
computers

Article

Hardware–Software Co-Design for Decimal Multiplication

Riaz-ul-haque Mian * , Michihiro Shintani and Michiko Inoue

����������
�������

Citation: Mian, R.-u.-h.; Shintani, M.;

Inoue, M. Hardware–Software

Co-Design for Decimal Multiplication.

Computers 2021, 10, 17. https://

doi.org/10.3390/computers10020017

Received: 28 December 2020

Accepted: 23 January 2021

Published: 27 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan;
shintani@is.naist.jp (M.S.); kounoe@is.naist.jp (M.I.)
* Correspondence: mian.riaz-ul-haque.mn3@is.naist.jp

Abstract: Decimal arithmetic using software is slow for very large-scale applications. On the
other hand, when hardware is employed, extra area overhead is required. A balanced strategy can
overcome both issues. Our proposed methods are compliant with the IEEE 754-2008 standard for
decimal floating-point arithmetic and combinations of software and hardware. In our methods,
software with some area-efficient decimal component (hardware) is used to design the multiplication
process. Analysis in a RISC-V-based integrated co-design evaluation framework reveals that the
proposed methods provide several Pareto points for decimal multiplication solutions. The total
execution process is sped up by 1.43× to 2.37× compared with a full software solution. In addition,
7–97% less hardware is required compared with an area-efficient full hardware solution.

Keywords: decimal arithmetic; decimal multiplication; decimal floating-point; hardware-software co-
design

1. Introduction

Decimal arithmetic is very important for banking, commercial, and financial transac-
tions. Moreover, it is widely used in scientific applications. A study by IBM has indicated
that more than half of the numerical data in a commercial database are stored in decimal
format [1]. Decimal arithmetic using hardware or software is typically much more complex
and slower than its counterpart binary arithmetic. However, decimal arithmetic in binary
logic causes some errors that change the actual value of the exact result. This is completely
unacceptable in financial or other critical scientific operations. Thus, IEEE 754 (the Standard
for Floating-point Arithmetic) has been revised to include decimal floating-point (DFP)
formats and operations [2].

Programming languages, such as Java [3] and C [4,5], have their own package or
library for calculating decimal arithmetic using software, which is realized with binary
hardware units. We call it software (SW)-based decimal computing. However, these may
not be sufficient for very large-scale applications, such as telco billing system, banking
enterprise system, or a big e-commerce site. This is because the required computation time
might not be acceptable when a large number of mathematical calculations have to be
completed within a fixed amount of time.

There are a few modern processors with dedicated hardware for decimal arithmetic [6].
To the best of our knowledge, the first decimal accelerator was introduced by IBM in their
mainframe computer [7]. Then, they implemented DFP into system z [8], zEnterprise [9],
and power series [10]. FUJITSU also introduced decimal hardware in their SPARC64
processor [11]. We call this hardware (HW)-based decimal computing. Such a solution
through hardware requires extra area overhead [12–20].

The aim of our study is presented in Figure 1, where the relationship of among area,
delay, and precision are depicted. Our study is focused on a solution containing soft-
ware functions, which is based on binary arithmetic, along with hardware components
for dedicated decimal arithmetic. This combination is capable of balancing the hardware

Computers 2021, 10, 17. https://doi.org/10.3390/computers10020017 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-6550-5753
https://orcid.org/0000-0002-9837-5147
https://doi.org/10.3390/computers10020017
https://doi.org/10.3390/computers10020017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10020017
https://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/10/2/17?type=check_update&version=3


Computers 2021, 10, 17 2 of 19

area overhead with delay. Based on the analysis of both the existing software and hard-
ware solutions, four methods for decimal multiplication are proposed. Herein, using the
RISC-V-based evaluation environment proposed in Reference [21], it is experimentally
demonstrated that these approaches are capable of speeding up the total execution process
by 1.43× to 2.37× compared with a standard software library. In addition, 7–97% less
hardware area overhead is required compared with a hardware solution where a coefficient
multiplication is fully implemented in hardware.

Binary 
Hardware

Decimal hardware

D
el

ay

Software

Combination

Hardware

Area

This work

Precision

Figure 1. Area-delay relationship with precision for decimal arithmetic.

The key contribution of each method is summarized as follows:

Method-1 is the most area-efficient solution, where the addition is supported by decimal
hardware, and most operations are processed sequentially. It does not use
any binary arithmetic and hence does not require time-consuming decimal-to-
binary or binary-to-decimal conversion. It accelerates the execution process
efficiently compared with software-based solutions.

Method-2 achieves the highest speed where the sequential accumulation using a deci-
mal adder in Method-1 is replaced by a parallel decimal multiplier. However,
a large area overhead is required.

Method-3 partially relies on binary arithmetic, where only the multiplicand suffers
decimal-to-binary and binary-to-decimal conversion, and a parallel decimal
multiplier is used as in Method-2. It can achieve moderate execution process
speedup and requires a large area overhead.

Method-4 achieves execution process speedup by adopting a hardware binary-to-
decimal converter. Basic operations for multiplication rely on well-optimized
binary arithmetic. It can also achieve well acceleration with a relatively low
area overhead.

The rest of this paper is organized as follows. The DFP number and its standards with
existing software and hardware solutions are briefly introduced and analyzed in Section 2.
Based on our analyses, four different methods are described in Section 3. The hardware
components required to implement our proposed methods are also discussed in Section 3.
In Section 4, the proposed methods are evaluated in terms of area and delay. Finally, the
conclusion is provided in Section 5.

2. Decimal Floating-Point Multiplication

In the DFP numbering system, a floating-point number is presented using radix-10. A
number can be finite or a special value. Every finite number has three integer parameters,
i.e., the sign, coefficient, and exponent. The numerical value of a finite number is given by:



Computers 2021, 10, 17 3 of 19

(−1)sign × coe f f icient × 10exponent. (1)

According to the IEEE 754-2008 standard [2], two types of representations are allowed for
specific formats (32, 64, and 128 bits). One is the binary integer decimal (BID) proposed
by Intel [5] where the coefficient encoding is an unsigned binary integer. The other is a
densely packed decimal (DPD) proposed by IBM [22], where the coefficient encoding is a
compressed binary-coded decimal (BCD) format. Although the performance of BID-based
software library has a faster performance than the DPD-based software library for a 64-bit
operation, it is downgraded significantly for higher precision, such as 128-bit [23].

The IEEE 754-2008 compliant decimal multiplication process (for finite numbers)
is presented in Figure 2. Two operands, the multiplicand X and the multiplier Y, are
multiplied according to the following steps:

• The sign and temporal exponent are calculated from the signs and exponents of X
and Y.

• A coefficient multiplication is performed.
• If the result exceeds the precision, a rounding operation using various rounding

algorithms is applied [12,24,25].
• Finally, the exponents are adjusted accordingly.

Input X, Y in DPD
Sign X, Y

Exponent X, Y

Coefficient X, Y

Temp-Exp
= Exponent X 
+ Exponent Y

Rounding

Exponent
=Temp-Exp

+ Rounded digits

Rounded 
digits

= Sign X ⊕ Sign Y

Combine (Convert to DPD)

Result

ExponentSign Coefficient 

Multiplication of
Coefficient X and 

Coefficient Y

Sign

Figure 2. Decimal multiplication process. Hardware–software co-design solutions are considered in
the dotted rectangle in this paper.

In this paper, hardware–software co-design solutions for the multiplication of two
coefficients and rounding of the coefficient product (a dotted rectangle in Figure 2) are
considered, while relying on software for the rest parts. A brief overview of coefficient
multiplication in the existing software and hardware-based solutions for decimal multipli-
cation will be provided. For simplicity, the coefficients of multiplicand and multiplier are
denoted by X and Y, instead of “coefficient X” and “coefficient Y” hereafter.

2.1. Software Library

The BID format can take advantage of the highly optimized binary multiplication since
the coefficient is stored as a binary number in the BID format. A BID-based software library
(Intel Decimal Floating-Point Math Library) uses binary arithmetic [5,26]. The multiplication
is executed by multiplying the coefficients in binary logic.

In contrast, the DPD-based library (IBM decNumber C Library) uses a base-billion
numbering system for internal calculation [4]. In the base-billion numbering system,
one unit (digit) can represent one billion numbers, which corresponds to nine decimal
digits. In this system, one unit is represented as a 32-bit binary number; hence, operations



Computers 2021, 10, 17 4 of 19

among units can be performed using binary arithmetic (i.e., software). A flow of the
multiplication in such a system is presented in Figure 3. Initially, the DPD is converted to
a base-billion number using a lookup table.Then, binary multiplications are performed
among the units sequentially, and the result is accumulated. Subsequently, the accumulated
result is converted to BCD. Although binary-based multiplication is efficiently handled
by binary arithmetic, conversions between the BCD and base-billion number require
complicated processes.

X, Y

Result

Compress BCD to DPD

Convert based billion
 to BCD

Round result
 

Convert DPD to
 base billion

Multiply base billion
 coefficient (binary logic)

Figure 3. Software decimal multiplication.

2.2. Hardware Solutions

IBM power and enterprise series (Power6, system z10, z196) have provided a full
DFP accelerator. The accelerator supports several decimal operations with a set of regis-
ters [7–10].

A basic flow describing the multiplication of coefficients of multiplicand X and multi-
plier Y is presented in Figure 4, which involves two principal stages: the partial product
generation (PPG) and the partial product accumulation (PPA), followed by a conversion
from DPD to BCD. DPD is a compressed BCD and can be easily converted to BCD. Several
variations of BCD encodings, such as signed-digit (SD) [−6, 6] and [−7, 7], redundant
encodings XS-3 and ODD, and non-redundant encodings 8421, 4221, and 5211, are used
internally [27–31].

Assume that Y has n decimal digits, and it is represented as Y = yn−1yn−2 · · · y1y0.
Multiplication is obtained as:

X · Y = yn−1 · X · 10n−1 + yn−2 · X · 10n−2 + · · ·+ y1 · X · 101 + y0,

where yk · X (k = 1, . . . , n − 1) is 1X, 2X, . . ., or 9X, and it is called a partial product (PP).
In the PPG, the multiplicand multiples 1X–9X are calculated in advance. Several

optimizations have been proposed with respect to this process [13,27,28,30,31]. For example,
some easy multiples, such as 2X and 5X, are calculated using combinational logic, and the
rest are calculated by adding two precomputed multiples in parallel [13,14,31]. Then, the
partial products yn−1 · X, yn−2 · X, . . ., y1 · X are selected from precomputed multiplicand
multiples.

In the PPA, the partial products are accumulated. Different types of adder, counter,
compressor, and converter with various encodings are used to generate the final prod-
uct. In Reference [31], both the 8421 Carry-lookahead adder (CLA) and 4221 Carry-save
adder (CSA) tree have been proposed. A CSA tree with a counter and a compressor are
used in References [30,32], whereas a signed-digit has been proposed in Reference [27].



Computers 2021, 10, 17 5 of 19

Such high-performance dedicated decimal hardware units require a large area. Processor
designers consider that this results in a very high cost.

 
Multiplicand multiple 

 Select partial product 
 

 Accumulate partial product
 

PPG

PPA

Compress BCD to DPD
 

Round result 

Decompress DPD to BCD

Result

Recod

X,Y 

 X  Y

(MUX) 

(PPR tree) 

 Generate

Figure 4. Hardware decimal multiplication.

3. Proposed Methods for Decimal Multiplication

Hardware-software co-design solutions for decimal multiplication are proposed in
this section. Four methods (Method-1, Method-2, Method-3, and Method-4) are proposed,
which provide several Pareto points in terms of area and delay. The DPD format is adopted
to represent input and output decimal numbers, because, it is suitable for handling decimal
numbers in dedicated decimal hardware.

In the hardware-software co-design solutions, number encodings is very important.
In the proposed methods, BCD and base-billion formats, as well as DPD format, are used
internally. The relationship among these three formats is presented in Figure 5. In the BCD
format, every decimal digit is represented by 4 bits. In the DPD format, three decimal digits
are compressed into 10 bits, because three decimal digits can represent only 1000 numbers
(0–999). Although the DPD format compresses 12 bits of the BCD format into 10 bits,
compression and decompression are very simple processes and do not require a significant
amount of time (or hardware). In this paper, both the DPD and BCD formats are called
decimal formats. In the base-billion format, nine decimal digits are converted into a 32-bit
binary number. The 32-bit binary number is also called a unit in the base-billion numbering
system. The base-billion format is regarded as a type of binary format. Although the
conversion between binary and decimal numbers is time-consuming, binary arithmetic can
be used without any hardware overhead, once the decimal numbers are converted into
binary numbers.

The detailed design and features of the proposed methods are discussed below. The
flow of these methods are presented in Figure 6.



Computers 2021, 10, 17 6 of 19

𝑑"# 𝑑"$ 𝑑"% 𝑑"& 𝑑"' 𝑑"( 𝑑"" 𝑑") 𝑑* 			𝑑, 𝑑# 	𝑑$ 		𝑑% 	𝑑& 𝑑' 			𝑑( 	𝑑" 	𝑑)BCD

DPD

12 bits

10 bit compressed form

base billion 32 bit binary 32 bit binary

compress decompress

decimal numbers

binary numbers

conversion

unit

Figure 5. Relationship among binary-coded decimal (BCD), densely packed decimal (DPD), and
base-billion formats.

X, Y

Decompress DPD to BCD

pp[0]=0; pp[1]=X; i = 1

i < 10 ?

pp[i+1] = pp[i] + pp[1] 

j = # digits in Y; result = 0

j > 0 ?

k = j-th digit of Y

Decimal left shift result

result = result + pp[k]

i ++

j --

Round result

X, Y

Decompress DPD to BCD

pp[0]=0; pp[1]=X; i = 1

i < 10 ?

pp[i+1] = pp[i] + pp[1] 

Select partial products 

i ++

Round result

Accumulate partial 
products 

X

Convert 
DPD to 

base billion

Generate 
1X-9X

Select partial products 

Round result

Accumulate partial 
products 

Y

Decompress 
DPD to BCD

Convert 
base billion

to BCD

X, Y

Convert DPD 
to base billion

Multiply coefficients

Convert base billion 
to BCD

Round result

(a)

(b) (c)

(d)

PPG PPG

PPA PPA

PPA

PPG

: software

: hardware

Figure 6. Flow of the proposed methods: (a) Method-1, (b) Method-2, (c) Method-3, and (d) Method-4.
White and gray blocks indicate software parts and hardware parts, respectively.

3.1. Method-1

This method is oriented to a very low area, where only one BCD-CLA is required in the
hardware part. This adder is used to generate multiplicand multiples and accumulate PPs.
The basic multiplication operations rely only on decimal addition. The time-consuming
decimal-to-binary or binary-to-decimal conversion is not required. First, both X and Y are
decompressed into BCD from DPD. Hardware component BCD-CLA is used to generate
multiplicand multiples 1X to 9X by adding the coefficient of X repeatedly (PPG). Then,
the partial products are accumulated by adding and shifting the multiples according to
the digits of Y (PPA). The sequential decimal operations using proposed hardware are
managed by software. The first loop has a constant iteration count, whereas the iteration
count of the second loop depends on the precision of the inputs. Thus, more time is
required for higher precision. Rounding is less expensive to be handled by software, since
the coefficient is in BCD format.

3.2. Method-2

Method-2 is the fastest among all methods. It is designed to speed up the latter
half of Method-1 for higher precisions. Multiplicand multiples are obtained in the same
way as in Method-1, whereas partial products are selected in parallel from multiplicand



Computers 2021, 10, 17 7 of 19

multiples. The sequential accumulation of the PPA in Method-1 is replaced by a parallel
accumulator, and the final rounding is also performed by hardware. This method provides
good execution acceleration due to the dedicated hardware.

3.3. Method-3

Method-3 (and also Method-4) achieves acceleration by adopting hardware for con-
version. This method is different from Method-1 and Method-2, where acceleration is
achieved by avoiding the time-consuming conversion. In Method-3, only multiplicand X
suffers binary-to-decimal and decimal-to-binary conversions. Multiplicand multiples are
obtained using binary arithmetic, and then they are converted into decimal numbers. The
latter half is the same as Method-2.

3.4. Method-4

This method follows the process of IBM decNumber C Library [4] by replacing the
time-consuming base-billion to BCD conversion parts with hardware. First, X and Y
are converted to base billion numbers, and the multiplication between two base-billion
numbers is performed by software. After that, the result is converted to BCD using the
hardware, and the final result is rounded up using software.

3.5. Decimal Hardware Component Design

Five decimal hardware components are adopted to support the proposed co-design
solutions. These are BCD-based carry-lookahead adder (BCD-CLA), partial product se-
lector, parallel accumulator, conversion circuit from base billion number to BCD number
(BCD converter), and rounding logic.

As shown in Figure 6, the gray blocks are for hardware components. Correspondence
between hardware blocks and hardware components is summarized in Table 1. The
functionality and block diagram of each of the hardware components are detailed below.
As described below, partial product selector and parallel accumulator used in Method-2
and Method-3 have large area since they handle several values in parallel, and this is later
verified in the experiment (see Section 4).

Table 1. Correspondences between hardware blocks and hardware components.

Method Block Component

Method-1, 2 pp[i + 1] = pp[i] + pp[1]

Method-1 Decimal left shift result BCD-CLA
result = result + pp[k]

Method-2, 3 Select partial products Partial Product Selector

Method-2, 3 Accumulate Partial Products Parallel Accumulator

Method-2, 3 Round result Rounding Logic

Method-3, 4 Convert base billion to BCD BCD Converter

3.5.1. BCD-CLA

The BCD adder proposed in Reference [31] is adopted. This adder uses 8421 BCD
encoding. Since 8421 BCD encoding has an unused combination of 4-bits (1010 to 1111),
the adder includes a logic to handle such an unused combination. The basic component
accepts two 4-bit (one decimal digit) BCD numbers with 1-bit carry and produces 4-bit
(one decimal digit) sum in BCD with a single-bit carry-out. For multi-digit addition, a
4-digit CLA is built as a the basic block, where four digits are grouped together to calculate
a group carry-propagation and generation. Then, a multi-digit CLA is implemented based
on these primitive four-digit CLA blocks.



Computers 2021, 10, 17 8 of 19

BCD-CLA is the base component for the parallel decimal multiplication. We also
examined a delay efficient BCD-CLA proposed in Reference [31]. We compared BCD-
CLA [31] and the delay-efficient BCD-CLA [31]. For the single-digit case, the delay-efficient
BCD-CLA costs 533.2 µm2 that requires an additional 193.9 µm2 area overhead from
the proposed component. So, the multi-digit case requires more area. As this study
considers a co-design methodology where the delay improvement in hardware is not a
considerable amount compared to the other part (software routine), we adopt the area
efficient BCD-CLA [31].

3.5.2. Partial Product Selector

Figure 7a shows the partial product selector for 64-bit format. This component is used
between multiplicand multiple generations and parallel accumulation of the multiplication
process. In case of 64-bit format, each of 16 partial products is selected from 1X, 2X, . . . ,
9X. The partial product selector is composed of nine registers for nine 65-bit multiplicand
multiples and 16 nine-input multiplexers (MUXs), in case of 64-bit format. Signals of
16-digit multiplier (Y) in BCD are used as selection signals for 16 MUXs. Figure 7b shows
the MUX network for generating sixteen partial products in parallel.

9x 8x 4x5x6x7x 3x 2x1x Y(BCD)

Selection of multiples
(MUX)-block

Multiplicand multiple

PP15      PP14 .............PP0

............

64656565656565656565

(a) Block diagram

9x 8X

PP15

PP14

PP0

4

4

4

Y[59:56]

Y[3:0]

Y[63:60]

64

Y(BCD)1X

(b) MUX-block

Figure 7. The 64-bit partial product selector.

Alternatively to the partial product selector, it can be considered to adopt hardware
to a whole PPG process. There are several proposals for such a hardware. In the process
proposed in References [13,31], multiplicand multiples (1X–9X) are obtained by calculating
some easy multipliers, like 2X and 5X, with combinational logic initially, and calculating
the rest of the multiplicand multiples by adding two precomputed multiplicands in par-
allel [13,31]. This process is followed to avoid hard multiplication which cannot perform
in constant time due to carry propagation. Some proposals generate 1X–5X in parallel
instead of 1X–9X. In such case, multiplier digits need to be recoded into SD radix-10 [−5, 5]
for selecting PPs [27,28,30]. In that case, all multiplicand multiple including only hard
multiplication 3X can be generated in constant time by using XS-3 [−3, 12] [28,30] or using
SD[−6, 6] [27]. All these processes require additional combinational logic for multiplicand
multiple generation and internal conversion. To avoid the area overhead, we used CLAs to
generate (1X–9X). Section 4 evaluate the area and delay of various alternative components
for the partial product selector.

3.5.3. Parallel Accumulator

An area-efficient architecture is designed for this component. This component is a
BCD-CLA tree shown in Figure 8. This component is adopted from Reference [31]. This
BCD-CLA tree accumulates the partial products to generate the final coefficient product.
BCD-CLAs are organized in a tree structure. To accumulate (n = 2k) decimal numbers,
a CLA tree with k stages is used, where (n + 2i)-digit CLAs are used in each i-th stage
(1 ≤ i ≤ k). Therefore, for a 64-bit operation, it requires 15 BCD-CLAs of (18–32) digits for
a carry free partial product reduction in four stages.



Computers 2021, 10, 17 9 of 19

Some other implementation of parallel accumulator have been proposed in
References [28,30,31], where non-redundant decimal encoding formats, like 8421, 4221,
and 5211, are used in References [28,30,31] and redundant formats, such as XS-3 and ODD,
are used in References [29,30]. The signed-digit encoding, like [−6, 6], [−7, 7], are used
in Reference [27]. All of these implementations perform better in terms of speed, however,
considering the area-efficient solutions, we adopted this approach. Table 4 evaluates all the
implementations.

CLA

CLA

CLA

CLA

PP15
14

13

12

CLA CLA

11

10

9

8

CLA CLA

7

6

CLA CLA

3

2

1

0

CLA CLA CLA

CLA

CLA

18-digit

20-digit

24-digit

32-digit

PP

PP

PP PP PP PP PP PP

PP PP PP PP PP PP PP
5

4

Figure 8. Parallel Accumulator for 64-bit operation.

3.5.4. BCD Converter

A base-billion to BCD converter converts one unit of a base billion number represented
as a 32-bit binary number into a nine-digit BCD. The shift-and-add-3 algorithm [18] is
applied. Figure 9 shows a block diagram, where each block is a small combinational logic
that takes a 4-bit binary number and adds 3 if it is greater than 4. In the critical path, it
takes 28 steps of this conversion blocks and a total of 141 blocks to convert a base-billion
number to a BCD number.

add 3 if > 4

32-bit binary number

9-digit BCD number

0

0

Figure 9. Base-billion to BCD converter.

A high-performance converter using digit splitting is proposed in References [19,20].
This is a design targeting digit by digit decimal multiplication where every stage of PPG
requires conversion. One the other hand, in Reference [18], a base-thousand numbering
system is introduced for the converter. Some other implementation proposes the lookup
table for small scale conversion. As Method-3 and Method-2 are using base-billion number-
ing system, thus, we developed a converter for base-billion to BCD. Because base-thousand
in software is slower than the base-billion for decimal multiplication [4] as most of the



Computers 2021, 10, 17 10 of 19

modern CPU has the 64-bit highly optimized binary multiplier to handle base-billion
numbers directly.

3.5.5. Rounding Logic

When an intermediate product cannot be placed into the product coefficient, round-
ing is executed. Rounding to nearest, ties to even is adopted in the same way as in
Reference [14]. The component includes a logic to determine whether it is round up or
down, and an adder used for rounding-up. This is designed based on the definition of the
IEEE-754 standard.

4. Experimental Results

The proposed methods are evaluated and compared with the existing software and
hardware intensive solutions. The proposed methods are implemented on an RISC-V based
integrated framework for the software–hardware co-design proposed in Reference [21]
(The integrated framework is available at https://decimalarith.info.).

4.1. Experiment Setup

In the integrated evaluation framework, the RISC-V ecosystem with a dedicated
hardware accelerator for decimal arithmetic is used along with several input samples for
decimal computing. In this framework, the operations corresponding to the hardware part
in the proposed methods are integrated as custom instructions in a Rocket Chip (one of
the hardware implementations for RISC-V) [33,34], and they are executed in an accelerator
through the Rocket Custom Coprocessor (RoCC) interface. These custom instructions can
be used by implementing the corresponding hardware in the accelerator.

Figure 10 shows an overview of the RISC-V-based evaluation environment proposed
in Reference [21]. The framework uses RISC-V ecosystem with input samples as decimal
arithmetic verification test cases. The ecosystem contains compilers, system libraries, OS
kernels, and an emulator with the Rocket Chip. Given a program code for an arithmetic
operation with custom instructions and an evaluation setup information, a test program
is generated and it is complied to an executable by the GCC RISC-V cross compiler with
optimization flag -O. The evaluation setup information can specify a precision (double or
quad), types of input samples (rounding, overflow, normal, underflow, etc.), types of the
arithmetic operation (addition, subtraction, multiplication or any other), the number of
iterations, the pattern of output (execution time or number of cycles), etc. The cycle-accurate
evaluation is possible with the framework. The hardware parts are also evaluated with
the framework, where the hardware parts are integrated as custom instructions executed
in an accelerator. The corresponding hardware is described in a hardware description
language Chisel for the Rocket Chip, and it is translated into Verilog-HDL and evaluated
with CAD tools.

In the framework, the Rocket Chip contains Rocket core, which is a five-stage single-
issue in-order scalar processor. The Rocket Chip also contains an accelerator which can
be used by custom instructions whose opcodes are reserved in RISC-V ISA. The Rocket
core and the accelerator have a decoupled communication through the RoCC interface
as shown in Figure 11. The commands for the accelerator including register values are
generated by committed instructions in the Rocket core and sent to the accelerator, and
they may write an integer register in response. The accelerator can also share the Rocket
core’s data cache through the RoCC interface.

Cycle-accurate evaluation is possible for software-hardware co-design solutions for
a 64-bit format, where a clock cycle is determined only considering a main processor
(Rocket Chip). Custom instructions require multiple cycles according to their hardware
implementation. Custom instructions corresponding to a decimal addition, partial product
selection and accumulation, rounding for a decimal number, and conversion from base-
billion to BCD formats have been implemented. Regarding the instruction for partial
product selection and accumulation, the precomputed multiplicand multiples 1X–9X are

https://decimalarith.info


Computers 2021, 10, 17 11 of 19

loaded on the accelerator and they are accumulated according to the value of a multiplier Y.
Custom instructions are used from the program code through macros that include in-line
assembly codes for the corresponding custom instructions.

The hardware intensive solution uses a coefficient multiplication [31] and a rounding
logic [14] as dedicated hardware. Since the coefficient multiplication [31] accepts BCD
numbers as input coefficients, the hardware intensive solution includes a decompression
from DPD to BCD as software.

The dedicated hardware parts for the proposed methods and the hardware intensive
solution are translated from Chisel to Verilog-HDL, and their area and delay are evaluated
by the logic synthesizer [35] with a 90 nm standard cell library [36]. Other hardware units
used in the existing hardware solutions for decimal computing are also evaluated in the
same environment.

Method with 
custom 

instructions
Evaluation 

setup

Input 
samples

Test 
program 

generation
GCC RISC-V 
cross compiler

Rocket Chip
with custom 
accelerator

Hardware 
description
for custom 
instructions
(in Chisel)

Area and delay
evaluation

Translation

RISC-V
binary

Emulation
and

evaluation
Test

program

Macros to 
use custom 
instructions

Hardware description
(in Verilog-HDL)

cycles area, delay

Figure 10. Overview of RISC-V-based evaluation environment. The dotted region is the framework
proposed in Reference [21].

E
xe

cu
tio

nR
ocket C

ore

Cache

RoCC interface

(Accelerator)

Control
Logic

Register
Bank

D
ec

im
a

l h
ar

dw
ar

e 
co

m
po

n
en

t

Figure 11. High-level architecture of Rocket Chip with Rocket Custom Coprocessor (RoCC) interface
with accelerator.

As an input for the decimal multiplication, 8000 different samples were selected for the
evaluation [37,38]. These samples include overflow, underflow, result (samples generating
various results), rounding, and some other cases. The clock cycles for these samples are
evaluated in the integrated evaluation framework.

4.2. Area and Delay Tradeoff

The integrated evaluation of all the proposed methods along with full software so-
lution [4] and the hardware intensive solution is presented in Table 2. This table shows
the average number of cycles required to execute a single multiplication operation. In the
table, “Method” denotes the proposed methods, software and full hardware solutions, and



Computers 2021, 10, 17 12 of 19

the average number of cycles for the hardware part and total computation are denoted as
“Hardware”, and “Total” columns, respectively. “Speed up” denotes the speedup achieved
against the software solution [4], while “Performance loss” denotes the performance loss
against the the hardware intensive solution. It can be observed that good speedup from
1.43× to 2.37× can be achieved against thesoftware solution. Compared to the hardware in-
tensive solution, performance losses are 16.8% to 49.7%. Method-2 is the fastest among the
proposed methods. It achieves 2.37× speedup against the software solution that is 16.8%
performance loss against the hardware intensive solution. Both Method-1 and Method-2
perform BCD-based calculations and do not require any conversion between binary and
decimal numbers. Hence, the elimination of complicated conversion achieves significant
execution speedup. On the other hand, Method-3 and Method-4 achieve acceleration by
executing the conversion using hardware.

Table 2. Execution cycles in integrated evaluation (64-bit).

Method
Avg. Number of Cycles

Speed Up
Performance

Hardware Total Loss

Software [4] 0.00 4078.83 - 64.9%
Method-1 509.12 2288.74 1.78× 37.4%
Method-2 286.91 1723.72 2.37× 16.8%
Method-3 337.92 2420.01 1.69× 40.8%
Method-4 106.32 2852.50 1.43× 49.7%
Hardware intensive 86.40 1433.60 2.85× -

The execution cycle distributions of the 8000 samples used for the proposed methods,
the software solution, and the hardware intensive solution are presented in Figure 12. In
all methods, some distributions with multiple peaks are observed. The software solution
exhibits the widest distribution. It can be considered that the number of cycles depends on
the input samples in the software solution and is distributed in a wide range. In contrast,
the execution cycles of Method-2 and the hardware intensive solution are distributed in
a narrow range with two peaks. (The input samples include a collection of very small
numbers and relatively large numbers, which results in the two peaks [38] observed.) This
implies that not only the average performance but also the worst-case performance can
be accelerated.

The performance of each input type was also analyzed. The average execution cycles
for each input type are presented in Figure 13, where each type has 2000 input samples.
The average cycles for all input types are also shown in “Overall”. In the cases of rounding,
overflow, and underflow types, the performance of the methods exhibits a trend similar to
the overall trend. However, Method-4 is comparable with Method-1 regarding the “result”
type. The “result” type generates various types of results, including many normal results
without rounding, overflow, or underflow. That is, Method-4 is comparable with Method-1
for normal cases, and its performance is degraded only for special cases, such as rounding,
overflow, and underflow. The number of execution cycles required for hardware by the
proposed methods is in the following decreasing order: Method-1, Method-3, Method-2,
and Method-4. This is because custom instructions are repeatedly called in Method-1,
Method-2, and Method-3, whereas Method-4 called a few custom instructions. It can also
be observed that the software solution is degraded more in the special cases than the
proposed methods and the hardware intensive solution. Thus, hardware solutions can
avoid performance degradation by mitigating input-dependent cycle inflation. Especially
in Method-2 and the hardware intensive solution, the average number of cycles is almost
the same for all the input types.



Computers 2021, 10, 17 13 of 19

Software[4]
Method-1
Method-2
Method-3
Method-4

Cycles

D
en
si
ty

1000 2000 3000 4000 5000 6000

0.006

0.004

0.002

0.000

Hardware intensive

Figure 12. Execution cycle distributions for the proposed methods and the software solution for a
64-bit format. Curves of probability density functions for the proposed methods and software and
full hardware solutions are depicted.

 0

 1000

 2000

 3000

 4000

ResultOverall Rounding Overflow Underflow

Software[4]
Method-1
Method-2

Method-3
Method-4

Type of Input

C
yc

le
s

Hardware intensive

Figure 13. Comparison of the execution cycles for different input types. Each bar shows the average
execution cycle for each pair of solution and input type. The black color indicates the cycles used by
the hardware, e.g., the bar with blue and black colors shows the total execution time for Method-1,
and the black area shows the cycles for the hardware.

The area and delay of the hardware part for both 64-bit and 128-bit formats are pre-
sented in Tables 3–5. In the proposed methods, the same hardware can be used repeatedly
(e.g., BCD-CLA is repeatedly used in Method-1 and Method-2). In this case, the total delay
for the hardware is evaluated by accumulating the delay of the target hardware according
to the number of usage times. Since Method-1, Method-2, and Method-3 include PPG
and PPA stages, these parts are evaluated in comparison with existing solutions [27,30,31].
(In Method-1, although a partial product selection is included in the PPA stage, this is
executed by software. Therefore, the hardware parts are clearly separated. (See Figure 6a
for details.)) In Tables 3 and 4, the existing solutions have two BCD numbers as inputs.
Finally, the total hardware overheads for the four proposed methods are compared with
full hardware implementation. In the area evaluation (Tables 3–5), the delay of the software
routine for the proposed methods is not included to estimate hardware delay only.



Computers 2021, 10, 17 14 of 19

Table 3. Hardware overhead comparison (Partial Product Generation (PPG)).

M Architecture 64-Bit Format 128-Bit Format
A (µm2) D (ns) A (µm2) D (ns)

[27] Signed-digit 109,822 20.91 380,336 35.90
[30] XS-3 106,078 19.39 371,940 25.21
[31] 8421-BCD 137,593 43.00 276,545 99.58
M-1 BCD-CLA 5459 63.00 11,270 117.10
M-2 BCD-CLA, PPS 88,290 67.33 228,094 123.66
M-3 Converter, PPS 99,428 4.66 250,734 6.56

PPS: Partial product selector.

Table 4. Hardware overhead comparison (partial product accumulation (PPA)).

M Architecture 64-Bit Format 128-Bit Format
A (µm2) D (ns) A (µm2) D (ns)

[27] Signed-digit 93,794 26.46 207,720 33.14
[30] Hybrid BCD 94,268 36.68 230,929 130.25
[31] 8421 CLA tree 87,729 59.34 225,982 123.87
M-1 BCD-CLA 5459 112.00 11,270 416.40
M-2 PA 87,729 59.34 225,982 123.87
M-3 PA 87,729 59.34 225,982 123.87

PA: Parallel accumulator.

Table 5. Overall hardware overhead comparison.

M Architecture 64-Bit Format 128-Bit Format Ratio (128/64)
A (µm2) R (%) D (ns) A (µm2) R (%) D (ns) A D

[27] Signed-digit 216,789 −1.53 47.37 614,779 −16.16 69.04 2.89 1.46
[30] XS-3 and Hybrid BCD 213,519 0.00 56.07 629,592 −18.95 155.46 3.01 2.77
[31] 8421 addition, CLA tree 238,495 −10.47 102.34 529,250 0.00 229.83 2.23 2.25
M-1 BCD-CLA 5459 97.44 175.00 11,270 97.87 533.50 2.06 3.05
M-2 BCD-CLA, PP selector, PA 187,308 12.27 126.67 476,653 9.93 247.53 2.58 1.95
M-3 PP selector, PA 198,446 7.06 64.00 499,293 5.66 130.43 2.55 2.04
M-4 BB to BCD converter 16,596 92.22 42.53 33,910 93.59 150.60 2.04 3.54

M: Method, A: Area, D: Delay, R: Area reduction ratio, BB: Base Billion, PA: Parallel accumulator.

The area overhead and the delay of the PPG for the proposed methods and existing
hardware solutions are presented in Table 3. The existing solutions fully realize the PPG
stage with hardware, whereas the values for the proposed methods correspond to the
hardware part in this stage. Hardware solutions based on several encodings have been
previously proposed. Columns “M”, “A”, and “D” (also used in Table 4) denote the
method, area, and delay, respectively. The column “Architecture” shows the encodings or
the architecture regarding the basic blocks for each method. (This column is also used in
Tables 4 and 5.) Method-1 has a very small area overhead, since it only requires one BCD-
CLA, whereas Method-2 and Method-3 require more hardware for the parallel selection of
PPs. However, compared with full hardware solutions, the area overheads of Method-2
and Method-3 are still small. The BCD-CLA is used repeatedly in Method-1 and Method-3.
In these methods, larger delays are observed.

The area overhead and the delay of the PPA are presented in Table 4. Similarly to the
PPG, the values for the proposed methods correspond to the hardware part in the PPA
stage. Method-1 requires only one BCD-CLA and has a very small area overhead. This
BCD-CLA can also be used in the PPG stage, and it implies that no extra area overhead
is required in the PPG stage. However, sequential accumulation is required, and a larger
delay is observed. Method-2 and Method-3 adopt a parallel accumulator based on the 8421
CLA proposed in Reference [27]. Hence, they exhibit the same area and delay.

The overall area overhead and delay of each method are presented in Table 5, where
conversion and rounding circuits are included with the PPG and PPA stages. Columns



Computers 2021, 10, 17 15 of 19

“Area”, “ARR”, and “Delay” denote area, the area reduction ratio compared with the most
area-efficient existing solution, and execution time for both 64-bit and 128-bit formats,
and column “Ratio(128/64)” denotes the execution time ratio of the 128-bit to the 64-bit
format. Since Method-1 shares its BCD-CLA in both the PPG and PPA stages, an area for
only one BCD-CLA is required. Method-1 and Method-4 have relatively less hardware
requirements compared with full hardware solutions, whereas Method-2 and Method-3
require more hardware. Regarding delay, even though the proposed methods realize
a part of the function as hardware, this hardware part exhibits higher delay than full
hardware solutions.

The area-delay tradeoff for all the proposed methods, the software solution, and the
hardware intensive solution is presented in Figure 14. The delay has been obtained by
the integrated evaluation framework. In this figure, the purple line is the tradeoff curve
obtained by curve fitting using a inverse proportional model. The parameters are estimated
using Trust-Region algorithm in MATLAB Curve Fitting Toolbox with custom function of
f (x) = a/(x + b) + c, where x stands for the area. The fitting parameters a, b, and c are set
to 4.191 × 106, 1495, and 1966, respectively. The curve shows the trend of the proposed
methods in terms of speed and area tradeoff. Method-1 and Method-4 achieve speedup
with a very small hardware overhead. However, to enhance the speed more, a huge area
overhead is required in Method-2 and Method-3. From the figure, we get two Pareto points
of Method-1 and Method-2 for the 64-bit precision.

1000

2000

3000

4000

5000

0 50k 100k 150k 200k 250k

Software[4] Method-1

Method-2

Method-3

Method-4
Hardware

C
yc

le
s

Area (μm2)

Intensive

Figure 14. Area-delay tradeoff for the 64-bit precision.

Method-1 and Method-4 achieve moderate acceleration with a small area overhead
(Method-4 is comparable with Method-1 for the normal type of inputs as previously
analyzed). They reduces hardware overhead over 90% compared to the hardware intensive
solution while losing less than 50% of performance. On the other hand, Method-2 achieves
the fastest acceleration with a relatively large area overhead. It achieves 16.8% performance
loss against the hardware intensive solution while reducing 12.2% of hardware overhead.
Method-3 also achieves a moderate acceleration but it requires a large area overhead, and
it does not exhibit any superior performance compared with the other methods.

Table 6 shows more detailed results for the execution time and the area overhead. Col-
umn “Method” denotes the solutions (the proposed methods, software, and the hardware
intensive solutions) and hardware blocks or software routines in the solutions. Columns
“Avg. # of cycles” and “Area” denote the average number of cycles and the hardware
area, respectively. The two hardware components, PPS and PPA, are collectively used in a
single custom instruction and their execution time is measured together in Method-2 and
Method-3. These two hardware components require a very high area overhead though
the corresponding instruction reduces the execution time. Rounding (Method-2, 3) and



Computers 2021, 10, 17 16 of 19

base-billion to BCD conversion (Method-3, 4) in hardware is a good substitution in terms of
area overhead, where they reduce over 96% and 92% cycles, respectively, with reasonable
area overhead. (The execution time for BCD conversions are compared between the soft-
ware solution and Method-4 since both solutions require to convert 4 units of base-billion
numbers.)

Table 6. Execution time and area overhead (64-bit).

Method Avg. # Cycles Area (µm2)

Software [4] 4078.83 -
DPD to base-billion conversion 606.36 -
exception check (NaN, Infinity, etc.) 109.32 -
base-billion multiplication 647.66 -
base-billion to BCD conversion 1474.68 -
rounding 795.7 -

Method-1 (total) 2288.74 5459
addition in PPG 178.48 5459
shift & addition in partial product accumulation 330.63 -

Method-2 (total) 1723.72 187,308
addition in Partial product generation 178.48 5459

Partial product selection 81.22 82,831
Partial product accumulation 87,727

rounding 27.20 11,288

Method-3 (total) 2420.01 198,446
conversion to BCD 229.50 16,596

Partial product selection 81.22 82,831
Partial product accumulation 87,729

rounding 27.20 11,288

Method-4 (total) 2852.50 16,596
conversion to BCD 106.32 16,596

Hardware intensive 1433.60 235,424
coefficient multiplication 86.40 235,424

4.3. Discussion

We proposed four methods for hardware–software co-design of decimal multiplication
to find new Pareto points in terms of speed and area overhead. Method-1 and Method-4
achieved acceleration with a small area overhead, whereas Method-2 achieved the highest
speedup with a large area overhead. Such speedup was obtained by either avoiding con-
version or executing conversion in hardware. That shows the conversion between binary
and decimal numbers is a bottleneck for a decimal computation in software solutions. In
Method-1, a small decimal adder brings acceleration by avoiding binary–decimal con-
versions, while Method-4 uses a dedicated hardware for a binary to decimal conversion.
Method-2 is also a Pareto point, where the highest speed-up is achieved using a powerful
parallel accumulator with a large area overhead. We tried another combination of dedicated
hardware units in Method-3, but it cannot be a Pareto point. Two methods, Method-1 and
Method-2, can be selected considering a hardware constraint or a requirement of speed-up.

5. Conclusions

In this paper, four methods were presented, which provide several Pareto points in
terms of area, and delay for decimal multiplication. These methods use both software and
hardware to reduce hardware overhead and increase computation speed simultaneously.
An RISC-V-based integrated evaluation framework was used to evaluate the proposed
methods. Experiments on an RISC-V-based environment for a 64-bit format proved that



Computers 2021, 10, 17 17 of 19

the proposed methods can achieve 1.43× to 2.37× execution speedup compared with an
existing software solution. They can also achieve a 7–97% area reduction compared with
the existing full hardware decimal multiplier.

Besides the decimal multiplication, we intend to develop other decimal arithmetic
based on SW–HW co-design. Currently, the proposed multiplication is designed using C
language with the library decNumber C, and we plan to include other popular program-
ming languages, like Java BigDecimal Class and Python decimal module, using decimal
accelerator support.

Future Vision

From an architectural point of view, there are numerous research opportunities to im-
prove and extend the proposed decimal co-design-based arithmetic discussed in Section 3.
This study establishes decimal multiplication co-design using hardware component, how-
ever, to enhance these tracks, research is needed to examine combined decimal/binary
multiplier with a co-design approach.

The IEEE standard for floating-point arithmetic (IEEE 754) again revised in 2019 to in-
clude additional demands in computing [39]. This study introduces decimal multiplication
using a combination of software and hardware, and we believe this study established to
satisfy the current needs and focus the interests of both commercial and personal users in
decimal arithmetic. Though the market has a choice, as continued research decreases the
performance gap between binary and decimal computing, we may very well see decimal
applications replacing binary applications in certain computing area.

Author Contributions: Methodology: R.-u.-h.M., M.S., and M.I.; Experiment: R.-u.-h.M.: Writing:
R.-u.-h.M., M.S.; M.I., Review and editing: M.S.; M.I. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Source are available at www.decimalarith.info.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DPD Densely packed decimal
BID Binary integer decimal
BCD Binary codded decimal
DFP Decimal floating-point
PP Partial product
PPG Partial product generation
PPA Partial product accumulation
CLA Carry-lookahead adder
CSA Carry-save adder
PA Parallel accumulator
SW Software-based decimal computing
HW Hardware intensive decimal computing

www.decimalarith.info


Computers 2021, 10, 17 18 of 19

References
1. Cowlishaw, M.F. Decimal floating-point: algorism for computers. In Proceedings of the IEEE International Symposium on

Computer Arithmetic, Santiago de Compostela, Spain, 15–18 June 2003; pp. 104–111.
2. IEEE Standard for Floating-Point Arithmetic IEEE Std 754-2008. 2008. Available online: https://standards.ieee.org/standard/75

4-2008.html (accessed on 11 June 2019).
3. Oracle America, Inc. Java Class BigDecimal. 2015. Available online: http://javadoc.scijava.org/Java/java/math/BigDecimal.

html (accessed on 11 June 2019).
4. Cowlishaw, M. The decNumber C library, Version 3.68. 2010. Available online: http://speleotrove.com/decimal/decnumber.html

(accessed on 11 June 2019).
5. Cornea, M. Intel Decimal Floating-Point Math Library. 2011. Available online: https://software.intel.com/en-us/articles/intel-

decimal-floating-point-math-library (accessed on 11 June 2019).
6. Schulte, M.J.; Lindberg, N.; Laxminarain, A. Performance evaluation of decimal floating-point arithmetic. In Proceedings of the

IBM Austin Center for Advanced Studies Conference, Austin, TX, USA, 18–20 October 2005; pp. 1–4.
7. Schwarz, E.M.; Kaepernick, J.S.; Cowlishaw, M.F. The IBM z900 decimal arithmetic unit. In Proceedings of the Asilomar

Conference on Signals Systems and Computers, Pacific Grove, CA, USA, 4–7 November 2001; pp. 1335–1339.
8. Schwarz, E.M.; Kapernick, J.S.; Cowlishaw, M.F. Decimal floating-point support on the IBM System z10 processor. IBM J. Res.

Dev. 2009, 53, 4.1–4.10. [CrossRef]
9. Carlough, S.; Collura, A.; Mueller, S.; Kroener, M. The IBM zEnterprise-196 decimal floating-point accelerator. In Proceedings of

the IEEE International Symposium on Computer Arithmetic, Tubingen, Germany, 25–27 July 2011; pp. 139–146.
10. Eisen, L.; Ward, J.W.; Test, H.; Mading, N.; Leenstra, J.; Mueller, S.M.; Jacobi, C.; Preiss, J.; Schwarz, E.M.; Carlough, S.R. IBM

POWER6 accelerators: VMX and DFU. IBM J. Res. Dev. 2007, 51, 663–683. [CrossRef]
11. Yoshida, T.; Maruyama, T.; Akizuki, Y.; Kan, R.; Kiyota, N.; Ikenishi, K.; Itou, S.; Watahiki, T.; Okano, H. SPARC64 X: Fujitsu’s

new-generation 16-core processor for Unix servers. IEEE Micro 2013, 33, 16–24. [CrossRef]
12. Wang, L.K.; Erle, M.A.; Tsen, C.; Schwarz, E.M.; Schulte, M.J. A survey of hardware designs for decimal arithmetic. IBM J. Res.

Dev. 2010, 54, 8.1–8.15. [CrossRef]
13. A, E.M.; Schulte, M.J.; Linebarger, J.M. Potential speedup using decimal floating-point hardware. In Proceedings of the Asilomar

Conference on Signals Systems and Computers, Pacific Grove, CA, USA, 3–6 November 2002; pp. 1073–1077.
14. A, M.E.; Schulte, M.J.; Hickmann, B.J. Decimal floating-point multiplication via carry-save addition. In Proceedings of the IEEE

International Symposium on Computer Arithmetic, Montepellier, France, 25–27 June 2007; pp. 46–55.
15. Erle, M.A.; Hickmann, B.J.; Schulte, M.J. Decimal floating-point multiplication. IEEE Trans. Comput. 2009, 58, 902–916. [CrossRef]
16. Gorgin, S.; Jaberipur, G. Fully redundant decimal arithmetic. In Proceedings of the IEEE International Symposium on Computer

Arithmetic, Portland, OR, USA, 8–10 June 2009; pp. 145–152.
17. Cui, X.; Lombardi, F. A parallel decimal multiplier using hybrid binary coded decimal (BCD) codes. In Proceedings of the IEEE

International Symposium on Computer Arithmetic, Santa Clara, CA, USA, 10–13 July 2016; pp. 150–155.
18. Neto, H.C.; Vestias, M.P. Decimal multiplier on FPGA using embedded binary multiplier. In Proceedings of the International

Conference on Field Programmable Logic and Application, Heidelberg, Germany, 8–10 September 2008; pp. 197–202.
19. Bhattacharya, J.; Gupta, A.; Singh, A. A High Performance Binary to BCD Converter for Decimal Multiplication. In Proceedings of

the 2010 International Symposium on VLSI Design, Automation and Test2010, Hsin Chu, Taiwan, 26–29 April 2010; pp. 315–318.
20. Al-Khaleel, O.; Al-Qudah, Z.; Al-Khaleel, M.; Papachristou, C.A.; Wolff, F.G. Fast and compact binary-to-BCD conversion circuits

for decimal multiplication. In Proceedings of the International Conference on Computer Design, Amherst, MA, USA, 9–12
October 2011; pp. 226–231.

21. Mian, R.; Shintani, M.; Inoue, M. Cycle-accurate evaluation of software-hardware co-design of decimal computation in RISC-V
ecosystem. In Proceedings of the IEEE International System on Chip Conference, Singapore, 3–6 September 2019; pp. 412–417.

22. Cowlishaw, M. Densely packed decimal encoding. IEE Proc. Comput. Digit. Tech. 2002, 149, 102–104. [CrossRef]
23. Anderson, M.J.; Tsen, C. Performance analysis of decimal floating-point libraries and its impact on decimal hardware and

software solutions. In Proceedings of the IEEE International Conference on Computer Design, Lake Tahoe, CA, USA, 4–7 October
2009; pp. 465–471.

24. Cornea, M.; Harrison, J.; Anderson, C.; Tak, P.; Tang, P. A software implementation of the IEEE 754R decimal floating-point
arithmetic using the binary encoding format. IEEE Trans. Comput. 2009, 58, 148–162. [CrossRef]

25. Gonzalez-Navarro, S.; Tsen, C.; Schulte, M.J. Binary integer decimal-based floating-point multiplication. IEEE Trans. Comput.
2013, 62, 1460–1466. [CrossRef]

26. Cornea, M. IEEE 754-2008 Decimal floating-point for intel architecture processors. In Proceedings of the IEEE International
Symposium on Computer Arithmetic, Portland, OR, USA, 8–10 June 2019; pp. 325–328.

27. Gorgin, S.; Jaberipur, G. Sign-magnitude encoding for efficient VLSI realization of decimal multiplication. IEEE Trans. Very Large
Scale Integr. Syst. 2017, 25, 75–86. [CrossRef]

28. Vazquez, A.; Antelo, E.; Bruguera, J.D. Fast radix-10 multiplication using redundant BCD codes. IEEE Trans. Comput. 2014,
63, 1902–1914. [CrossRef]

29. Jaberipur, G.; Kaivani, A. Improving the speed of parallel decimal multiplication. IEEE Trans. Comput. 2009, 58, 1539–1552.
[CrossRef]

https://standards.ieee.org/standard/754-2008.html
https://standards.ieee.org/standard/754-2008.html
http://javadoc.scijava.org/Java/java/math/BigDecimal.html
http://javadoc.scijava.org/Java/java/math/BigDecimal.html
http://speleotrove.com/decimal/decnumber.html
https://software.intel.com/en-us/articles/intel-decimal-floating-point-math-library
https://software.intel.com/en-us/articles/intel-decimal-floating-point-math-library
http://doi.org/10.1147/JRD.2009.5388585
http://dx.doi.org/10.1147/rd.516.0663
http://dx.doi.org/10.1109/MM.2013.126
http://dx.doi.org/10.1147/JRD.2010.2040930
http://dx.doi.org/10.1109/TC.2008.218
http://dx.doi.org/10.1049/ip-cdt:20020407
http://dx.doi.org/10.1109/TC.2008.209
http://dx.doi.org/10.1109/TC.2012.79
http://dx.doi.org/10.1109/TVLSI.2016.2579667
http://dx.doi.org/10.1109/TC.2014.2315626
http://dx.doi.org/10.1109/TC.2009.110


Computers 2021, 10, 17 19 of 19

30. Cui, X.; Dong, W.; Liu, W.; Swartzlander, E.E.; Lombardi, F. High performance parallel decimal multipliers using hybrid BCD
codes. IEEE Trans. Comput. 2017, 66, 1994–2004. [CrossRef]

31. Zhu, M.; Jiang, Y.; Yang, M.; Chen, T. On high-performance parallel decimal fixed-point multiplier designs. Comput. Electr. Eng.
2014, 40, 2126–2138. [CrossRef]

32. Vazquez, A.; Antelo, E.; Montusshi, P. Improved design of high-performance parallel decimal multipliers. IEEE Trans. Comput.
2010, 59, 679–693. [CrossRef]

33. The RISC-V Instruction Set Manual, Volume i: Base User-Level ISA. 2011. Available online: https://riscv.org/ (accessed on 16
August 2019).

34. Asanović, K. The Rocket Chip Generator; Technical Report UCB/EECS-2016-17; EECS Department, University of California:
Berkeley, CA, USA, 2016.

35. Design Compiler User Guide Version I-2013.06. Available online: https://www.synopsys.com/implementation-and-signoff.html
(accessed on 11 June 2019).

36. Goldman, R.; Bartleson, K.; Wood, T.; Kranen, K.; Cao, C.; Melikyan, V.; Markosyan, G. Synopsys’ open educational design kit:
Capabilities, deployment and future. In Proceedings of the IEEE International Conference on Microelectronic Systems Education,
San Francisco, CA, USA, 25–27 July 2009; pp. 20–24.

37. Sayed-Ahmed, A.A.R.; Fahmy, H.A.H.; Hassan, M.Y. Three engines to solve verification constraints of decimal floating-point
operation. In Proceedings of the Asilomar Conference on Signals Systems and Computers, Pacific Grove, CA, USA, 7–10
November 2010; pp. 1153–1157.

38. Sayed-Ahmed, A.A. Verification of Decimal Floating-Point Operations. Master’s Thesis, Faculty of Engineering, Cairo University,
Cairo, Egypt, 2011.

39. IEEE Standard for Floating-Point Arithmetic; IEEE Std-754-2019 (Revision IEEE-754-2008); IEEE: Piscataway, NJ, USA, 2019;
pp. 1–84.

http://dx.doi.org/10.1109/TC.2017.2706262
http://dx.doi.org/10.1016/j.compeleceng.2014.08.013
http://dx.doi.org/10.1109/TC.2009.167
https://riscv.org/
https://www.synopsys.com/implementation-and-signoff.html

	Introduction
	Decimal Floating-Point Multiplication
	Software Library
	Hardware Solutions

	Proposed Methods for Decimal Multiplication
	Method-1
	Method-2
	Method-3
	Method-4
	Decimal Hardware Component Design
	BCD-CLA
	Partial Product Selector
	Parallel Accumulator
	BCD Converter
	Rounding Logic


	Experimental Results
	Experiment Setup
	Area and Delay Tradeoff
	Discussion

	Conclusions
	References

