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Abstract: Spaceflight microgravity affects normal plant growth in several ways. The transcriptional
dataset of the plant model organism Arabidopsis thaliana grown in the international space station
is mined using graph-theoretic network analysis approaches to identify significant gene transcrip-
tions in microgravity essential for the plant’s survival and growth in altered environments. The
photosynthesis process is critical for the survival of the plants in spaceflight under different en-
vironmentally stressful conditions such as lower levels of gravity, lesser oxygen availability, low
atmospheric pressure, and the presence of cosmic radiation. Lasso regression method is used for gene
regulatory network inferencing from gene expressions of four different ecotypes of Arabidopsis in
spaceflight microgravity related to the photosynthetic process. The individual behavior of hub-genes
and stress response genes in the photosynthetic process and their impact on the whole network is
analyzed. Logistic regression on centrality measures computed from the networks, including average
shortest path, betweenness centrality, closeness centrality, and eccentricity, and the HITS algorithm is
used to rank genes and identify interactor or target genes from the networks. Through the hub and
authority gene interactions, several biological processes associated with photosynthesis and carbon
fixation genes are identified. The altered conditions in spaceflight have made all the ecotypes of
Arabidopsis sensitive to dehydration-and-salt stress. The oxidative and heat-shock stress-response
genes regulate the photosynthesis genes that are involved in the oxidation-reduction process in
spaceflight microgravity, enabling the plant to adapt successfully to the spaceflight environment.

Keywords: gene expression; network analysis; logistic regression; HITS algorithm; photosynthesis;
carbon fixation; biological processes; spaceflight microgravity; Arabidopsis thaliana

1. Introduction

Arabidopsis thaliana (Arabidopsis), a member of the Brassicaceae or mustard family,
is a small photosynthetic plant that requires only light, air, water, and few minerals for
its survival. It occupies minimal space and can be quickly grown in an indoor growth
chamber. Arabidopsis is an excellent model plant because of its small genomic size, low DNA
content, and its genetic manipulability [1]. Arabidopsis genome contains about 25,500 genes
containing approximately 35% unique genes [2].

Arabidopsis has several ecotypes/natural variants, and these variations can sometimes
be visible in physical traits when they are grown under different environmental stressors
on the ground. Besides exploring natural genetic variants of Arabidopsis under different
environmental stressors, the genetic factors causing physiological variations are mostly
unknown [3]. The genetic basis of responses of different ecotypes/natural variants of Ara-
bidopsis under different environmental stressors such as hypoxia, light, dark, salt, drought,
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heat shock on the ground depending on different geographical conditions have been in-
vestigated [4]. These investigations include but are not limited to studying environmental
stressors such as differential drought responses [5], cold stress responses [6], response to
salt stress [7], heat stress responses [6], enhanced stress tolerance [8], and effects of chronic
ozone exposure [9] on ecotypes of Arabidopsis.

Investigations on genetic variations in the photosynthetic process in different Arabidop-
sis ecotypes in spaceflight can reveal essential cues that are useful for its growth in stressful
environments such as in space stations and on Moon or Mars. As sufficient transcriptomic
data analyses for different ecotypes of Arabidopsis are available on the ground, Arabidopsis
is grown by scientists in the International Space Station (ISS) to compare its transcriptomic
stress responses in spaceflight microgravity with that of ground [10]. Microgravity, ele-
vated levels of solar energy, and galactic cosmic radiation also influence the plants grown
in the ISS [11].

Photosynthesis is one of the critical biological processes on Earth that uses sunlight
for carbon dioxide (CO2) fixation in plants. Photosynthesis is responsible for the growth
and other energy-dependent metabolic pathways in plants. In the oxygenic photosynthetic
process, the light absorbed by the plant is stored as chemical energy. The absorption of
light is done in pigment-containing holoprotein complexes in the thylakoid membrane as
photosystem I (PSI) and photosystem II (PSII). Upon absorption of light in PSII, then the
light energy is used to transfer electrons from water (H2O) molecule to CO2 to produce
carbohydrates. In this process, the water molecule becomes oxidized, and oxygen (O2) is
released. Therefore, in oxygenic photosynthesis, light energy leads to the carbon fixation
pathway in plants. The genes that are responsible for photosynthesis in Arabidopsis are
discussed in [12].

When exposed to excessive doses of light, the plants receive more light energy than
required for photosynthesis, which results in the production of harmful reactive oxygen
species in the cells that causes irreversible photo-oxidative damage. The photo-oxidative
damage inhibits the PSII process, which may lead to loss of productivity of oxygen in
plants [13]. Hence, it is crucial to study the behavior of the photosynthetic genes in space-
flight microgravity when compared to ground control. In [11], the authors discuss how
the transcripts of heat-shock proteins are upregulated, and the transcripts of peroxidase
are downregulated in the spaceflight environment. The gene classes mentioned in [11]
are related to oxidative stress and hypoxia. In this paper, we analyze the GeneLab dataset
(GLDS-37) collected from the experiment carried out in spaceflight [11], for spaceflight
stress response (see Supplementary Materials).

Choosing the best optimization method to process the transcriptomic data is always
challenging for investigators. Many optimization algorithms are available in recent years
for finding the correlation between the genes in the gene expression data. Network analysis
has considerably helped in the analysis of transcriptomic data as they serve as a “blueprint”
to study the molecular interactions. One can understand the regulation of genes by network
analysis [14]. Moreover, partial Gene Regulatory Networks (GRN) responsible for a biolog-
ical process can be retrieved and compared for the regulation of genes in different stress
conditions. Integrating GRN with enrichment analysis tools such as Gene Set Enrichment
Analysis (GSEA) [15] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [16] helps
investigators to examine the involvement of a set of genes and their regulation under differ-
ent environmental stressors in specific biological processes. The underlying mechanisms of
the GRN are revealed through topological and algebraic analysis of the GRN [17,18]. The
individual behavior of the genes or a set of genes can be extracted from the GRN, enabling
us to understand the impact of these genes on the whole GRN.

2. Materials and Methods

In this paper, we have analyzed the transcriptomic data of different ecotypes of
Arabidopsis in spaceflight microgravity and compared them to ground control by generating
gene regulatory networks. The photosynthesis and carbon fixation genes are extracted by
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performing GSEA and KEGG pathway analysis. Dimensionlity reduction of the expression
values of these genes is made using Principal Components Analysis (PCA) to eliminate
noise and extract independent features of the genes. The first three components of PCA
is selected because it captures 99% of the variance of the gene expression flight and
ground datasets. The Lasso regression is performed on these three components of PCA to
find correlation among the gene expression values. The adjacency matrix is constructed,
the source-target lists are made, and the GRN is visualized in Cytoscape. Using the
software, including Python, SAGE, we carry out Pearson correlation GRN inferencing,
logistic regression, and HITS ranking of genes and topological analysis in a novel way
to identify hub and authority genes. The topological analysis involves computations of
various centrality measures. Figure 1 shows a general flow diagram for GRN construction
and network analysis methods that can be applied to omics data.
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2.1. Genelab Arabidopsis thaliana Dataset

GLDS-37 presents the transcriptomic data of four different ecotypes of Arabidopsis
in spaceflight microgravity and on the ground: Col-0, Cvi, LER, and WS. The seeds of
the mentioned ecotypes were germinated in orbit and grown for eight days. The same
environmental stressors are maintained on the ground to observe the behavior of the
plants. Later, RNAseq was performed to catalog the differential expression of the ecotypes.
The primary purpose of this study is to analyze the stress response mechanisms of these
different ecotypes of Arabidopsis under oxidative stress and hypoxia. The datasets, their
description, and relevant details are available at https://genelab-data.ndc.nasa.gov/gene
lab/accession/GLDS-37/.

2.2. Gsea and Kegg Pathway Analysis

The genes responsible for photosynthesis and carbon fixation are retrieved by per-
forming GSEA and KEGG pathway analysis. GSEA is a tool that can identify the group of
genes from the gene expression data that are responsible for a shared biological process [15].
GSEA (https://www.gsea-msigdb.org/gsea/index.jsp) is performed on datasets corre-
sponding to different ecotypes of Arabidopsis with the ShinyGO tool (http://bioinformatics
.sdstate.edu/go/). With KEGGmapper (https://www.genome.jp/kegg/mapper.html), one
can convert protein-coding genes in a genome to KEGG molecular networks describing a

https://genelab-data.ndc.nasa.gov/genelab/accession/GLDS-37/
https://genelab-data.ndc.nasa.gov/genelab/accession/GLDS-37/
https://www.gsea-msigdb.org/gsea/index.jsp
http://bioinformatics.sdstate.edu/go/
http://bioinformatics.sdstate.edu/go/
https://www.genome.jp/kegg/mapper.html
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pathway relating the genes involved in different cellular functions and high-level processes
(for example, photosynthesis) [19].

2.3. Principal Component Analysis

The transcriptomic data have expression values of thousands of genes from different
experimental conditions. Hence, it becomes difficult for investigators to determine whether
the time series data available is for different states of gene expression or just a measurement
for similar states obtained by different mechanisms. PCA is an unsupervised dimension-
ality reduction algorithm used globally to analyze -omics data [20]. PCA is applied to
find the core group of independent features that are available in -omics data [21]. We have
done dimensionality reduction of the GLDS-37 dataset using PCA, and subsequently, the
first three components of the PCA are given as input to the Lasso regression algorithm to
compute the correlation between the genes.

2.4. Lasso Regression

GRN reconstruction is a common problem in computational biology for which various
methods have been proposed, systemically assessed, and reviewed [22]. GRN inferencing
on transcriptomic data based on the application of a similarity measure on the dataset
results in a similarity matrix. This similarity matrix undergoes multiple hypothesis tests to
determine the statistical significance between the genes. As a result, we obtain a sparse
matrix that includes both the direct and indirect relationships between the genes [23]. A
powerful tool is necessary to identify the direct correlation between the genes to infer GRN.
The regression-based models such as Lasso can extract one-to-many relationships between
the genes, according to the corresponding transcriptomic data. Lasso is a traditional
regularized regression method used to infer GRN with accurate results [24].

The R package SILGGM [25] is used to infer the GRN from the GeneLab transcrip-
tomic data of Arabidopsis. The authors have developed two main approaches for estimating
the conditional dependence of genes: (i) graphical Lasso, and (ii) a penalized regression,
based on neighborhood approach. We have used a scaled Lasso algorithm that has precise
conditional dependence estimators that take the first three principal components of the
transcriptomic data as inputs. A GRN is a causal relationship between a transcription
factor (hub-gene) and a target (interactor or authority) gene. Here, we did not give sepa-
rate transcription factors to the algorithm. The same set of genes are considered as both
transcription factors and target genes, and the statistical inference method calculates the
correlation between the genes—the GRNs are visualized in Cytoscape with the network
files obtained from scaled Lasso.

2.5. Logistic Regression Based Gene Ranking

Logistic regression, also called a logit model, is a statistical method for analyzing a
dataset in which there are one or more independent variables that determine an outcome.
The goal of this method is to find the best fitting model to describe the relationship between
a dichotomous characteristic of interest (dependent variable; response or outcome variable)
and the explanatory variable. It is used to model the log-odds of a gene belonging to a
specific category as a linear function of the statistical significance x:

log
(

π

1− π

)
= α + βx (1)

where α is the intercept, β is the slope, both α and β are estimated from the data. Most
likely enriched gene sets will be identified based on the p-value or based on the odds ratio
if a ranking independent of category size is desired [26]. The logistic regression method is
an extension of the χ2-test and has higher statistical power than other methods because the
important values do not depend on a threshold.
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2.6. Network Analysis

Network measures such as the average shortest path length, betweenness centrality,
closeness centrality, and eccentricity of the hub-genes and stress response genes present in
each GRN are calculated. Fold-change analysis is used to determine whether the hub-genes
and stress response genes are upregulated or downregulated in spaceflight microgravity
when compared to ground control.

2.6.1. Fold-Change

Fold-change is often used to analyze the expression level of genes in microarray and
RNA-Seq experiments. Fold change is a log2 transformed ratio of the gene expression
values from experiment vs. control [27]. Fold change can be calculated using Equation (2)

log2FC = log2

(
A
B

)
(2)

In Equation (2), “A” represents the expression value of a gene in the experiment, and ‘B’
represents the expression value of the same gene in a control environment. The analysis of
fold change shows whether the given gene is upregulated or downregulated in spaceflight
microgravity when compared to its expression in ground control.

2.6.2. Graphs and Networks

Let G = (V, E) be a graph, where V is the set of vertices and E is the set of edges. Let
pk be the degree distribution and 〈k〉 be the average degree of the graph G.

Outdegree: The outdegree distribution of a given node (gene) in the network de-
termines whether the node targets (or directs) other nodes [28]. We have calculated the
outdegree distributions of hub-genes and stress response genes in the GRN to determine
whether the hub genes are regulating other genes.

Average shortest path length: The average shortest path in network topology is
defined as the average minimum distance that a node can take to reach all other possible
nodes (targets) in the network [29]. The average shortest path length is calculated using
Equation (3) [28]:

a = ∑
s,t∈V

d(s, t)
n(n− 1)

(3)

Here, V is the total number of nodes in the network, and d(s, t) is the minimum
distance from the node (s) to the node (t). ”n” denotes the total number of nodes. The
average shortest path length is meant to be small for the networks to be small world. Here,
one can calculate the average shortest path length of all nodes to evaluate the efficiency of
a network or determine the individual average shortest path length of each node. We have
measured the average shortest path length of each node to determine the efficiency of each
hub-gene and stress response gene in the GRN. We define the average shortest path length
for any given node s as:

a(s) = ∑
t∈V

d(s, t)
(n− 1)

(4)

Betweenness centrality: Betweenness centrality is a measure that shows how fre-
quently a given node appears on the shortest paths of other nodes [30]. It acts as a bridge
for other nodes to be connected by providing the shortest path. The higher betweenness cen-
trality means that the given node appears very frequently in the shortest paths of a greater
number of other nodes. Betweenness centrality can be calculated using Equation (5) [30]:

g(ϑ) = ∑
s 6=v 6=t

σst(ϑ)

σst
(5)
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The total number of shortest paths from the node (s) to node (t) is represented by
σst. The total number of paths that pass through the node (v) is represented by σst(ϑ).
The GRN’s are directed networks. Therefore, betweenness values are normalized by
{1/((n−1)(n−2))}, where n is the number of nodes in the network.

Closeness centrality: The average shortest path length of a given node and all other
nodes in the network are measured by Closeness Centrality [31]. The node that has a higher
closeness centrality is the most central node that is connected to the maximum number of
nodes in the network.

C(x) = ∑
y

(n− 1)
d(x, y)

(6)

Closeness centrality is calculated using Equation (6) [31]. Here, n is the total number
of shortest paths going through a given node, y is the given node, and x is the node that
passes through the node y.

Eccentricity: Eccentricity is a measure of the maximum distance by which a node can
be connected to another node [32]. Eccentricity shows how one node is indirectly connected
to other nodes in the network in the path to its target node. A higher eccentricity implies
that the node has the greatest influence on the network compared to other nodes.

Clustering Coefficient: Clustering coefficient measures how the adjacent vertices
connect to each other. Given a vertex vi we define the clustering coefficient as

Ci =
2Li

ki(ki − 1)
(7)

where ki is the degree of vertex vi and Li is the number of edges between the adjacent
vertices of vi [33]. The average clustering coefficient is defined as follows:

〈C〉 = 1
|V|

|V|

∑
i=1

Ci. (8)

The average clustering coefficient can be interpreted as the probability that two
adjacent vertices of a randomly selected vertex are connected to each other [34].

Assortativity coefficient: The assortativity coefficient measures the Pearson correlation
coefficient between pairs of adjacent vertices. The assortativity coefficient r is given by

r =
∑j,k jk

(
ejk − qjqk

)
σ2

q
(9)

where qk = |V|pk
〈k〉 is the distribution of the remaining degree and ejk is the probability of

finding vertices with degrees j and k as the two ends of a randomly selected edge [35].
HITS algorithm for detecting hubs and authority genes: Our GRN (similar to other

complex networks) follow preferential attachment models, which are scale-free with a
degree distribution that follows an exponential law. Unlike the random graph model, these
networks have nodes with large degrees, called hubs. Classically, with 0–1 (nonconnection-
connection) networks, just the degree distribution is used in the identification of such hubs.
A much more sophisticated algorithm is proposed by Kleinberg [36] called the Hypertext
induced topic search (HITS) algorithm. Originally it was meant for the networks such as the
Internet. We use it now to study our GRN (see also [37,38]). Most of these applications use
PageRank to reveal localized information about the graph based on some form of external
data. We apply this algorithm in our setting for the weighted and directed networks for
the transcription factors-target gene networks and co-expression networks.

In the weighted GRN setting, the traditional simplistic method of detecting hub genes
would not yield meaningful information. Our approach uses, iteratively the weighted HITS
algorithm in a novel way as follows. At the kth iteration, let hk (respectively ak) be whose
ith entry h(i) (respectively a(i)) be the hub weight (authority weight) assigned to node i.
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One initially assigns uniform distribution on the nodes. Let hk := ∑u ak−1(j), the sum
being over authority nodes j pointed to by i. And similarly, the authority node weights
are computed by ak ∑j hk−1. Then, we normalize so that the sum of the weights equal to 1,
with normalization factors ψk (respectively φk). In matrix notation: hk = ψkφk−1 AATak−2,
and ak = φkψk−1 AT Aak−2. These iterations converge to the dominant eigenvector of the
real symmetric matrices AAT (respectively AT A). These give us asymptotically hub and
authority weights. In this setup, we have assumed entries in A to be 0 or 1. If there are
weights on the edges such as correlation or signal strength wij, then they are introduced
in the sums. Since adjacency is defined for undirected graphs as well, this algorithm will
return hubs and authorities weights for such graphs, as well.

We can describe the algorithms as pseudocode as follows, where in place of the 1-norm
(sum of the absolute values), we can use any norm (Algorithm 1):

Algorithm 1 pseudocode

HITS(A): # A :=(The adjacency matrix of the weighted network N = (V,E))
Local Variables : n = |V|; e = |E|
h; # hub rank real vector (in Rn)
a; # authority rank real vector (in Rn)’
m; # the number of HITS iterations.
h1 = 1

n ; # all entries in h are 1
a1 = 1

n ; # all entries in the vector are 1.
ψ1 = 1;
φ1 = 1;
while k ≤ m do;
begin;

hk = Aak−1;
ak = AThk−1;

hk
hk

norm(hk)
; # norm(v) = square-root of sum of squares

ak := ak
norm(ak)

;
end

We have also used different norms in the computations of the normalization factors.
The standard norm (square-root of the sum of squares, is proposed by Kleinberg [36]).
If the eigenvalues of AAT (

the same as those of AT A
)

are separated (i.e., the multiplicity
of the dominant eigenvalues is 1), then the iterations in the converge in the limit to the
corresponding dominant eigenvector of AAT . In the matrix notation, this is the famous QR
decomposition method or the unsymmetric eigenvalue problem (see 7.3.1 of [39]). We used
a SAGE implementation package [40].

Since our GRN graph is sparse but highly connected, it converges rapidly with a large
number of iterations, yielding hubs and authority genes in this very complex network.
These iterations give us asymptotically hub and authority weights. We have implemented
a version of this algorithm in the SAGE software and then applied it to our networks
to find hub genes and authority genes. Our algorithm gives weighted-hub genes and
weighted-authority (target) genes. In complex networks, the HITS algorithm has very
high complexity and cannot be applied successfully. The weighted HITS algorithm has
yielded important information about biomolecular networks [41–49]. For network topology,
we refer to [34], and for the latest on the origin of biomolecular networks, topological,
combinatorial, and spectral methods, we refer to [18].

Small World Phenomenon: Biomolecular networks have features that are not captured
by the Erdos and Renyi random graph model. As we have seen, random graphs have a
low clustering coefficient, and they do not account for the formation of hubs. To rectify
some of these shortcomings, the small world model, popularly known as the six degrees of
separation model was introduced as the next level of complexity for a probabilistic model
with features that are closer to real world networks [33].
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In this model, the graph G of N nodes is constructed as a ring lattice, in which, (i) first,
wire: that is, connect every node to K/2 neighbors on each side and (ii) second, rewire:
that is, for every edge connecting a particular node, with probability p reconnect it to
a randomly selected node. The average number of such edges is pNK/2. The first step
of the algorithm produces local clustering, while the second dramatically reduces the
distance in the network. Unlike random graphs, the clustering coefficient of this network
C = 3(K− 2)/4(K− 1) is independent of the system size. Thus, the small world network
model displays the small world property and the clustering of real networks, however, it
does not capture the emergence of hubby nodes (e.g., p53 in biomolecular networks) (part
of one of the eight open problems that we formulate in Section 4 in [18]).

Scale-free Network Models: Most biomolecular networks are hypothesized to have a
degree distribution, described as scale-free. In a scale free network, the number of nodes nk
of degree k is proportional to a power of the degree, namely, the degree distribution of the
nodes follows a power-law

nk = k−β (10)

where β > 1 is a coefficient characteristic of the network. Unlike in random networks,
where the degree of all nodes is centered around a single value—with the probability of
finding nodes with much larger (or smaller) degree decaying exponentially, in scale-free
networks, there are nodes of large degree with relatively higher probability (fat tail). In
other words, since the power low distribution decreases much more slowly than exponen-
tially, for large k (heavy or fat tails), scale-free networks support nodes with the extremely
high number of connections called “hubs.” Power law distribution has been observed in
many large networks, such as the Internet, the phone-call maps, and other collaboration
networks [34]. A caveat to these reports is that inappropriate statistical techniques have
often been used to infer power law distributions, and alternative heavy tailed distributions
may fit the data better. However, the power law is a useful approximation that allows mech-
anisms of network growth to be explored, such as preferential attachment, discussed next,
while the examination of alternative heavy tailed distributions is set as an open problem.

Preferential Attachment: The original model of preferential attachment was proposed
by Barabási–Albert [34]. The scheme consists of a local growth rule that leads to a global
consequence, namely a power law distribution. The network grows through the addition
of new nodes linking to nodes already present in the system. There is a higher probability
to preferentially link to a node with a large number of connections. Thus, this rule gives
more preferences to those vertices that have larger degrees. For this reason, it is often
referred to as the “rich-get-richer” or “Matthew” effect. This can be formulated as a
game-theoretic problem originating from information asymmetry and associated Nash
equilibrium, discussed in the Open Problems.

With an initial graph G0 and a fixed probability parameter p, the preferential attach-
ment random graph model G(p, G0) can be described as follows: at each step the graph
Gt is formed by modifying the earlier graph Gt−1 in two steps—with probability p take a
vertex-step; otherwise, take an edge-step:

• Vertex step: Add a new vertex v and an edge {u, v} from v to u by randomly and
independently choosing u proportional its degree;

• Edge step: Add a new edge {r, s} by independently choosing vertices r and s with
probability proportional to their degrees.

That is, at each step, we add a vertex with probability p, while for sure, we add an
additional edge. If we denote by nt and et the number of vertices and edges respectively at
step t, then et = t + 1 and nt = 1 + ∑t

i=1 zi, where zi’s are Bernoulli random variables with
the probability of success = p. Hence the expected value of nodes is 〈nt〉 = 1 + pt.
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It can be shown that exponentially (as t asymptotically approaches infinity) this
process leads to a scale-free network. The degree distribution of G(p) satisfies a power
law with the parameter for exponent being β = 2 + p

2−p . Scale-free networks also exhibit
hierarchicity. The local clustering coefficient is proportional to a power of the node degree

C(k) ≈ k−α (11)

where α is called the hierarchy coefficient.
This distribution implies that the low-degree nodes belong to very dense sub-graphs

and those sub-graphs are connected to each other through hubs. In other words, it means
that the level of clustering is much larger than that in random networks.

Consequently, many of the network properties in a scale-free network are determined
by local structures as observed in a relatively small number of highly connected nodes
(hubs). A consequence of this scale-free network property is its extreme robustness to
failure, which is also displayed by biomolecular networks and their modular structures.
Such networks are highly tolerant of random failures (perturbations); however, they remain
extremely sensitive to targeted attacks.

3. Results

Figure 2 shows the GRN of Col-0 ecotype in spaceflight microgravity and ground
control for photosynthesis and carbon fixation biological processes. All the GRN of other
ecotypes are constructed in the same manner.

3.1. Identification of Regulatory Hub-Genes in Photosynthesis and Carbon Fixation Grn

The most significant regulatory genes (hub-genes) that influence the maximum num-
ber of genes (maximum outdegree) in photosynthesis and carbon fixation GRN are isolated.
The hub-genes act as transcription factors (TFs) that regulate other target genes (nodes) in
the GRN.

The common hub-genes of all the ecotypes in spaceflight microgravity and ground
control related to photosynthetic GRN are DRT112, ATRFNR2, PSAK, PSB27, ATFD1, PSAF,
ATLFNR2, ATPC2, PSAO. The hub-genes in the WS ecotype in spaceflight microgravity are
different compared to other GRN. The hub-gene PSBY is seen only in the GRN of WS in
spaceflight microgravity. The hub-gene PSAG that is present in other GRN is not present
in GRN of WS in spaceflight microgravity. We have done gene ontology analysis (refer to
Table 1) to understand the functions of each hub-gene. PSB27, PSAO, ATFD1, and DRT112
are involved in the generation of precursor metabolites and energy. PSAO and PSB27
together perform light-harvesting and reaction mechanisms to light in the photosynthetic
process. ATFD1, DRT112, and PASO are the hub-genes that participate in the electron
transport chain. The genes ATFD1, ATLFNR2, DRT112, ATRFNR2, and PSAO play a vital
role in the oxidation-reduction process.

The common hub-genes of all the ecotypes in spaceflight microgravity and ground
control in carbon fixation GRN are RSW10, RPI2, AOAT2, ALAAT2, ASP4, and ATPPC4.
Apart from the common hub-genes, the carbon fixation GRN are observed to have other
hub-genes that are present only in the respective GRN. This shows that the ecotypes have
different transcriptional regulators for each ecotype in spaceflight microgravity and ground
control. Gene ontology results reveal that the hub-genes RPI2, AOAT2, ALAAT2, ASP4,
and ATPPC4 are involved in the carbon metabolism of carbon fixation in the photosynthetic
process. The genes that biosynthesize amino acids are RSW10, RPI2, ALAAT2, ASP4. The
genes that are involved in metabolic pathways are RSW10, RPI2, AOAT2, ALAAT2, ASP4,
and ATPPC4.
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ground control.



Computers 2021, 10, 18 12 of 26

Table 1. Gene ontology of the hub-genes and stress response genes involved in photosynthesis and carbon fixation.

Hub-Genes and
Stress Response

Genes
Name Gene Ontology (GO) Term

PSAO PSI subunit O Part of integral component of membrane
PSB27 PSII lipoprotein Involved in PSII assembly
ATFD1 Ferredoxin 1 Part of chloroplast
ATPC2 ATP synthase subunit A Involved in ATP synthesis coupled proton transport
DRT112 Plastocyanin Involved in oxidation-reduction process

ATLFNR2 Ferredoxin—NADP reductase Part of chloroplast, involved in
oxidation-reduction process

ATRFNR2 Ferredoxin-NADP reductase Involved in oxidation-reduction process
PSAK PSI reaction center subunit Part of chloroplast, involved in PSI
PSAF PSI subunit III Part of PSI reaction center

RSW10 Ribose-5-phosphate isomerase 1 Enables ribose-5-phosphate isomerase activity
ALAAT2 Alanine_1_2 domain-containing protein Enables transferase activity
AOAT2 Glutamate–glyoxylate aminotransferase 2 Involved in photorespiration

RPI2 Ribose-5-phosphate isomerase 2 Enables isomerase activity
ATPPC4 Phosphoenolpyruvate carboxylase 4 Involved in carbon fixation

ASP4 Aspartate aminotransferase Involved in cellular amino acid metabolic process
PETC Cytochrome b6-f complex iron-sulfur subunit Involved in oxidation-reduction process
ATPD ATP synthase subunit beta Involved in ATP synthesis coupled proton transport

ATLFNR1 Ferredoxin–NADP reductase Enables oxidoreductase activity
PRK Parkin-FBXW7-Cul1 ubiquitin ligase complex Enables phosphoribulokinase activity

GAPB Gp_dh_N domain-containing protein Enables nucleotide binding
ASP1 Accessory Sec system protein Involved in protein transport
PGK1 Phosphoglycerate kinase 1 Enables phosphoglycerate kinase activity
GAPC Glyceraldehyde-3-phosphate dehydrogenase Enables oxidoreductase activity
MDH Malate dehydrogenase 1 Involved in carbohydrate metabolic process

ATCTIMC Putative triosephosphate isomerase Involved in glyceraldehyde-3-phosphate
biosynthetic process

SBPASE FBPase domain-containing protein Involved in defense response to bacterium
GGT1 Gamma-glutamyltranspeptidase Involved in regulation of inflammatory response
PCK1 Soluble phosphoenolpyruvate carboxykinase 1 Involved in cellular response to glucose stimulus

HSP70b Heat-shock protein 70b Enables ATP binding

RCI3 Peroxidase 3 Part of plant-type cell wall, involved in response to
oxidative stress

3.2. Identification of Stress Response Genes in Grn of Spaceflight Microgravity and
Ground Control

We performed Gene ontology on the genes to determine the stress response genes
in photosynthesis and carbon fixation GRN (refer to Table 1). The photosynthetic stress
response genes PETC, ATPD, ATLFNR1, and ATLFNR2 are seen in all ecotypes. These stress
response mechanisms include response to bacterium and other organisms, biotic stimulus,
and defense for all the ecotypes. The stress response mechanisms in the carbon fixation
biological process include response to temperature stimulus, stress, cold, abiotic stimulus,
and biotic stimulus. The genes that correspond to these stress response mechanisms are
PGK1, GAPB, PRK, GAPC, MDH, ATCTIMC, PCK1, SBPASE, ASP1, and GGT1. All of
these genes are not observed in all the GRN. The reason is that the Lasso regression method
eliminates some of the minimally correlated genes.

3.3. Photosynthesis Genes Are Downregulated in Spaceflight Microgravity

We have analyzed common hub-genes and stress response genes in the networks to
compare their regulations in spaceflight microgravity and ground control. The fold-change
analysis of common photosynthetic hub-genes is shown in Figure 3A. This analysis depicts
that most of the photosynthetic hub-genes are downregulated in spaceflight microgravity.
The fold-change analysis of carbon fixation hub-genes (see Figure 3B) reveals that the genes
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are both upregulated and downregulated in the ecotypes. The fold-change analysis of
photosynthetic stress response genes (see Figure 3C) reveals that the genes are downreg-
ulated in spaceflight microgravity except for the gene ATLFNR2, which is upregulated
in the Col-0 ecotype. The fold-change analysis of stress response genes in carbon fixation
genes (see Figure 3D) reveals that GAPC, GGT1, and MDH are upregulated in most of the
ecotypes in spaceflight microgravity.
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Figure 3. Fold-change analyses of the genes in the different ecotypes of Arabidopsis in spaceflight microgravity when
compared to ground control. (A) Fold-change for photosynthetic hub-genes for spaceflight microgravity vs. ground
control. (B) Fold-change for carbon fixation hub-genes for spaceflight microgravity vs. ground control. (C) Fold-change for
photosynthetic stress-response genes for spaceflight microgravity vs. ground control. (D) Fold-change for carbon fixation
stress-response genes for spaceflight microgravity vs. ground control.

3.4. Cvi Ecotype Has the Same Outdegree Distributions in Spaceflight Microgravity and
Ground Control

The transcriptional regulations (outdegree distributions) of common hub-genes in
photosynthesis and carbon fixation biological processes are different across each of the GRN
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in spaceflight microgravity and ground control. The outdegree distributions of common
hub-genes are displayed in Figure 4A. It is observed that gene PSB27, which plays a vital
role in the metabolic activity of the photosynthesis process, has maximum outdegree in
all the GRN. The outdegree distributions of the photosynthetic and carbon fixation stress
response genes are displayed in Figure 4B. The figure reveals that the photosynthetic stress
response gene PETC has maximum outdegree in all the GRN. As mentioned earlier (see
Section 2.2), some of the carbon fixation stress response genes are not observed in all the
GRN. Hence, one cannot find the outdegree distribution. The other reason is that some
of the genes have no outdegree in the GRN. They have an in-degree, which means they
are influenced by other transcriptional factors (hub-genes) as a response to stress for the
survival of the plant. The Cvi ecotype has the same outdegree in the GRN of spaceflight
microgravity and ground control.
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Figure 4. Outdegree distributions of photosynthesis and carbon fixation genes in all ecotypes in
spaceflight microgravity and ground control. (A) Outdegree distributions of photosynthesis and
carbon fixation hub-genes. (B) Outdegree distributions of photosynthesis and carbon fixation stress
response genes.

3.5. Stress Response Genes of Col-0 Ecotype Have Low Shortest Path Lengths in
Spaceflight Microgravity

The shortest path lengths for hub-genes and stress response genes are calculated and
compared. Figure 5A displays the comparison of average shortest path lengths in different
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ecotypes for the hub-genes. AOAT2 and ALAAT2 have the highest shortest path length in
Ler ecotype in ground control. The lower shortest path lengths are observed in the genes in
Col-0 ecotype in spaceflight microgravity when compared to other ecotypes in spaceflight
microgravity. The hub-genes in all ecotypes in ground control have lesser shortest path
lengths compared to spaceflight microgravity except for a few genes in the Ler ecotype.
Most of the stress response genes in the Col-0 ecotype have very low shortest path length
in spaceflight microgravity (see Figure 5B). GAPB gene has the highest shortest path length
in Col-0 ecotype in spaceflight microgravity. Most of the stress response genes have an
average shortest path length of one in all the ecotypes in spaceflight microgravity and
ground control.
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Figure 5. Average shortest path lengths of photosynthesis and carbon fixation genes in all ecotypes in spaceflight micrograv-
ity and ground control. (A) Average shortest path lengths of photosynthesis and carbon fixation hub-genes. (B) Average
shortest path lengths of photosynthesis and carbon fixation stress response genes.

3.6. Photosynthesis Hub-Genes Have Low Betweenness Centrality

The comparison of betweenness centrality of hub-genes and stress response genes of
the ecotypes in spaceflight microgravity and ground control are shown in Figure 6. Most
of the photosynthesis hub-genes in all the GRN have betweenness centrality close to 0 (see
Figure 6A). The carbon fixation hub-genes have higher betweenness centrality in ground
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control compared to spaceflight microgravity. The highest betweenness centrality in stress
response genes is observed in WS ecotype in ground control (see Figure 6B). ASP1 gene
in the GRN of Ler ecotype in spaceflight microgravity has higher betweenness centrality
when compared to other genes and ecotypes in spaceflight microgravity.
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Figure 6. Betweenness centrality of photosynthesis and carbon fixation genes in all ecotypes in spaceflight microgravity and
ground control. (A) Betweenness centrality of photosynthesis and carbon fixation hub-genes. (B) Betweenness centrality of
photosynthesis and carbon fixation stress response genes.

3.7. Closeness Centrality Is Lowered in Spaceflight Microgravity

The comparison of closeness centrality of hub-genes and stress response genes of the
ecotypes in spaceflight microgravity and ground control are shown in Figure 7. The hub-
genes in ground control have a higher closeness centrality when compared to spaceflight
microgravity (see Figure 7A). The same behavior of stress response genes has been observed
(see Figure 7B) in spaceflight microgravity. The carbon fixation stress response genes have
a very low closeness centrality in spaceflight microgravity.
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Figure 7. Closeness centrality of photosynthesis and carbon fixation genes in all ecotypes in space-
flight microgravity and ground control. (A) Closeness centrality of photosynthesis and carbon fixation
hub-genes. (B) Closeness centrality of photosynthesis and carbon fixation stress response genes.

3.8. Col-0 Ecotype Hub-Genes Have High Eccentricity in Spaceflight Microgravity Compared to
Ground Control

The comparison of the eccentricity of hub-genes and stress response genes of the
ecotypes in spaceflight microgravity and ground control are shown in Figure 8. The pho-
tosynthesis hub-genes of the Cvi ecotype in spaceflight microgravity and ground control
have a very low eccentricity compared to other ecotypes (see Figure 8A). The Ler ecotype
in spaceflight microgravity has the same behavior of photosynthesis hub-genes as that
of the Cvi ecotype. The stress response genes in the GRN of Col-0 ecotype in spaceflight
microgravity have low eccentricity when compared to another ecotype except for the gene
GAPB (see Figure 8B). The gene GAPB has the highest eccentricity in the Col-0 ecotype in
spaceflight microgravity. The eccentricity of 1 is observed in most of the stress response
genes in all GRN. None of the genes have an eccentricity of 0.
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Figure 8. Eccentricity of photosynthesis and carbon fixation genes in all ecotypes in spaceflight
microgravity and ground control. (A) The eccentricity of photosynthesis and carbon fixation hub-
genes. (B) The eccentricity of photosynthesis and carbon fixation stress response genes.

3.9. Interactions of Oxidative Stress Response Genes with Photosynthesis Hub-Genes

We have extracted the sub-network of oxidative stress response genes that interact
with the photosynthesis genes from the whole network. The heat-shock protein HSP70b
and the novel cold-inducible gene RCI3 are the two genes that interact with the photo-
synthetic genes in all the ecotypes in spaceflight microgravity and ground control. The
fold-change analysis revealed that HSP70b is upregulated in all the ecotypes in spaceflight
microgravity, and RCI3 is downregulated in all ecotypes in spaceflight microgravity. The
interactions of HSP70b and RCI3 genes with photosynthetic genes are shown in Figure 9.
The genes HSP70b and RCI3 are interacting only with the genes ATFD1, ATLFNR2, DRT112,
ATRFNR2, and PSAO that play a vital role in the oxidation-reduction process (refer to
Table 1). HSP70b and RCI3 interact with the gene PSB27 that is involved in light-harvesting
and reaction mechanisms to light in the photosynthetic process. These genes also interact
with ATPC2 that regulates ATPase activity and the genes PSAF and PSAK that play a signif-
icant role in PSI (refer to Table 1). The interactions of these genes are common across all the
ecotypes in both environments. The comparison of the edge-list of networks disclosed that
genes are differentially regulated between spaceflight and ground environments in all the
ecotypes. The Col-0 ecotype has a large number of regulations in the GRN in spaceflight
microgravity when compared with the GRN of ground control. The other three ecotypes
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have a greater number of inhibitions in the GRN of spaceflight microgravity compared to
the GRN of ground control.
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4. Discussion

The topological properties of the GRN of four Arabidopsis ecotypes in spaceflight
microgravity and ground control are discussed here. GRNs are useful for linking TFs
(hub-genes) to their target genes, thereby representing transcriptional gene regulations
as a graph (network). The individual behavior of the genes (nodes) has an impact on
the small-world or scale-free phenomena of the network [17]. The shortest path length,
centrality (betweenness and closeness), and eccentricity of photosynthesis hub-genes and
stress response genes are the topological measures calculated on the individual GRN.

4.1. Low Shortest Path Length Indicates Small-World-Ness of the Network

Figure 5 shows low as well as high values of the average shortest path length. The
low values for average shortest path length are an indication of a small-world network,
and the shortest path length of each gene is essential to achieve the small world-ness of
the GRN [29]. The analysis of shortest path lengths of both stress response genes and
hub-genes reveals that the genes have a higher value for shortest path length in spaceflight
microgravity compared to ground control, which is an indication that the photosynthetic
GRN might lose the small-world-ness in spaceflight microgravity.

4.2. High Network Centrality Indicates the Importance of Genes on the Whole Network

Network centrality is an index that shows which node in the network has a critical
position in the whole network in connecting with other nodes [50]. In this paper, we have
analyzed betweenness centrality and closeness centrality of the photosynthetic hub-genes
and stress response genes of all ecotypes in spaceflight microgravity and ground control.



Computers 2021, 10, 18 21 of 26

The higher the value of betweenness centrality, the gene occurs more often between the
shortest paths of the other genes [50]. Some hub-genes have a betweenness centrality of 0
because they have an outdegree but no indegree (see Figure 6). Hence, they do not act as a
bridge between the other genes indicating that they act only as transcription factors but
not target genes.

The closeness centrality value ranges between 0 and 1. As discussed in [50], higher
closeness centrality (close to 1) is an indication that the gene is fully connected in the
network. The hub-genes of the Cvi ecotype in both the environments have a closeness
centrality of 1, indicating that they are fully connected in the network (see Figure 7). The
GRN of LER ecotype in spaceflight microgravity has all the hub-genes fully connected
in the network. The Col-0 ecotype in spaceflight microgravity has no hub-gene with a
closeness centrality of 1. This is because the stress response genes regulate most of the
genes to adapt to the spaceflight environment.

4.3. High Eccentricity Indicates Higher Connections in the Network

As discussed in [32], the higher the eccentricity of the node, the greater is its connec-
tions with other nodes in the network. The center of the network tends to have minimum
eccentricity for all nodes. Hence, the node with higher eccentricity has an indirect impact
on the whole network. The hub-genes in spaceflight microgravity have higher eccentricity
when compared to ground control because they have a greater outdegree in spaceflight
microgravity when compared to the outdegree of the same genes in ground control. All
the stress response genes in spaceflight microgravity have an eccentricity of 1. The GAPB
in the Col-0 ecotype in spaceflight microgravity has the highest eccentricity of 4.

4.4. Heat Shock Gene Regulates Photosynthesis Genes in Spaceflight Microgravity

The analysis of the individual behavior of the genes in the GRN is essential for
understanding the collective impact of the genes on the GRN. We have noticed that the
stress response genes of the ecotypes are not present in the GRN of both the spaceflight and
ground environments. This is because the Lasso regression eliminates minimal correlation
(close to 0) of the genes [51]. The minimal correlation of the stress response genes is
because of two reasons: there might not be much needed for the genes to express in
response to spaceflight microgravity, or the genes exhibit dysfunctionality in the spaceflight
microgravity environment [4]. The dysfunctionality of the genes in photosynthesis might
be because of the oxidative stress that occurs due to the production of harmful oxygen
species when the plants are exposed to high radiation [13].

The heat-shock protein HSP70b is upregulated in spaceflight microgravity and in-
teracts with the photosynthetic genes PSB27, ATPC2, PSAO, ATFD1, ATEFNR2, DRT112,
ATLFNR2, PSAF, and PSAK. The previous studies on HSP70b show that the gene is
responsible for repairing the genes that belong to PSII (refer to Table 1) to reduce ox-
idative stress [52]. As discussed in [53], the downregulation of HSP70b results in the
photo-sensitivity of the plant, whereas, upregulation of the gene has a protective effect
on the plant. The upregulation of HSP70b in spaceflight microgravity is an indication
that the gene provides a defense mechanism with the help of the genes involved in the
oxidation-reduction process for the survival of Arabidopsis in spaceflight microgravity.

4.5. Spaceflight Environment Leads to Dehydration-And-Salt-Stress Sensitive Ecotypes

A detailed description of RCI3 is mentioned in [54], where the upregulation of the
gene showed an increased tolerance of the plant in dehydration and salt stress. The down-
regulation of the gene resulted in a dehydration-and-salt sensitive plant. RCI3 is down-
regulated in all the ecotypes of Arabidopsis in spaceflight microgravity and interacts with
the photosynthetic hub-genes. There is a chance of dehydration stress in the spaceflight
environment as the availability of water is less compared to the ground environment. The
downregulation of RCI3 is an indication that the plants are sensitive to dehydration in
spaceflight microgravity.
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4.6. Results from the Network Analysis

We had used the scaled version of Lasso as explained in Section 2.4 which considers the
genes as both hubs and target genes. Hence, we used Pearson correlation [55] to obtain the
interactor genes with the hub genes for the photosynthesis and carbon fixation processes.
We obtained similar hubs and target (authority) genes using the HITS algorithm outlined
in Section 2.6.2. The network measures of subgraph centrality, closeness centrality, degree
distribution, page rank, and eigenvalue centrality network measures are computed for
the photosynthesis and carbon fixation networks and are used as features by the logistic
regression method to rank the top correlated genes. GSEA of the top correlated genes
is done. The processes associated with photosynthesis and carbon fixation transcription
factors are shown in Figure 9.

As we can see in Figure 10, the photosynthesis and carbon fixation genes are linked
with several stress response processes in spaceflight such as oxidation-reduction process,
molecular metabolic, and catabolic processes. The plot also shows the relationship be-
tween enriched pathways. Two pathways (nodes) are connected if they share 20% or
more genes. We expect global properties, such as the average clustering coefficients, spec-
tral gaps, power-law exponents to be of similar magnitude as the graphs are only lo-
cally different at few nodes. This also implies that the GRN of plants, animals, and hu-
mans do not drastically change globally implying possible survivability in the spaceflight
microgravity environment.
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4.7. Comparison of the Stress Response Genes in Photosynthesis and Carbon Fixation Processes of
Arabidopsis thaliana under Different Stress Conditions

Spaceflight conditions introduce other stressors such as low atmospheric pressure,
low oxygen, and higher doses of radiation to which plants have to adapt. It is interesting to
compare how the stress response genes involved in photosynthesis and the carbon fixation
process are affected by other environmental stressors in spaceflight. For performing this
comparison, we have selected two GeneLab datasets, GLDS-46 and GLDS-136. The dataset
GLDS-46 contains the transcriptomic responses of Arabidopsis when exposed to radiation.
Two different kinds of Arabidopsis are considered for the experiment: wild-type and mutants
defective in DSB-sensing protein kinase ATM. These two types of plants are exposed to
different ionizing radiation treatment types, HZE, and gamma photons. The responses of
the plants are compared with the plants grown under control conditions. The complete
description of the mission can be found in [56]. The transcriptomic responses of the WS
ecotype of Arabidopsis under hypobaric and hypoxia conditions are available in the GLDS-
136 dataset. A fold change analysis of the photosynthetic stress response genes of WT and
ATM mutant plants after exposure to gamma and HZE radiation for 24 h is conducted and
presented in Figure 11. The complete experimental setup can be found in [57].
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Figure 11. Comparison of the stress response genes in photosynthesis and carbon fixation processes of Arabidopsis under
different stress conditions.

We have made the fold change analysis of photosynthetic stress response genes under
hypobaric and hypobaric + hypoxia conditions compared to normal atmospheric pressure
and oxygen conditions. Most of the genes are upregulated under all stress conditions.
Responses to Arabidopsis under salinity stress and other stresses are also studied in [58,59].

5. Conclusions

Graph-theoretic network analysis performed on the transcriptional gene expression
datasets of four different ecotypes of Arabidopsis has brought to light significant gene regu-
lations in spaceflight that are similar or different compared to ground control. While earlier
investigations have relied on fold change analysis alone for identifying individual key gene
players in spaceflight microgravity, here, we have applied network analysis approaches
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for identifying hub genes as well as the interactor genes and processes associated with
these hub genes. The topological analysis of the GRN reveals the individual behavior
of the genes in spaceflight microgravity and how it impacts the overall photosynthetic
functioning of the plant in the altered spaceflight environment. Photosynthetic plants like
Arabidopsis obtain defense mechanisms by upregulating specific genes for the survival of
plants in adverse conditions like spaceflight microgravity, thereby ensuring that the normal
photosynthetic process takes place in the altered environments. It is also seen that these
genes are upregulated under typical spaceflight environmental conditions such as low
atmospheric pressure, low oxygen, and higher doses of radiation.

Supplementary Materials: The GeneLab datasets are online at www.genelab.nasa.gov. The scripts
are available at https://github.com/gharshini/Network-Analysis-of-Local-Gene-Regulators-in-Ar
abidopsis-Thaliana-Under-Spaceflight-Stress-.
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