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Abstract: Learning to paraphrase supports both writing ability and reading comprehension, partic-
ularly for less skilled learners. As such, educational tools that integrate automated evaluations of
paraphrases can be used to provide timely feedback to enhance learner paraphrasing skills more
efficiently and effectively. Paraphrase identification is a popular NLP classification task that involves
establishing whether two sentences share a similar meaning. Paraphrase quality assessment is a
slightly more complex task, in which pairs of sentences are evaluated in-depth across multiple
dimensions. In this study, we focus on four dimensions: lexical, syntactical, semantic, and overall
quality. Our study introduces and evaluates various machine learning models using handcrafted
features combined with Extra Trees, Siamese neural networks using BiLSTM RNNs, and pretrained
BERT-based models, together with transfer learning from a larger general paraphrase corpus, to
estimate the quality of paraphrases across the four dimensions. Two datasets are considered for
the tasks involving paraphrase quality: ULPC (User Language Paraphrase Corpus) containing 1998
paraphrases and a smaller dataset with 115 paraphrases based on children’s inputs. The paraphrase
identification dataset used for the transfer learning task is the MSRP dataset (Microsoft Research
Paraphrase Corpus) containing 5801 paraphrases. On the ULPC dataset, our BERT model improves
upon the previous baseline by at least 0.1 in F1-score across the four dimensions. When using
fine-tuning from ULPC for the children dataset, both the BERT and Siamese neural network models
improve upon their original scores by at least 0.11 F1-score. The results of these experiments suggest
that transfer learning using generic paraphrase identification datasets can be successful, while at the
same time obtaining comparable results in fewer epochs.

Keywords: paraphrase quality assessment; natural language processing; recurrent neural networks;
language models; transfer learning

1. Introduction

Paraphrases range widely in terms of definitions, from concise text constructs that
are “similar enough in meaning” [1] to more philosophical implications, as paraphrases
provide “differing textual realizations of the same meaning” [2]. In general, a paraphrase is
a restatement of a text generated with different words, normally with the aim of providing
clarity. Within an educational setting, the ability to paraphrase becomes vital, especially for
young learners. Encouraging readers to transform a source text into more familiar words
and phrases helps them better understand the text by activating relevant prior knowledge,
as they develop a textbase model of what was explicitly conveyed in the text [3]. Learning
to paraphrase facilitates both reading comprehension and writing ability, particularly for
less skilled readers and writers [4–6]. An inability to generate a paraphrase is a clear
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indicator that the reader is struggling with comprehension [7]. Moreover, learning how to
effectively paraphrase provides a crucial foundation for students to master other skills that
enhance reading comprehension, such as bridging and elaboration [4].

From a computational perspective, techniques that enable machines to automatically
discriminate or generate paraphrases afford useful steps toward solving multiple Natural
Language Processing (NLP) [8] problems. In past decades, techniques to identify para-
phrases have been used to recognize redundancies and enable better text summarization,
improve text generation strategies for language generating systems, or increase recall for
information retrieval engines [9]. More recently, automated paraphrase generation was
still used in the context of Natural Language generation for increasing the diversity of the
generated text [10].

In the field of NLP, paraphrase identification is a popular task that involves assessing
whether a pair of sentences constitutes a paraphrase. The task is usually modeled as
a binary classification task (e.g., the Microsoft Paraphrase Research Corpus (MSRP) [1]
offers only two labels—paraphrase or non-paraphrase), but it can vary depending on
the dataset [11] (e.g., the Semantic Textual Similarity task from SemEval (STS) [12] rates
sentence pairs on a scale from 0—sentences cover different topics—to 5—the sentences
are completely equivalent). Paraphrase quality assessment is a related task, in which the
pairs of sentences are scored across multiple dimensions. This approach captures a more
complete perspective regarding the similarities and differences between two sentences.
Depending on the number of dimensions and the granularity of the scoring, however,
paraphrase quality assessment requires more effort on data generation.

Because of the simplicity of the task, paraphrase identification is a considerably more
popular problem in the NLP community when compared to paraphrase quality assessment.
The corpora used for paraphrase identification range from medium-sized datasets, such
as MSRP with 5801 sentence pairs, to large datasets, such as the Quora Question Pair
dataset (QQP) [13] with 400,000 paraphrase pairs. Given the large difference between the
sizes of the datasets, a wide variety of machine learning models have been employed.
For medium-sized datasets, a successful approach was to extract a set of handcrafted
features, such as overlap features or latent sentence-level features, and train a supervised
classification algorithm on top of these features [14]. Other approaches avoid manually
defining the sets of features, and instead aggregate word embeddings through different
pooling operations [15]. By contrast, deep learning NLP models are preferred for large
datasets. In the case of QQP, one of the common elements that most top performing
models share is the usage of a Bidirectional Encoder Representations from Transformers
(BERT) encoder [16]. These models can be introduced alongside innovative masking
techniques [17], or leverage smaller representations such as TinyBERT [18]. However, not
all top performing models are based on BERT as there are deep neural networks using
GLOVE embeddings [19] that obtain comparable results, with better runtime and less
memory usage [20].

Despite the differences in style and content quality, both types of datasets share one
shortcoming: they provide very little information regarding the quality of the paraphrase,
as they solely indicate whether a given pair of sentences are a paraphrase or not. To
our knowledge, the sole dataset that includes rubric scores regarding quality is the User
Language Paraphrase Corpus (ULPC) [21], which scores paraphrases on 10 aspects using a
point range from 1 to 6 and is described in detail in the Method section.

2. Current Study Objective

Our overarching objective is to implement scoring methods for paraphrases which
can be used to develop a feedback system for a new version of iSTART (Interactive Strategy
Training for Active Reading and Thinking [22]), called iSTART-Early, for young, developing
readers (ages 9–11). Within iSTART, students improve their grasp on comprehension
strategies (e.g., elaboration, bridging), by reading and self-explaining texts guided by
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adaptive instructions. The end goal of iSTART is to improve students’ comprehension of
challenging texts and increase their performance in science courses.

This study introduces and evaluates various machine learning models, including
handcrafted features combined with Extra Trees, Siamese neural networks using BiLSTM
RNNs, and pretrained BERT-based models, together with transfer learning from a larger
general paraphrase corpus, to estimate the quality of paraphrases across the four dimen-
sions: lexical, syntactical, semantic, and overall quality. Predicting each of the dimensions
for a given pair of sentences was considered as a separate classification task. We also assess
the generalization capabilities of the previous models when building a specific model
tailored for a small paraphrase corpus based on children inputs.

3. Method
3.1. Corpus

This study considers three different datasets (see Table 1): (a) the Microsoft Research
Paraphrase Corpus (MSRP), (b) the User Language Paraphrase Corpus (ULPC), and (c) a
small dataset containing paraphrases generated by children [23]. The datasets are focused
either on paraphrase identification (i.e., the generic task in which pairs of sentences are
labeled as being paraphrases or not) or on paraphrase quality assessment (i.e., a more
complex task in which the quality of a paraphrase is assessed across multiple dimensions).

Table 1. Table describing the 3 datasets used as part of this study.

Name Number of Samples Train/Test Split Dimensions

MSRP 5801 4076/1725 1
ULPC 1998 1012/649 4
Children 115 80/35 4

The MSRP is a paraphrase identification dataset containing 5801 paraphrase pairs
(4076 for training and 1725 for testing). Each pair was extracted from news sources and was
manually labeled with ‘1’ if it is a paraphrase or ‘0’ if it is not a paraphrase; the distribution
of the two classes is 2:1.

The ULPC dataset contains 1998 paraphrase pairs annotated by trained human readers
and divided into training (1012), validation (337), and test (649) datasets. The raters
completed 50 h of training on a separate dataset prior to annotating ULPC entries. The
sentence pairs were scored on a scale from 1 to 6 for four distinct paraphrase dimensions:
semantic similarity, syntactic similarity, lexical similarity, and paraphrase quality. Because
of the small number of samples in the dataset, the four dimensions were transformed into
categories to reduce the complexity of the task; as such, binary (1.00–3.49 versus 3.5–6.00),
or tripartite assessments (1.00–2.66, 2.67–4.33, and 4.33–6.00 only for the paraphrase quality
dimension) were used.

The children dataset consists of only 115 paraphrase pairs extracted from responses
provided by third and fourth graders. They were a group of 13 English Language learners
who took part in a summer school program. Their text productions were corrected for
obvious spelling errors prior to human scoring. The sentence pairs were scored on the
same four paraphrase dimensions from ULPC, and were categorized into binary evalu-
ations (i.e., for lexical, syntactic and semantic similarities) and tripartite evaluations (for
paraphrase quality).

The annotations for both the children and the ULPC datasets were done in pairs of
two raters. Where disagreement between the two raters occurred, a second evaluation
step between the raters occurred before reaching a final, agreed upon result. Agreement
between raters is presented in Table 2. Kappa’s main advantage is that it corrects for chance
agreement. Typical Kappa evaluations are for nominal categories; however, the ratings in
this task are at the interval level. As such, both linear or a quadratic weighting schemes
were employed to ensure that differences between ratings are accounted for (e.g., 1 and 3
are judged as more similar than ratings of 1 and 5). The low Kappa scores for paraphrase
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quality on both datasets and for syntactic similarity on ULPC show that the raters disagreed
more when scoring these dimensions. This indicates that these dimensions might be more
difficult to assess by a human rater, and inherently by an automated model trained on the
results generated by the human raters. Paraphrase quality, for instance, was especially
difficult to score initially for the children dataset when the paraphrase strongly resembled a
sentence that was copied word-for-word (i.e., copy-pasted). After discussions between the
two raters, it was determined that modifying one word in the paraphrase was not sufficient
for a paraphrase quality score above 0 (the lowest score).

Table 2. Kappa evaluations for Lexical (Lex), Syntactical (Syn), Semantical (Sem) similarity, and
Paraphrase quality (PQ).

Kappa Lex Syn Sem PQ

ULPC weighted
Linear 0.45 0.25 0.56 0.28

ULPC weighted
Quadratic 0.62 0.43 0.71 0.43

Children 0.62 0.61 0.54 0.36

The ULPC and children datasets were preprocessed, eliminating poor sentence-
paraphrase pairs that manifested one of the following four issues:

• garbage input—the response consists of random letters and has no meaning;
• irrelevant input—the response is blatantly irrelevant to the source sentence;
• shortness—one word responses were eliminated; and
• copy-paste input—responses that overlapped completely with the source, while

adding no new words, were removed.

The filtering was made either based on annotated information (for garbage and
irrelevancy issues) or on simple rule-based filters (for shortness and copy-paste issues).

High differences between the ULPC and children datasets are observed when consid-
ering the relations between the three rubric dimensions (semantic, syntactic, and lexical
similarity) and paraphrase quality (see Figure 1). For the ULPC dataset, the mean value for
lexical and semantic similarity increases with the paraphrase quality, while the syntactic
similarity does not appear to be correlated with it. In contrast, the same relations for lexical
and semantic similarity in the children dataset were not observed, as their means seem to
decrease as paraphrase quality improves, although all three show strong correlations to
paraphrase quality.

Figure 1. Correlations between paraphrase quality and the three rubric scores: semantic similarity,
lexical similarity, and syntactic similarity for the children and ULPC datasets.
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3.2. Models for Predicting Paraphrase Quality

Three different models were considered for predicting paraphrase quality, all described
in detail in the following sub-sections. The first model relies on classical machine learning
models and feature engineering. The model computes handcrafted features on top of which
a machine learning classifier is used to predict different dimensions of paraphrase quality.
The second model relies on Bidirectional Long Short-Term Memory (BiLSTM [24]) layers
and a Siamese network (SN) architecture [25]. The third model consists of a pretrained
BERT-based model fine-tuned for the current tasks.

The previous models were selected based on their complementary traits, each model
providing different advantages, with corresponding shortcomings. The first model requires
more effort in the initial stages for finding the best set of features, but it is fast to train and
should manage well on small datasets. However, it has a major disadvantage, namely,
that it does not support fine-tuning or transfer learning; instead, the model needs to be
retrained for a new scenario. The Siamese neural network and the BERT-based models do
not require any data preprocessing; nevertheless, their training is more resource-intensive
and can require an exploration of the hyperparameter space to find the optimal learning
rate. The SN model has fewer parameters than BERT architecture; thus, it should be easier
to train and should be less prone to overfitting on small datasets. BERT-based models yield
state-of-the-art performance on a wide array of NLP tasks, but overfitting can easily occur
when working with small datasets.

3.2.1. Feature Engineering

Our first approach relies on extracting a wide array of features, filtering them, and us-
ing a classical machine learning classifier to make the predictions. Several types of features
that evaluate the differences and similarities between two input sentences were used:

1. Levenshtein distance [26] between the source and paraphrase, while considering
words as units or elements.

2. Overlap indices for both words and part-of-speech (POS) tokens (e.g., the percentage
of words in the paraphrase that also appear in the source text).

3. Complexity indices related to surface, lexical, syntactic, and semantic properties
computed using the ReaderBench framework [27] separately for the two sentences, as
well as the absolute difference between them.

4. Complexity indices related to text cohesion computed in-between the two input sentences.

In total, 2368 features were generated. These features underwent a filtering stage,
eliminating constant and highly correlated values, resulting in 594 features. Those features
were used as input to train several machine learning classifiers from the SciKit Learn
library [28] to predict each targeted dimensions. The following four models were evaluated:
two variants of Support Vector Classifier (SVC–linear kernel and SVC–RBF kernel), Extra
Trees (ET), and Multi-Layered Perceptron (MLP). Out of these models, the ET model
consistently obtained the best results. In order to further reduce the feature space, a
second filtering of the features was performed. The top 100 most predictive features of a
trained Extra Trees model were selected, and an Extra Trees model was trained using only
these features.

3.2.2. Siamese Neural Network

The second model involved a Siamese network architecture to extract and refine in par-
allel features from both sentences, then combine their deep representations to make a predic-
tion. BiLSTM layers were used as building blocks for this architecture, as shown in Figure 2.
Pretrained 300-dimensional GloVe [19] or word2vec [29] word embeddings were used,
while the words that did not appear in the dictionary index were matched to a common ’un-
known’ embedding. Results are reported for the model using the GloVe embeddings, which
surpassed in all configurations the alternative that employed word2vec embeddings.
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Figure 2. Siamese architecture using as a first input the source text and as a secondary input
the paraphrase.

3.2.3. BERT-Based Neural Architecture

The third model relies on a pretrained BERT-based model from the Huggingface
library [30]. For simplicity, a small version of BERT was used (identified as “bert-base-
cased”). This model is composed of 12 layers comprising 110 million parameters and was
trained on English texts from the BookCorpus and English Wikipedia. The two input
sentences are passed to the model as a single string delimited by a special separator. The
output of the BERT model goes into a Dropout layer, followed by a fully connected (FC)
layer, which makes the final 2-class or 3-class predictions, as shown in Figure 3. In case of
transfer learning experiments, this final layer was replaced by a random layer, keeping the
remainder of the ensemble unchanged. Different learning rates were considered for BERT
and FC components in order to help the model learn new patterns, while keeping as much
as possible of the initial BERT pretrained knowledge.

Figure 3. BERT-based architecture.
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3.3. Fine-Tuning and Transfer Learning

Fine-tuning and transfer learning are techniques used to improve the performance of
a model when insufficient data are available for the targeted task. Fine-tuning involves
taking a pretrained model and training it on the target dataset using a small learning rate,
in order to allow it to adapt to the target problem. In our particular scenario, the model
was pretrained on an identical problem using a larger dataset from a similar domain.

Transfer learning is also aimed at improving the performance on target domains [31],
but the pretrained model used as a starting point can be trained on a different problem,
using data from a different domain. Part of the pretrained model is replaced, usually the
last layers, in order to adapt it to the new problem. The resulting model is trained for a few
epochs by updating only the new layers, and afterwards it can be trained in its entirety
using a small learning rate.

4. Results

Our experiments targeted four different scenarios. First, we assessed the degree to
which the selected machine learning models improve upon the baseline on the ULPC
dataset. Second, we analyzed the performance of models trained on the ULPC dataset
and tested on the children dataset in order to observe their capability to generalize out-of-
the-box. Third, the SN and BERT-based models pretrained on the ULPC dataset were also
fine-tuned on the children dataset. Last, we trained the models on a generic paraphrase
identification dataset (i.e., MSRP) and adapted them to the paraphrase quality assessment
via transfer learning. The open-source code used for these experiments can be found
at [32].

The MSRP and ULPC datasets had a predetermined training-validation split which
was maintained; for the children dataset, a random split was chosen and kept fixed
throughout the experiments for consistency. Weighted F1-scores are reported to evaluate
the performance of each model.

When considering the feature engineering approach, only the results obtained with
the Extra Trees (ET) model are presented, as these models consistently surpassed all other
configurations. Because these types of methods are not suited for transfer learning and
fine-tuning, results for the ET model are available only in the first two Results subsections.

Several training runs of 20 epochs were conducted for the SN model, slightly varying
the learning rates and the gamma by which the learning rate decreased each epoch. In the
end, the best result was obtained using an Adam optimizer [33] and a starting learning rate
of 1 × 10−2, which was decreased by a factor of 0.95 every epoch, for 40 epochs. A weight
decay factor of 1 × 10−4 and a dropout of 0.1 were used for regularization.

Different strategies were tested for BERT in terms of fine-tuning, including the freeze
of all BERT layers apart from the last, the usage of different learning rates, changing the
pretrained BERT models (i.e., larger or smaller models, trained on cased or uncased texts).
In the end a small version of BERT pretrained on cased texts was selected. The BERT-related
parameters were trained using a small 1 × 10−5 starting learning rate, while for the other
parameters a 2 × 10−2 learning rate was used. A scheduler that would linearly increase
the learning rate in the first epochs, then decrease them exponentially using a gamma of
0.9 was used, along with and ADAMW optimizer [34]. For regularization a weight decay
factor of 1 × 10−4 was used for all parameters except biases and layer normalization [35]
parameters. The experiments were run for 20 epochs.

4.1. ULPC Baseline

The original paper regarding the ULPC dataset contained the F1-scores for both low
(scores between 1 and 3) and high (scores between 4 and 6) classes obtained using multiple
indices as predictors. The initial set of indices included [21]: Latent Semantic Analysis
(LSA) [36], overlap-indices, entailer indices (i.e., evaluating word and structure similarity
via graph subsumption), minimal edit distances, as well as more rudimentary indices
(e.g., length of response or difference in length between target sentence and response).
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For each of the four dimensions, the baseline was selected as the index with the highest
weighted F1 average. In the case of the Paraphrase Quality dimension, there were no results
for the tripartite evaluation; as such, binary separation into low and high was chosen.

As it can be observed in Table 3, all three models obtained a better performance than
the baseline, with an improvement ranging from 0.10 to 0.18 F1-score and with rather
small differences in-between our models. The SN model achieved the best results for
predicting semantic similarity, while the BERT-based model achieved the best results
for the other three dimensions. Semantic similarity registered the highest improvement,
bringing it closer in terms of performance to syntactic and lexical similarities. The results
for the paraphrase quality dimension improved by 0.10 F1-score, reaching a 0.684 F1-score.
Nevertheless, this dimension achieves an F1-score lower by 0.11 than the results for any
of the other three dimensions, indicative of the challenges in assessing the overall quality
of paraphrases.

Table 3. Performance of the models on the ULPC dataset.

Model
Lexical

Similarity
(Avg F1)

Syntactic
Similarity
(Avg F1)

Semantic
Similarity
(Avg F1)

Paraphrase
Quality
(Avg F1)

Baseline 0.716 0.707 0.611 0.583
ET 0.815 0.834 0.768 0.657
SN 0.795 0.839 0.794 0.658
BERT 0.816 0.860 0.791 0.684

4.2. Out-of-the-Box Generalization on the Children Dataset

The second set of experiments involved testing the accuracy of models trained on
the ULPC dataset, directly on the children dataset. For this purpose, the ET, SN, and
BERT models were trained on the entire ULPC dataset and tested on the children dataset
on all four dimensions. A tripartite split into low (1–2), mid (3–4), and high (5–6) was
used for the quality dimension, whereas the other dimensions were approached as binary
classifications. As such, the results in Tables 4 and 5 were split—Table 4 covers the results
for binary classification, while Table 5 targets a 3-class split. The split mentioned before
leads to unbalanced classes (e.g., 31 samples in the ‘Low’ class compared to 84 samples in
the ‘High’ class for the Lexical similarity dimension), but the performance of the models is
good. Results argue that the ET model is the best model for out-of-the-box generalization,
obtaining the highest average F1 score for all 4 dimensions. When comparing the two
deep learning approaches, we observe that the BERT-based model manages to obtain better
results on all tasks.

Table 4. Performance of ULPC-trained models on the children dataset for lexical, syntactic, and
semantic similarity.

Dimension Model Support
(Low/High) Low F1 High F1 Avg F1

Lexical ET (31/84) 0.806 0.929 0.895
Lexical SN (31/84) 0.422 0.629 0.573
Lexical BERT (31/84) 0.689 0.811 0.778
Syntactic ET (35/80) 0.688 0.776 0.749
Syntactic SN (35/80) 0.444 0.327 0.362
Syntactic BERT (35/80) 0.530 0.367 0.416
Semantic ET (22/93) 0.706 0.916 0.875
Semantic SN (22/93) 0.371 0.725 0.657
Semantic BERT (22/93) 0.575 0.802 0.758
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Table 5. Performance of ULPC-trained models on the children dataset for overall paraphrase quality.

Model Support
(Low/Mid/High) Low F1 Mid F1 High F1 Avg F1

ET (24/60/31) 0.610 0.708 0.244 0.562
SN (24/60/31) 0.333 0.337 0.205 0.300
BERT (24/60/31) 0.454 0.712 0 0.466

When analyzing the results for paraphrase quality, we observe that all three models
obtain poor results for the ’High’ class indicative that a pair of sentences is a good para-
phrase. The underlying reason might be a differentiated definition of a good paraphrase
between the two datasets, given that they where generated based on inputs from users
belonging to different age groups.

Despite obtaining the best results in this section, the ET model is not featured in the
next experiments as it does not support fine-tuning or transfer learning. It is a lightweight
model that can be trained easily and swiftly, and it does not overfit as easily as the deep
learning models. Its main problem is the need for extensive feature engineering and feature
selection prior to the start of the training process.

4.3. Fine-Tuning on the Children Dataset

In contrast to the previous experiment in which performance was assessed on the
entire children dataset, now only its test partition was selected. This test set was kept
the same across all fine-tuning and transfer learning experiments. The BERT-based and
SN models were pretrained on the entire ULPC dataset and trained for a small number
of epochs, using a smaller learning rate on the training subset of the children dataset. A
learning rate of 1 × 10−3 was used for the SN model, for a duration of 20 epochs. For the
BERT model the same learning rate settings were used, but the number of epochs was
decreased to 10. A weight decay factor of 1 × 10−4, as well as a dropout factor of 0.1,
were used for regularization. The same settings were used in the transfer learning sections
as well.

The BERT-based model obtains higher results for the binary classification tasks (i.e.,
lexical, syntactic, and semantic, similarities from Table 6), while results for the more
complex paraphrase quality task (see Table 7) are close to one another. Both models
manage to improve by at least 0.14 average F1 score in all but one scenario, indicating
the usefulness of fine-tuning in adapting the models to new datasets. The outlier is the
BERT-based model for paraphrase quality, which achieved an increase of only 0.023 as the
model is still incapable of identifying high-scored paraphrases in the children dataset.

Table 6. Performance of ULPC-trained models on the children dataset after fine tuning.

Dimension Model Support
(Low/High)

Pretrained
Avg F1

(without
Fine-

Tuning)

Low F1 High F1
Avg F1

(with Fine-
Tuning)

Lexical SN (14/28) 0.527 0.592 0.807 0.735
Lexical BERT (14/28) 0.767 0.965 0.981 0.976
Syntactic SN (14/28) 0.545 0.750 0.900 0.849
Syntactic BERT (14/28) 0.671 0.896 0.945 0.929
Semantic SN (12/30) 0.444 0.352 0.895 0.697
Semantic BERT (12/30) 0.656 0.600 0.875 0.796
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Table 7. Performance of ULPC-trained models on the children dataset after fine-tuning
(Paraphrase quality).

Model Support
(Low/Mid/High)

Pretrained
Avg F1 Low F1 Mid F1 High F1 Avg F1

SN (12/27/3) 0.318 0.615 0.695 0.166 0.634
BERT (12/27/3) 0.607 0.333 0.833 0 0.630

We once again observe poor performance for the high class in terms of paraphrase
quality (see Table 8), underlining that criteria in-between the two datasets were different.
Another potential explanation resides in the low number of examples for each class, which
in turn may result in bias generated by particularly difficult outliers. However, the results
from this experiment are consistent with the findings from the previous section, where
high class examples were more abundant.

Table 8. Precision and Recall for the ULPC-trained models tested on the children dataset after
fine-tuning (Paraphrase quality).

Model Support
(Low/Mid/High)

Precision
Low

Recall
Low

Precision
Mid Recall Mid Precision

High
Recall
High

SN (12/27/3) 0.571 0.667 0.842 0.593 0.111 0.333
BERT (12/27/3) 0.278 0.417 0.952 0.741 0 0

4.4. Transfer Learning

The transfer learning task assesses the extent to which SN and BERT-based models
trained for one task on a generic dataset can be successfully adapted to multiple tasks
on another dataset. In this setup, both models were pretrained for binary paraphrase
identification on either the MSRP dataset or the ULPC dataset, with paraphrase quality
modeled as a binary classification. Afterwards, the last two layers were replaced with two
random layers built for the target task (binary or 3-class classification), and the ensemble
was trained for several epochs using a smaller learning rate. Multiple combinations of
learning rate values and schedulers were used in order to ensure that the networks would
not experience a sudden drop in performance (i.e., indicating that previously learned
patterns were erased) and that the performance on the new dataset was improved upon.

We notice that the best results from Tables 9 and 10 are consistently obtained by the
BERT model, and are better for models pretrained on the larger and more generic MSRP
dataset than on the smaller, but more similar to the target, ULPC dataset. When comparing
the results to the fine-tuning experiments, the best transfer learning model obtains better
performance for semantic similarity (0.906 vs. 0.796) and paraphrase quality (0.694 vs.
0.634), identical performance for lexical similarity (0.976), and slightly poorer results for
syntactic similarity (0.906 vs. 0.929). This means that in 3 out of 4 tasks (including the
more complex paraphrase quality task), transfer learning on a more generic dataset yields
comparable or better results than fine-tuning on a similar task.

Moreover, we observe that the results in Table 11 obtained for the Paraphrase Quality
task are still poor when considering the high class, further underlining our previous
observations. The assessment of whether a pair of sentences constitutes a good quality
paraphrase is a difficult task, with definitions varying across datasets.
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Table 9. Performance of ULPC/MSRP-trained models on the children dataset with transfer
learning tuning.

Dimension Model Support
(Low/High) Low F1 High F1 Avg F1

ULPC pretrained models

Lexical SN (14/28) 0.480 0.779 0.679
Lexical BERT (14/28) 0.800 0.888 0.859
Syntactic SN (14/28) 0.583 0.833 0.750
Syntactic BERT (14/28) 0.866 0.925 0.906
Semantic SN (12/30) 0.400 0.812 0.694
Semantic BERT (12/30) 0.666 0.866 0.809

MSRP pretrained models

Lexical SN (14/28) 0.210 0.769 0.582
Lexical BERT (14/28) 0.965 0.981 0.976
Syntactic SN (14/28) 0.416 0.766 0.649
Syntactic BERT (14/28) 0.866 0.925 0.906
Semantic SN (12/30) 0.352 0.835 0.697
Semantic BERT (12/30) 0.846 0.931 0.906

Table 10. Performance of ULPC/MSRP-trained models on the children dataset with transfer learning
(Paraphrase quality).

Model Support
(Low/Mid/High) Low F1 Mid F1 High F1 Avg F1

ULPC pretrained models

SN (12/27/3) 0.439 0.461 0 0.422
BERT (12/27/3) 0.380 0.800 0.150 0.634

MSRP pretrained models

SN (12/27/3) 0.413 0.653 0 0.538
BERT (12/27/3) 0.692 0.750 0.200 0.694

Table 11. Precision and recall for the ULPC/MSRP-trained models tested on the children dataset
with transfer learning (Paraphrase quality).

Model Support
(Low/Mid/High)

Precision
Low Recall Low Precision

Mid Recall Mid Precision
High

Recall
High

ULPC pretrained models

SN (12/27/3) 0.310 0.750 0.750 0.333 0 0
BERT (12/27/3) 0.444 0.333 0.870 0.741 0.100 0.333

MSRP pretrained models

SN (12/27/3) 0.353 0.500 0.727 0.593 0 0
BERT (12/27/3) 0.643 0.750 0.857 0.667 0.143 0.333

In addition to the previous experiments, we assessed the performance of models
undergoing a chain of transfer learning operations in two configurations: (a) generic-to-
specific that simulates a gradual adaptation to a more specific dataset, and (b) specific-to-
generic, which begins with a specific dataset, continues on the more generic dataset, and is
fine-tuned on the final specific problem.

The models were trained on a first dataset, which was MSRP for “generic-to-specific”
and ULPC for “specific-to-generic” for a binary paraphrase identification task. Then, they
were retrained, using a smaller learning rate, on a second dataset (i.e., ULPC for “generic-to-
specific” and MSRP for “Specific-to-generic”) again for the binary paraphrase identification
task. Afterwards, the same transfer learning as in the previous section was applied to adapt
these models to the four paraphrase dimensions on the children dataset. This approach
does require an extra stage of training, but the approach is still better than the fine-tuning
one in terms of resource usage. A total of eight runs (four pretraining runs on ULPC and
four fine-tuning runs on the children dataset) was required for training one model on the
four dimensions of the children dataset using fine-tuning. In contrast, the same scenario
using chained transfer learning requires six runs (one run on MSRP, one run on ULPC, and
four runs on the children dataset).
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Tables 12 and 13 depict that the “generic-to-specific” models outperform their counter-
parts in three out of four cases. Furthermore, we observe that results with chained transfer
learning improve for the paraphrase quality and syntactic similarity tasks in comparison to
the simple transfer learning approach, thus indicating the benefits of a chained transfer
learning approach.

Table 12. Performance of models on the children dataset with transfer chained learning tuning.

Dimension Model Support
(Low/High) Low F1 High F1 Avg F1

Generic-to-specific pretrained models

Lexical SN (14/28) 0.300 0.781 0.62
Lexical BERT (14/28) 0.962 0.982 0.975
Syntactic SN (14/28) 0.480 0.779 0.679
Syntactic BERT (14/28) 0.896 0.945 0.929
Semantic SN (12/30) 0.526 0.861 0.765
Semantic BERT (12/30) 0.800 0.937 0.898

Specific-to-generic pretrained models

Lexical SN (14/28) 0.500 0.843 0.729
Lexical BERT (14/28) 0.875 0.923 0.907
Syntactic SN (14/28) 0.600 0.875 0.783
Syntactic BERT (14/28) 0.875 0.923 0.907
Semantic SN (12/30) 0.526 0.861 0.765
Semantic BERT (12/30) 0.909 0.967 0.950

Table 13. Performance of models on the children dataset with chained transfer learning
(Paraphrase quality).

Model Support
(Low/Mid/High) Low F1 Mid F1 High F1 Avg F1

Generic -to-specific pretrained models

SN (12/27/3) 0.451 0.640 0 0.540
BERT (12/27/3) 0.800 0.750 0.250 0.728

Specific-to-generic pretrained models

SN (12/27/3) 0.500 0.777 0.400 0.671
BERT (12/27/3) 0.818 0.750 0.142 0.726

The performance of the models for the Paraphrase Quality dimension has improved
(as seen in Tables 13 and 14) compared to previous scenarios. However, the results for
the ’High’ class are still modest. For the SN Specific-to-generic pretrained model we can
observe better performance (higher precision and F1 score) compared to the equivalent
BERT model, but the SN model’s overall performance is still surpassed by its counterpart.
This happens because the performance on the ’High’ class is weighed down by the small
number of samples.

Table 14. Precision and Recall for models tested on the children dataset with chained transfer learning
(Paraphrase quality).

Model Support
(Low/Mid/High)

Precision
Low Recall Low Precision

Mid Recall Mid Precision
High

Recall
High

Generic-to-specific pretrained models

SN (12/27/3) 0.368 0.583 0.75 0.556 0 0
BERT (12/27/3) 1 0.667 0.724 0.778 0.2 0.333

Specific-to-generic pretrained models

SN (12/27/3) 0.625 0.417 0.719 0.852 0.500 0.333
BERT (12/27/3) 0.900 0.750 0.857 0.667 0.091 0.333

5. Discussion

In this work, we introduced three different models that managed to improve upon the
baseline on the ULPC paraphrase quality assessment dataset across all dimensions: lexical,
syntactic, semantic similarities, as well as paraphrase quality. The results were compared in
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terms of a weighted F1 score across all classes, and all models improved upon the baseline
result by at least 0.07 F1 score. In this scenario, the BERT model obtained the best result
in three out of four cases, and was close to the best result, obtained by the SN model, in
the fourth case. The ET model also obtained results close to the best ones across all four
dimensions. The lowest average F1 scores were obtained for the paraphrase quality binary
task, underlining that assessing paraphrase quality was the most difficult evaluation.

Afterwards, we verified the out-of-the-box generalization capabilities of the three
models by taking models pretrained on the entire ULPC dataset and testing them on the
entire children dataset. In this scenario, the best performing model was the ET model,
which relied on extracting a wide range of features based on the input sentences, followed
by a classical machine learning model trained on top of those features. This model easily
surpassed the other models for all the four dimensions, indicating that the extracted
features and the patterns found by the extra trees classifier were more general than the
ones found by the deep learning models.

The third experiment was designed to observe if the performance of the deep learning
models (SN and BERT) could be improved by fine tuning them for several epochs on the
training subset of the children dataset and testing them on the validation subset. When
comparing the results of the pretrained and fine-tuned networks, we noticed improvements
of at least 0.14 average F1 score in all but one case. The fine-tuned BERT model obtained
the best results by far, for the lexical, syntactic, and semantic similarity dimensions, and
was a close second to the SN model for the paraphrase quality task.

The last experiment tested whether a model trained on a more generic dataset (MSRP
or ULPC) and on a slightly different task (binary paraphrase detection) could be adapted
to obtain good results when predicting the four dimensions on the children dataset. The
results showed that in three out of four cases, the transfer learning approach obtained
better results than fine-tuning. The results also showed that training on the larger and more
generic MSRP dataset provided better results that training on the smaller, but more similar
ULPC dataset. Further experiments also showed that chaining transfer learning operations
can improve results for two of the four tasks, and the most efficient way of chaining transfer
learning operations was from the most generic dataset to the most specific one.

6. Conclusions

In this work, we presented three different machine learning models achieving good
results when predicting the following four paraphrase quality dimensions on the ULPC
dataset: lexical, syntactic, semantic similarities, and paraphrase quality. The three models
(ET, SN, and BERT) where chosen due to their different advantages and disadvantages,
which were also evident throughout the experiments.

The ET model, which relies on feature engineering, required extensive efforts in
extracting and filtering the features. Nevertheless, it obtained good initial results, and
it had, by far, the best out-of-the-box performance when tested on the children dataset.
Due to its setup, it was not appropriate for fine-tuning or transfer-learning scenarios. As
such, it was only featured in the first experiments. The SN model, which is a deep learning
model that has a medium number of parameters and can be trained from scratch, obtained
good results in all the tasks, but it was outperformed by BERT-based models in terms of
performance and by ET in terms of out-of-the-box generalization. The BERT-based model
managed to consistently obtain the best or close to the best results. Tables 4 and 5 show one
of the downsides of the BERT model, namely, that it can overfit on a small dataset and that
it requires fine-tuning when required to solve an equivalent problem for a different dataset.

The fine-tuning and transfer learning approaches improved the performance for the
SN and BERT models significantly. In most scenarios, the transfer learning approach
obtained better results than the fine-tuning approach, despite the fact that the model
used for transfer learning had been trained on a different problem (binary paraphrase
identification), while the model used for fine-tuning had been trained on the same task
as the target task. Small improvements were also noticed when training the models in a
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sequence of transfer learning steps using the most generic dataset first, followed by more
specific datasets; however, this approach requires more runtime for training.

When considering the four target paraphrase dimensions, there was a clear difference
in terms of results between the three simple dimensions (i.e., lexical, syntactic, and semantic
similarities) which were treated as a binary classification task, and the paraphrase quality
dimension which was modeled as a 3-class classification problem. The difference between
the simple dimensions and the overall dimension were of around 0.2 average F1-score
for the most predictive models. When analyzing the three paraphrase quality classes, the
models found the ’High’ class to be the most difficult to predict, both for out-of-the-box
generalization and for the fine-tuning/transfer learning tasks. We believe that this class
might be more difficult to predict because the task of estimating whether a paraphrase is
of good quality or not can depend on the dataset and domain. A good paraphrase for a
dataset generated from news sources (MSRP) might not be considered a good paraphrase
for a dataset constructed from rated human generated paraphrases (ULPC), which could
receive lower scores for copy paste sequences of words, for instance. Similarly, the rigor
applied to rating the paraphrases generated by adults (i.e., ULPC) might be higher than
when rating children generated paraphrases (i.e., the children dataset). In addition, the
small number of paraphrases rated as ’High’ in terms of paraphrase quality can also explain
these results, as outliers can significantly shift the results in their favor.

The conducted experiments suggest that the paraphrase assessment task consisting of
four paraphrase dimensions can be tackled using both classical machine learning models
and deep learning models that generalize well even on small datasets (~100 examples).
Our experiments also show that for the deep learning models, the results can be improved
by pretraining on larger and more generic datasets, such as by using a transfer learning
approach to adapt the models to the smaller dataset.

In terms of future work, we aim to validate our models on other small paraphrase
corpora from different domains in order to further verify their robustness. Recent advances
in interpretability for deep learning models [37] can also be used to find the blind spots
of the current models and improve their performance. Moreover, given the success of the
chained transfer learning approach, we envision pretraining on even larger corpora, such
as QQP, to further improve our models
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Abbreviations

The following abbreviations are used in this manuscript:

MSRP Microsoft Research Paraphrase Corpus
ULPC User Language Paraphrase Corpus
QQP Quora Question Pair
RNN Recurrent Neural Network
BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional Long Short-Term Memory
NLP Natural Language Processing
iSTART Interactive Strategy Training for Active Reading and Thinking
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