of all use cases as the average interviewee assessment illustrates
Figure 3. As can be observed, use cases with a low (high) priority were also evaluated with
a low (high) severity. The prioritization serves as a basis for deciding which use cases and
respective requirements will be implemented first in the implementation phase of the assis-
tance system development. In the given prioritization, use cases UC001, UC008.a, UC012.a,
UC012.b, UC012.f and UC003.b represent those with the highest priority and severity.

Computers 2021, 10, 149 10 of 17

Figure 3. Use case prioritization regarding priority and severity.

UC001 aims to make relationships between elements of complex systems and across
domains visible in the assistance system. The assistance system collects all relevant data
regarding requirements, processes, products, documents, functions, organization, designs,
test cases, construction files, and documents of the development manual, departments, and
components and establishes relationships between them. If a generation of relationships
automatically through the assistance system is not possible, assistance system users can
define relationships. UC008.a aims to provide functionalities for document approval
to the users. Use Cases UC012.a, UC012.b, UC012.f, and UC003.b aim at supporting
the information search on artifacts, enable the display of the information and provide
functionalities of propagation analyses of engineering changes. Thus, it must be possible
for the user to search specifically for artifacts or their characteristics and parameters in
the assistance system. The user must be able to select and adapt the appropriate view for
the information found. If the user wants to initiate a change to the information found, the
assistance system must be able to evaluate the effects on other artifacts in terms of time,
costs, severity, and probability and present it in an appropriate form. The presentation
can be on an ordinal scale for coarse evaluation, in a table for finer evaluation, or in a
three-dimensional space for evaluation with a depiction of dependencies.

4. Assistance System for Complexity Management in SME Architecture
4.1. Asset Administration Shell for Data Management

The assistance system aims to provide support for small and medium-sized enterprises.
From experience, companies from this category often use software from different providers
for diverse tasks. Due to this internal IT structuring, the accruing data are often only
accessible in different formats. For the assistance system, a uniform data model must,
therefore, be used to standardize the information of a company’s system landscape.

For this reason, the data model of the Asset Administration Shell (AAS) was agreed
upon for the assistance system’s data management. The German consortium “Plattform
Industrie 4.0” was the first to present the concept of the AAS under the name Digi-
tal Twin [43]. Based on the resulting findings, the Industrial Digital Twin Association
(IDTA) [44] was founded.

The AAS is to be understood as the digital representation of an asset, whereby all data
from the product life cycle can be taken into account and find a place in the data model. In
this definition, everything having value for the company can be understood as an asset,
regardless of being physical or digital.

The AAS data model consists of three main components (Figure 4): asset class, view
class, and the submodel class. The asset class defines which asset the AAS refers to and
its type (type or instance). Through the view class, the information of the AAS can be

Computers 2021, 10, 149 11 of 17

limited to a certain view to filter information for display. The submodel class contains the
actual data of the asset. The submodels consist of submodel elements that the Industry 4.0
platform has already developed. There is no maximum for the number of submodels or
the elements they contain. It can therefore be adapted as desired to the amount of data
available. To make data available to the assistance system, the submodels are used to store
the data of the artifacts such as drawings, functions, and product components, to name
a few.

Figure 4. Extract from the AAS Meta Model oriented at [43].

In addition to the classes presented here, the meta-model of the AAS consists of other
classes that refer to, e.g., security, types, and submodel elements. However, these classes
are of no further relevance in the remainder of this section. Furthermore, there is already
documentation on export formats such as XML (Extensible Markup Language) and JSON
(JavaScript Object Notation). The Industry 4.0 platform provides a class diagram for the
management shell but no direct implementation. Therefore, initiatives for implementations
have been realized by research projects (TeDZ, BaSys 4.0) and companies (AASXPackage
Explorer, AASX-Server).

The Package Explorer has a graphical user interface that can be used to create and
manage an administration shell manually. In addition, the Package Explorer offers the
possibility of importing and exporting data from various formats and making these data
available via a server. Communication protocols that have already been implemented
include OPC UA and Rest.

The structure of the submodels and submodel elements specified by the Industry 4.0
platform enables the user to create individual submodels. In this context, standardization
processes are currently under debate. So far, only the submodel “digital type plate” has
been implemented in this form [44]. One task in implementing the assistance system is,
therefore, the creation of corresponding submodels for transferring the data of the external
systems into corresponding internal structures.

4.2. Software Architecture

An intuitive and user-friendly visualization through the assistance system shall be
realized with a 3D user interface based on Unity, a cross-platform video game engine for
developing two- and three-dimensional games [45]. Next to a 3D interface, the assistance
system shall support DSM algorithms for clustering complex systems and change prop-
agation analysis in a DSM logic. Since several interfaces and users potentially have to
access functionalities of the DSM logic, the DSM logic is implemented into a separate server.
The use of the AAS requires a further component that provides the hosting of this. Since
the components listed so far are in a mutual client–server relationship, communication

Computers 2021, 10, 149 12 of 17

protocols for sending and receiving information and converters for converting the internal
classes into the JSON format must also be considered.

In addition to the components already mentioned, further components can be derived
from the requirements and use cases collected in the requirements elicitation:

1. REQ 10/UC002.a—Role and department view

• The keyword “Role” implies a role and rights management. Therefore, a database
or an interface to an external system must exist which can take over this task.

• Impact: User database or rights database.

2. REQ 60/UC004.a—Communication of artifact changes to affected departments

• Automated communication that reacts to changes of specific objects implies
another component that monitors all existing artifacts and informs users about
changes according to their subscriptions.

• Impact: Communication component, subscription database.

3. Section 3.2.3. Use Case Overview

• Based on the use cases and the actors mentioned therein, interfaces to external
authoring systems are necessary. These have so far been grouped under PLM,
ALM, and ERP.

• Effects: Interface to external systems.

These aspects now result in a more complete picture of the system architecture of the
assistance system (Figure 5).

The system architecture in Figure 5 consists of four system blocks. The Unity, DSM
server, and AASX server blocks form the three-layer architecture of the actual assistance
system. The Unity block provides the 3D interface, that is, the interaction interface between
user and system. The DSM server contains the logical processes for evaluating data from
the AAS with the help of DSM algorithms. The AASX server is the data consolidation
layer, in which all the company’s information is converted into a uniform data model.
The information carrier in this diagram is the corporate network, which provides both the
authoring systems and databases for users and artifacts. The last element in the software
architecture is the monitoring system, which constantly monitors the authoring systems
and informs the users of any changes.

The diagram also shows that all components are in a client–server relationship. The
top level is the client of the level below. Through this arrangement, the information flow of
the system could also be shown.

Computers 2021, 10, 149 13 of 17

Figure 5. Software Architecture.

5. Discussion
5.1. Implications

This paper presents the elicitation of requirements for an assistance system for com-
plexity management in SMEs under the COVID-19 global pandemic. It describes a method-
ology of requirements elicitation that can be conducted using only web conferencing tools.
The combination of two methodologies for requirements formulation, namely, Rupp’s
formulation template and the Easy approach to requirements syntax, as well as a require-
ments stack methodology for merging elicited requirements, are proposed. Practitioners
can implement these adaptations in their methodology when facing a global pandemic.

Problems related to complexity management in product development of SMEs and
their cause-and-effect relationships are presented in the SDM. The modeled problems
mainly refer to organizational issues and human-related challenges in the product devel-
opment of SMEs. Researchers can investigate how to solve these problems by employing
more human-centered methodologies while considering new paradigms such as advanced
systems engineering [46]. The presented requirements and prioritized use cases concretize

Computers 2021, 10, 149 14 of 17

these future research needs, particularly for developing an intuitive and user-friendly
graphical user interface for complexity management.

The multilayer software architecture described in this paper gives first insights into the
assistance system’s implementation. It contributes to recent research in PLM by providing
a potential solution for consolidating data from different third-party systems. The inclusion
of the AAS in the architecture implies the definition of DSM-specific submodels. Thus, the
architecture provides the basis for future developments of submodels that can be used for
complexity management focused on SMEs.

5.2. Limitations

Restricting the available requirements elicitation techniques to those possible during
the pandemic represents a strong limitation of the presented methodology. Conducting
interviews led to several requirements and use cases. However, fear of a missing focus of
the development project arose in the project team. This could be due to missing techniques
such as ethnography or observation of product development processes directly at the
companies’ sites. Possible results of these techniques could have been flaws and weaknesses
regarding complexity management identified in modeling development processes, a better
understanding of end-users’ needs, and a precise definition of the activities in which the
assistance system supports end-users. Another reason for fear of a missing focus could be
the first eliciting requirements and then formulating use cases based on the requirements.
For example, the unified modeling language prescribes conducting these activities vice
versa, that is, requirements should be formulated based on elicited high-level use cases [47].

Another limitation is conducting the requirements elicitation only with interviewees
from two SMEs. The interviews with PLM experts from two additional companies com-
plemented the results and gave positive evidence of the representativeness of the elicited
requirements. However, interviewing SMEs from other industrial sectors developing
complex products might give more refined and thorough requirements. Additionally, the
different numbers of interviewees for company A and company B might impose a stronger
focus of the requirements on problems and needs of only one company.

Conducting the requirements elicitation techniques solely via web conferencing tools
did not pose any problem in comparison to applying the same techniques with telephone
or face-to-face communication. Negative effects such as communication breakdowns,
mistrust, or conflicts but also positive effects such as overcoming time and space limitations
are discussed in the literature in the context of web conferencing [18]. From our experience,
none of the discussed problems arose, the mood was perceived positively throughout
conversations, and it was easy to build rapport.

As mentioned in Section 3.1, merging the requirements written down by two per-
sons while listening to the interview recordings one more time in the requirements stack
poses the problem of a high cognitive effort if the number exceeds 100 requirements. It
should be investigated how to merge requirements when the requirements stack already
contains more than 100 requirements. Additionally, Section 3.1 describes how a quality
characteristics checklist for requirement formulation was used. However, the checklist was
not used actively during formulation but read once before starting with the formulation.
Thus, not all quality characteristics were equally and reliably considered. Here, we stress
the need to check requirements against the quality characteristics during requirements
formulation properly.

Requirements were prioritized along with the dimensions of priority and severity.
Interviewees did not differentiate between these two dimensions considerably. Plotting
the prioritization results in a two-dimensional graph could be approximated with a lin-
ear function with a positive gradient of one (see Figure 3). Thus, priority and severity
were assigned the same ordinal values. Future works could employ more sophisticated
requirements prioritization techniques than those used in this paper.

As mentioned in Section 3.2.1, the SDM of complexity-related problems and cause-and-
effect relationships in product development of SMEs has not been validated using SDM

Computers 2021, 10, 149 15 of 17

validation techniques such as direct-structure tests [48]. The SDM gives a comprehensive
overview of these problems and their relationships. However, we stress that it should not
be interpreted as a validated and completely accurate model in its presented form.

6. Conclusions

We have presented the requirements elicitation for an assistance system for complexity
management in product development of SMEs during COVID-19. We described the
applied methodology and gave an overview of complexity management problems and their
effects on product development and manufacturing models in an SDM. We listed the most
important requirements of the assistance system and showed all use cases formulated based
on the requirements. The requirements and use cases reflect the gap of existing assistance
systems not providing intuitive and user-friendly visualizations for complex product
relationships. Next, we discussed the implications and limitations of the requirements
elicitation methodology and results. In our case study, the main effect of COVID-19
on the requirements elicitation methodology is the restriction to techniques that do not
involve any activities at the end-users’ company site. It suggests that business use cases
accurately describing the assistance system’s use in product development processes could
not be formulated because of the pandemic, leading to fear of a missing focus among the
development project’s participants. Finally, we presented the software architecture of an
assistance system, implementing the requirements and use cases incorporating the AAS
for data management.

Future works involve detailing the assistance system’s architecture. The assistance
system will be implemented based on the requirements and use cases presented in this pa-
per. DSM algorithms for clustering and analyzing complex systems, complexity reduction,
and propagation analyses of engineering changes will be formulated. Finally, pilot testing
of the assistance system will be performed, accompanied by usability assessments of its
employment in daily routine.

Author Contributions: Writing—original draft, methodology, and investigation, J.-P.H.; Writing—
original draft, software, investigation, S.I. and C.T.; Project administration and supervision, A.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research and development project is funded by the German Federal Ministry of
Education and Research (BMBF) within the “The Future of Value Creation—Research on Production,
Services and Work” program and managed by the Project Management Agency Karlsruhe (PTKA).
The authors are responsible for the content of this publication.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vogel, W.; Lasch, R. Complexity drivers in manufacturing companies: A literature review. Logist. Res. 2016, 9, 1–66. [CrossRef]
2. Latos, B.A.; Harlacher, M.; Burgert, F.; Nitsch, V.; Przybysz, P.; Niewöhner, S.M. Complexity Drivers in Digitalized Work Systems:

Implications for Cooperative Forms of Work. Adv. Sci. Technol. Eng. Syst. J. 2018, 3, 171–185. [CrossRef]
3. Ulrich, H.; Probst, G.J.B. Anleitung zum Ganzheitlichen Denken und Handeln: Ein Brevier für Führungskräfte, 4th ed.; Haupt: Bern,

Switzerland, 1995.
4. Von Bertalanffy, L. Vorläufer und begründer der systemtheorie. Berl. Colloq. 1971, 17–28. Available online: https://www.

bibsonomy.org/bibtex/28cef65f75bf261584a080dcae459936f/isa (accessed on 2 November 2021).
5. Browning, T.R.; Eppinger, S.D. Modeling impacts of process architecture on cost and schedule risk in product development. IEEE

Trans. Eng. Manag. 2002, 49, 428–442. [CrossRef]
6. Mattmann, I. Modellintegrierte Produkt-und Prozessentwicklung; Springer Fachmedien Wiesbaden GmbH: Wiesbaden, Germany,

2017.

http://doi.org/10.1007/s12159-016-0152-9
http://doi.org/10.25046/aj030522
https://www.bibsonomy.org/bibtex/28cef65f75bf261584a080dcae459936f/isa
https://www.bibsonomy.org/bibtex/28cef65f75bf261584a080dcae459936f/isa
http://doi.org/10.1109/TEM.2002.806709

Computers 2021, 10, 149 16 of 17

7. Renner, I. Methodische Unterstützung Funktionsorientierter Baukastenentwicklung am Beispiel Automobil. Ph.D. Thesis,
Technische Universität München, München, Germany, 2007. Available online: https://mediatum.ub.tum.de/doc/627386/file.pdf
(accessed on 2 November 2021).

8. Törngren, M.; Sellgren, U. Complexity Challenges in Development of Cyber-Physical Systems. In Principles of Modeling; Springer:
Cham, Switzerland, 2018; pp. 478–503. [CrossRef]

9. Törngren, M.; Grogan, P. How to Deal with the Complexity of Future Cyber-Physical Systems? Designs 2018, 2, 40. [CrossRef]
10. Browning, T.R. Design Structure Matrix Extensions and Innovations: A Survey and New Opportunities. IEEE Trans. Eng. Manag.

2016, 63, 27–52. [CrossRef]
11. Kossiakoff, A.; Sweet, W.N.; Seymour, S.J.; Biemer, S.M. Systems Engineering Principles and Practice; John Wiley & Sons: Hoboken,

NJ, USA, 2011.
12. Stark, J. Product Lifecycle Management. In Product Lifecycle Management, 2nd ed.; Stark, J., Ed.; Springer: Cham, Switzerland,

2016; pp. 1–35. [CrossRef]
13. Jarratt, T.A.W.; Eckert, C.M.; Caldwell, N.H.M.; Clarkson, P.J. Engineering change: An overview and perspective on the literature.

Res. Eng. Des. 2011, 22, 103–124. [CrossRef]
14. Jarratt, T.; Clarkson, J.; Eckert, C. Engineering change. In Design Process Improvement; Springer London: London, UK, 2005; pp.

262–285. [CrossRef]
15. Hofmann, H.F.; Lehner, F. Requirements engineering as a success factor in software projects. IEEE Softw. 2001, 18, 58–66.

[CrossRef]
16. Kamata, M.I.; Tamai, T. How Does Requirements Quality Relate to Project Success or Failure? In Proceedings of the IEEE

International Requirements Engineering Conference, Delhi, India, 15–19 October 2007; pp. 69–78. [CrossRef]
17. Zowghi, D.; Coulin, C. Requirements Elicitation: A Survey of Techniques, Approaches, and Tools. In Engineering and Managing

Software Requirements; Springer: Berlin/Heidelberg, Germany, 2005; pp. 19–46. [CrossRef]
18. Rosen, B.; Furst, S.; Blackburn, R. Overcoming barriers to knowledge sharing in virtual teams. Organ. Dyn. 2007, 36, 259–273.

[CrossRef]
19. Aranda, G.N.; Vizcaíno, A.; Cechich, A.; Piattini, M. Strategies to Minimize Problems in Global Requirements Elicitation. CLEI

Electron. J. 2008, 11, 1. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.566.6607&rep=rep1&type=
pdf (accessed on 2 November 2021). [CrossRef]

20. Lloyd, W.J.; Rosson, M.B.; Arthur, J.D. Effectiveness of elicitation techniques in distributed requirements engineering. In
Proceedings of the IEEE Joint International Conference on Requirements Engineering, Essen, Germany, 9–13 September 2002; pp.
311–318. [CrossRef]

21. Morrison-Smith, S.; Ruiz, J. Challenges and barriers in virtual teams: A literature review. SN Appl. Sci. 2020, 2, 1–33. [CrossRef]
22. Feitosa, J.; Salas, E. Today’s virtual teams: Adapting lessons learned to the pandemic context. Organ. Dyn. 2021, 50, 1–4.

[CrossRef] [PubMed]
23. ul Amin, T.; Shahzad, B.; Fazal e, A.; Shoaib, M. Economical Requirements Elicitation Techniques During COVID-19: A Systematic

Literature Review. Comput. Mater. Contin. 2021, 67, 2665–2680. [CrossRef]
24. Küstner, C. Assistenzsystem zur Unterstützung der datengetriebenen Produktentwicklung; FAU University Press: Erlangen, Germany,

2020. Available online: https://opus4.kobv.de/opus4-fau/files/14597/Kuestner_Diss_MB_353.pdf (accessed on 2 November
2021).

25. Kuestner, C.; Wartzack, S. The realization of an engineering assistance system for the development of noise-reduced rotating
machines. In DS 80-4 Proceedings of the 20th International Conference on Engineering Design (ICED 15), Design for X, Design to
X, Milan, Italy, 27–30 July 2015; Volume 4, pp. 71–80. Available online: https://www.designsociety.org/publication/37771/
(accessed on 2 November 2021).

26. Sauer, C.; Breitsprecher, T.; Küstner, C.; Schleich, B.; Wartzack, S. SLASSY—An Assistance System for Performing Design for
Manufacturing in Sheet-Bulk Metal Forming: Architecture and Self-Learning Aspects. AI 2021, 2, 307–329. [CrossRef]

27. Herbst, S.; Hoffmann, A. Product Lifecycle Management (PLM) mit Siemens Teamcenter: Grundlagen, Anwendung und Best Practices;
Carl Hanser Verlag GmbH Co KG: München, Germany, 2018.

28. Jarratt, T.; Keller, R.; Nair, S.; Eckert, C.; Clarkson, P.J. Visualization Techniques for Product Change and Product Modelling in
Complex Design. In Diagrammatic Representation and Inference. Lecture Notes in Computer Science; Goos, G., Hartmanis, J., Leeuwen,
J.v., Blackwell, A.F., Marriott, K., Shimojima, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2980, pp. 388–391.
[CrossRef]

29. Sharman, D.M.; Yassine, A.A. Characterizing complex product architectures. Syst. Eng. 2004, 7, 35–60. [CrossRef]
30. Peterson, T. Understanding Systems through Graph Theory and Dynamic Visualization. In Proceedings of the 2014 Ground

Vehicle Systems Engineering and Technology Symposium (GVSETS), Novi, MI, USA, 4–6 August 2015.
31. Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings

of the Third International AAAI Conference on Weblogs and Social Media, Menlo Park, CA, USA, 17–20 May 2009. [CrossRef]
32. Batagelj, V.; Mrvar, A. Pajek—Analysis and Visualization of Large Networks. In Graph Drawing Software; Springer:

Berlin/Heidelberg, Germany, 2004; pp. 77–103. [CrossRef]
33. Turner, D. Qualitative Interview Design: A Practical Guide for Novice Investigators. Qual. Rep. 2014, 15, 754–760.
34. Leech, B.L. Asking Questions: Techniques for Semistructured Interviews. PS Polit. Sci. Polit. 2002, 35, 665–668. [CrossRef]

https://mediatum.ub.tum.de/doc/627386/file.pdf
http://doi.org/10.1007/978-3-319-95246-8_27
http://doi.org/10.3390/designs2040040
http://doi.org/10.1109/TEM.2015.2491283
http://doi.org/10.1007/978-3-319-24436-5_1
http://doi.org/10.1007/s00163-010-0097-y
http://doi.org/10.1007/978-1-84628-061-0_11
http://doi.org/10.1109/MS.2001.936219
http://doi.org/10.1109/RE.2007.31
http://doi.org/10.1007/3-540-28244-0_2
http://doi.org/10.1016/j.orgdyn.2007.04.007
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.566.6607&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.566.6607&rep=rep1&type=pdf
http://doi.org/10.19153/cleiej.11.1.3
http://doi.org/10.1109/ICRE.2002.1048544
http://doi.org/10.1007/s42452-020-2801-5
http://doi.org/10.1016/j.orgdyn.2020.100777
http://www.ncbi.nlm.nih.gov/pubmed/32836509
http://doi.org/10.32604/cmc.2021.013263
https://opus4.kobv.de/opus4-fau/files/14597/Kuestner_Diss_MB_353.pdf
https://www.designsociety.org/publication/37771/
http://doi.org/10.3390/ai2030019
http://doi.org/10.1007/978-3-540-25931-2_47
http://doi.org/10.1002/sys.10056
http://doi.org/10.13140/2.1.1341.1520
http://doi.org/10.1007/978-3-642-18638-7_4
http://doi.org/10.1017/S1049096502001129

Computers 2021, 10, 149 17 of 17

35. Adams, W.C. Conducting semi-structured interviews. Handb. Pract. Progr. Eval. 2015, 4, 492–505.
36. Kallio, H.; Pietilä, A.-M.; Johnson, M.; Kangasniemi, M. Systematic methodological review: Developing a framework for a

qualitative semi-structured interview guide. J. Adv. Nurs. 2016, 72, 2954–2965. [CrossRef] [PubMed]
37. Flanagan, J.C. The critical incident technique. Psychol. Bull. 1954, 51, 327–358. [CrossRef]
38. Rupp, C. Requirements-Engineering und Management, 4th ed.; Hanser: München, Germany, 2007. [CrossRef]
39. Mavin, A.; Wilkinson, P.; Harwood, A.; Novak, M. Easy Approach to Requirements Syntax (EARS). In Proceedings of the 2009

17th IEEE International Requirements Engineering Conference, Atlanta, GA, USA, 31 August–4 September 2009; pp. 317–322.
[CrossRef]

40. Firesmith, D. Specifying Good Requirements. J. Object Technol. 2003, 2, 77–87. [CrossRef]
41. Maalem, S.; Zarour, N. Challenge of validation in requirements engineering. J. Innov. Digit. Ecosyst. 2016, 3, 15–21. [CrossRef]
42. Forrester, J.W. Industrial Dynamics. J. Oper. Res. Soc. 1997, 48, 1037–1041. [CrossRef]
43. Plattform Industrie 4.0: Details of Asset Administration Shell. 2020. Available online: https://www.plattform-i40.de/IP/

Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&
v=5 (accessed on 2 November 2021).

44. Available online: https://industrialdigitaltwin.org/ (accessed on 7 October 2021).
45. Available online: https://unity.com/de (accessed on 7 October 2021).
46. Albers, A.; Lohmeyer, Q. Advanced systems engineering–towards a model-based and human-centered methodology. In

Proceedings of the 9th International Symposium on Tools and Methods of Competitive Engineering (TMCE 2012), Karlsruhe,
Germany, 7–11 May 2012.

47. Kecher, C.; Salvanos, A.; Hoffmann-Elbern, R. UML 2.5: Das Umfassende Handbuch; Rheinwerk Verlag: Bonn, Germany, 2017.
48. Barlas, Y. Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev. J. Syst. Dyn. Soc. 1996, 12, 183–210.

[CrossRef]

http://doi.org/10.1111/jan.13031
http://www.ncbi.nlm.nih.gov/pubmed/27221824
http://doi.org/10.1037/h0061470
http://doi.org/10.1007/BF03340367
http://doi.org/10.1109/RE.2009.9
http://doi.org/10.5381/jot.2003.2.4.c7
http://doi.org/10.1016/j.jides.2016.05.001
http://doi.org/10.1057/palgrave.jors.2600946
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&v=5
https://industrialdigitaltwin.org/
https://unity.com/de
http://doi.org/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4

	Introduction
	Related Work
	Requirements Elicitation in SMEs for a Complexity Management Assistance System
	Methodology
	Results
	System Dynamics Modeling of Complexity Management Problems in SMEs
	Requirements Overview
	Use Cases Overview

	Assistance System for Complexity Management in SME Architecture
	Asset Administration Shell for Data Management
	Software Architecture

	Discussion
	Implications
	Limitations

	Conclusions
	References

