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Abstract: Additive Manufacturing Techniques such as Fused Filament Fabrication (FFF) produce 3D
parts with complex geometries directly from a computer model without the need of using molds
and tools, by gradually depositing material(s), usually in layers. Due to the rapid growth of these
techniques, researchers have been increasingly interested in the availability of strategies, models or
data that may assist process optimization. In fact, 3D printed parts often exhibit limited mechanical
performance, which is usually the result of poor bonding between adjacent filaments. In turn, the
latter is influenced by the temperature field history during deposition. This study aims at evaluating
the influence of the phase change from the melt to the solid state undergone by semi-crystalline
polymers such as Polylactic Acid (PLA), on the heat transfer during the deposition stage. The energy
equation considering solidification is solved analytically and then inserted into a MatLab® code to
model cooling in FFF. The deposition and cooling of simple geometries is studied first, in order to
assess the differences in cooling of amorphous and semi-crystalline polymers. Acrylonitrile Butadiene
Styrene (ABS) was taken as representing an amorphous material. Then, the deposition and cooling of
a realistic 3D part is investigated, and the influence of the build orientation is discussed.

Keywords: Fused Filament Fabrication (FFF); phase change; modelling; heat transfer

1. Introduction

Additive Manufacturing (AM) is a group of technologies that produce three-dimensional
physical objects by gradually adding material [1,2]. Since the 1980s these technologies became
adopted for a growing number of medical/engineering applications and have gradually
entered our lives with the development of low-cost 3D printers [3,4]. In Fused Filament
Fabrication (FFF) (also often denoted as Fused Deposition Modeling), parts are made layer
by layer, each layer being obtained by the extrusion through a nozzle and the deposition
of a molten plastic filament [5,6]. The nozzle movements are controlled by a computer,
in accordance with a previously defined deposition sequence. Thus, FFF can produce a
prototype or a finished product from a Computer Aided Design (CAD) model without the
use of molds.

Despite the potential disruptive character of FFF, in practice 3D printed parts of-
ten show unsatisfactory mechanical resistance [7]. This is generally due to insufficient
bonding between adjacent filaments, which in turn is determined by the temperature
history upon cooling [8]. Consequently, knowledge of the temperature evolution during
the deposition/cooling stage is valuable for process set-up and optimization.

The objective of this work was to compute the temperature evolution during deposi-
tion and cooling of FFF parts, taking into consideration the amorphous or semi-crystalline
nature of polymers. This unique tool will not only enable an estimation of the magnitude
of the effect of the phase change occurring during cooling/solidification of partially crys-
talline polymers, but will also give generality to the thermal model. The paper is organized
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as follows. Section 3 presents the algorithm for dealing with cooling of materials with a
phase change, as well as the resulting computer code. Section 4 deals with the deposition
and cooling of simple geometries, in order to gauge the differences in cooling of amorphous
and semi-crystalline polymers. Section 5 studies the cooling of a large part, assuming all
possible build orientations.

2. Related Work

Until recently, a limited range of materials was commercially available for FFF, but
the situation is changing rapidly [9,10]. Acrylonitrile Butadiene Styrene (ABS) and Poly-
lactic Acid (PLA) remain the most popular [11,12]. ABS, an amorphous polymer, exhibits
good impact resistance and toughness, heat stability, chemical resistance, and long service
life [13]. PLA, a partially crystalline polymer, is biodegradable (compostable) and has low
melting temperature but has limited thermal stability [14]. The performance of these two
materials for 3D printing has been assessed [15–18], particularly in terms of dimensional
accuracy [19,20], surface roughness [21], mechanical performance [22] and emission of
volatile organic compounds (VOC) [23,24]. For the 3D printing of a compact omnidirec-
tional wheel, Rubies and Palacín [25] observed that when using 100% infill density, PLA
yielded a better mechanical performance than ABS. Conversely, Shabana et al. [26] con-
cluded that ABS parts exhibited better properties but released organic volatile compounds.
However, upon combining alternate layers of the two materials, optimal results were
attained. Mudassir [27] proposed a selection methodology for the two materials.

Often, both ABS and PLA 3D printed parts exhibit deficient performance, due to
poor bonding between their various individual filaments. In fact, adequate bonding
requires that contacting filaments are sufficiently hot during sufficient time in order to
enable the necessary macromolecular diffusion [28,29]. Local temperatures and their time
evolution depend on the geometry of the part, the printing conditions adopted and the
thermo-physical properties of the polymer.

In a previous work, the authors developed a simulation methodology to predict the
temperature history at any location of a 3D printed part. This entailed the development of
an algorithm to define/up-date automatically contacts and thermal/initial conditions as
the deposition proceeds, as well as a criterion to compute the degree of bonding between
adjacent filaments [28]. Despite the practical usefulness and the general good agreement
between theoretical predictions and experimental data [29], the method can only be used
for amorphous materials such as ABS, which do not exhibit a phase transition from the
melt to the solid state. In the case of partially crystalline polymers like PLA, the enthalpy
of fusion (also known as latent heat of fusion), must be considered [30]. Zgryza et al. [31]
showed experimentally by means of Infrared Thermography that differences in the surface
temperature of 3D printed samples of ABS and PLA were smaller for ABS.

3. A code for the Prediction of Temperature Evolution during Cooling in FFF
3.1. Current Code

It has been shown that during the deposition of a filament, the heat transfers by convec-
tion with the environment and by conduction with the support/adjacent filaments control
its temperature history [32]. The corresponding energy balance can then be translated
into a differential energy equation, which can be solved analytically to yield a mathemat-
ical expression to compute the temperature evolution with time [33]. In the simulation
method developed by the authors, this expression is used by an algorithm developed
using MatLab®, which activates/deactivates contacts and thermal conditions arising as the
deposition proceeds, depending on the part geometry, deposition sequence and operating
conditions. By coupling a bonding criterion to the temperature profile history, it is also
possible to predict the degree of bonding between adjacent filaments [28]. The following
assumptions are considered in the model:
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1. The axial heat conduction is neglected. Given the low thermal conductivity of poly-
mers and the small filaments radii, axial heat conduction is much smaller than con-
vection and conduction between adjacent filaments;

2. Computations are carried out when the Biot number is lower than 0.1, i.e., when the
temperature gradient in each filament cross-section can be neglected;

3. The thermal properties of the polymer are assumed to be temperature independent;
4. The thermal contact conductance is assumed to be low (high thermal resistance) while

bonding is not achieved, and high when bonding occurs.

The predictions of the code were experimentally validated for ABS filaments [29].
Comparison of calculations with experimental data for PLA showed excellent qualitative
agreement [34].

As illustrated in Figure 1, the objective is to include the phase change condition in
order to allow the study of semi-crystalline polymers such as PLA.
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3.2. Insertion of a Phase Change

The architecture of the macromolecular chains of a polymer determines the kinetics
of cooling and solidification from the melt. In the case of amorphous polymers (such as
ABS), the chains gradually rearrange upon cooling and retain a random structure upon
solidification. Contrarily, the chains of partially crystalline polymers (such as PLA) re-
arrange upon freezing and form partly ordered regions, becoming aligned and folded.
The heat of solidification of a partially crystalline polymer (the degree of crystallinity of
commercial polymer usually ranges between 20–70%) is the change in enthalpy due to the
heat absorbed to progress from liquid to a solid. Usually, material data refers instead to the
heat of fusion (also known as enthalpy of fusion, or latent heat of fusion), which is equal
but the opposite of the heat of solidification, as this property can be readily obtained from
Differential Scanning Calorimetry [30].

Therefore, when a molten filament of a partially-crystalline polymer cools down, a
phase change from liquid to solid will occur in the time interval [τl , τs], where τl is the
instant at which the filament reaches the solidification temperature Tsolid and τs is the end
of the phase change (Figure 2).
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All filaments are sub-divided into N elementary axial segments, each being deposited
at a given time instant determined by the extrusion velocity. Then, the following phase
change condition for each filament can be defined in the interval ∆t = τs − τl : Heat losses

by
convection

+
Heat trans f er

with adjacent f ilaments
and/or with support

 =

(
Heat released

during solidi f ication

)
(1)

For the rth deposited filament segment (r ∈ {1, . . . , N}):[
hconv(Ar)conv(Tsolid − TE) +

n

∑
i=1

hi(Ar)i(Tsolid − (Tr)i)

]
∆t = mλ (2)

where hconv is the convective heat transfer coefficient (W/m2 ◦C), TE is the environment
temperature (◦C), n is the number of physical contacts of the filament with adjacent filament
segments or with the support of the 3D printer, hi is the thermal contact conductance for
contact i (W/m2 ◦C), (Tr)i is the temperature of the adjacent filament segment or support
for contact i (◦C), m is the mass of the filament segment (kg), λ is the latent heat of fusion
(J/kg), (Ar)conv is the area exposed to the environment (m2) and (Ar)i is the area of contact
i for the rth filament segment (m2), which are given by: (Ar)conv = PL

(
1−

n
∑

i=1
(ar)iαi

)
(Ar)i = PL (ar)iαi

, ∀i ∈ {1, . . . , n} (3)

P is the cross-section perimeter (m), L is the filament segment length (m), αi is the
fraction of P that is in contact with another segment or with the support and (ar)i is defined
by, ∀i ∈ {1, . . . , n}, ∀r ∈ {1, . . . , N}:

(ar)i =

{
1, if the rth filament segment has the ith contact
0, otherwise

(4)

Inserting Equation (3) into Equation (2) and rearranging:

τs = τl +
ρAλ

hconvP(1−∑n
i=1(ar)iαi)(Tsolid − TE) + ∑n

i=1 hiP (ar)iαi(Tsolid − (Tr)i)
(5)

where ρ is density (kg/m3) and A is the cross-section area (m2). The following assumptions
are made:

1. Crystallization development during cooling does not affect the thermal properties,
which are taken as temperature independent;
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2. When the temperature of the rth filament segment reaches Tsolid, the thermal condi-
tions used to compute τs are activated at τl ;

3. If ((Tr)i)0 is the temperature of the adjacent filament segment for contact i at instant
τl , the value of (Tr)i will be assumed as the average between ((Tr)i)0 and TE;

4. If during a phase change a filament contacts a new hotter filament, its phase change
is interrupted and the temperatures are re-computed. When its temperature reaches
again Tsolid, τs is computed for the new thermal conditions;

Equation (5) and the assumptions above were inserted in the algorithm. At each time
increment, the filaments starting a phase change are identified. Their temperature during
the phase change is kept constant, unless a new adjacent filament interrupts the process.
A simplified flowchart is presented in Figure 3 and the respective section of the MatLab®

code is shown in Figure 4. This section was inserted in the computer code previously
developed by the authors [35].
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4. Application of the Code to Simple 3D Printed Structures

This section deals with using the code to predict the cooling of simple 3D parts. The
first example concerns the deposition of a single filament (Figure 5a), whereas the second
considers the structure with 10 filaments illustrated in Figure 5b. Table 1 presents the
main properties of ABS (P400 ABS, Stratasys®, Edina, MI, USA) and PLA (881N PLA,
Filkemp®, Algueirão–Mem Martins, Portugal). Table 2 identifies the process parameters
and computational variables. The heat transfer coefficient hconv was deduced using the
correlation of Churchill and Chu [36], a high conductance between adjacent filaments was
assumed, and an intermediate value for the extrusion temperature was considered to be
suitable for both ABS and PLA. The version 9.2.0.556344 (R2017a) of MatLab® was used.

Figure 6 shows the temperature evolution of the cross-section of a single PLA filament
(at x = 30 mm, i.e., at a section in the middle of the filament) from an initial temperature of
230 ◦C, with and without phase change, as predicted by the code presented above. The
latter starts at t = 3.25 s and lasts 0.75 s. During this period, the temperature remains
constant, whereas it decreases continuously if the phase change is not considered. This
results in a temperature difference of 13.9 ◦C (at t = 4 s) between the two cooling processes.
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Table 1. Material properties.

Property ABS PLA

Density ρ (kg/m3) 1050 1300
Thermal conductivity k (W/m·◦C) 0.2 0.1
Specific heat C (J/kg·◦C) 2020 2100
Latent heat of fusion λ (J/kg) — 30 000
Solidification temperature Tsolid (◦C) — 150
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Table 2. Process and computational parameters.

Property Value

Process parameters

Extrusion temperature TL (◦C) 230
Environment temperature TE (◦C) 25
Deposition velocity (m/s) 0.03
Convective heat transfer coefficient hconv (W/m2 ◦C)—natural convection 30
Thermal contact conductance between adjacent filaments hi (W/m2 ◦C) 200
Thermal contact conductance between filaments and support hi (W/m2 ◦C) 10
Fraction of contact area relative to filament area αi 0.2
Filament length (mm) 60
Filament cross-section geometry circle
Filament cross-section diameter (mm) 0.25

Deposition sequence Unidirectional
and aligned

Computational parameters

Time increment (s) 0.01
Temperature convergence error (◦C) 0.001
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When 10 filaments are deposited, contacts with adjacent filaments and support arise.
Figure 7 shows the temperature evolution of the cross-section of filament 2 at x = 30 mm,
with and without phase change, again for PLA and an initial temperature of 230 ◦C. In
the computations, the travel time along the z-axis is not considered (Figure 5), that is, the
deposition of a new layer starts immediately after concluding the deposition of the previous
one. The phase change occurs at t = 3.68 s and lasts 0.4 s, due to the thermal contacts with
filaments 1 and 3. The peak initiated at t = 10 s is created by the new thermal contact with
filament 7. The maximum temperature difference of 18.9 ◦C between the two curves is
observed at approximately t = 8 s. This difference is higher than in the previous example
(Figure 6) due to the contacts developing between filaments. As the temperature of each
filament remains constant during its phase change, those filaments that are in contact with
filaments that are undergoing a phase change cool more slowly, i.e., the temperature of
each filament is influenced by its own phase change and by the phase change of the other
filaments.

ABS and PLA having distinct thermal properties (Table 1) apart from their amor-
phous/partially crystalline character, their cooling rates should also differ. As seen in
Figure 8, which shows the temperature evolution of the cross-section of filament 2, at
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x = 30 mm, the ABS filament cools faster, a maximum temperature difference of 39.1 ◦C
being obtained for the two materials at approximately t = 6 s. In principle, this would
mean that this particular PLA is a better option for FFF, as slower cooling favors bonding
between filaments [28].

Computers 2021, 10, 19 8 of 15 
 

 
Figure 7. Evolution of temperature with time for filament no. 2 (PLA) with and without phase 
change (at x = 30 mm from the edge). 

ABS and PLA having distinct thermal properties (Table 1) apart from their 
amorphous/partially crystalline character, their cooling rates should also differ. As seen 
in Figure 8, which shows the temperature evolution of the cross-section of filament 2, at x 
= 30 mm, the ABS filament cools faster, a maximum temperature difference of 39.1 ℃ 
being obtained for the two materials at approximately t = 6 s. In principle, this would mean 
that this particular PLA is a better option for FFF, as slower cooling favors bonding 
between filaments [28]. 

 
Figure 8. Evolution of temperature with time for filament no. 2 for ABS and PLA (at x = 30 mm 
from the edge). 

5. Applied Case Study 
This section considers the manufacture by FFF of a rectangular tile with 90 × 60 × 30 

mm using PLA or ABS. 3D printing will be carried out using a unidirectional and aligned 
strategy (i.e., filaments will be deposited along the x axis direction). Six build orientations 
(labelled P1 to P6) are feasible, as demonstrated in Figure 9. Orientations P1 and P2 entail 

Figure 7. Evolution of temperature with time for filament no. 2 (PLA) with and without phase
change (at x = 30 mm from the edge).

Computers 2021, 10, 19 8 of 15 
 

 
Figure 7. Evolution of temperature with time for filament no. 2 (PLA) with and without phase 
change (at x = 30 mm from the edge). 

ABS and PLA having distinct thermal properties (Table 1) apart from their 
amorphous/partially crystalline character, their cooling rates should also differ. As seen 
in Figure 8, which shows the temperature evolution of the cross-section of filament 2, at x 
= 30 mm, the ABS filament cools faster, a maximum temperature difference of 39.1 ℃ 
being obtained for the two materials at approximately t = 6 s. In principle, this would mean 
that this particular PLA is a better option for FFF, as slower cooling favors bonding 
between filaments [28]. 

 
Figure 8. Evolution of temperature with time for filament no. 2 for ABS and PLA (at x = 30 mm 
from the edge). 

5. Applied Case Study 
This section considers the manufacture by FFF of a rectangular tile with 90 × 60 × 30 

mm using PLA or ABS. 3D printing will be carried out using a unidirectional and aligned 
strategy (i.e., filaments will be deposited along the x axis direction). Six build orientations 
(labelled P1 to P6) are feasible, as demonstrated in Figure 9. Orientations P1 and P2 entail 

Figure 8. Evolution of temperature with time for filament no. 2 for ABS and PLA (at x = 30 mm from
the edge).

5. Applied Case Study

This section considers the manufacture by FFF of a rectangular tile with 90 × 60 × 30 mm
using PLA or ABS. 3D printing will be carried out using a unidirectional and aligned strategy
(i.e., filaments will be deposited along the x axis direction). Six build orientations (labelled
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P1 to P6) are feasible, as demonstrated in Figure 9. Orientations P1 and P2 entail the longest
filaments (90 mm), whilst P5 and P6 require the shortest filaments (30 mm). If the filaments
are circular (with a diameter of 0.25 mm) and the deposition velocity is set to 30 mm/s, it will
take 24 h to perform the 3D printing of this part. Each build orientation will involve a different
number of filaments and contact area with the support, as presented in Table 3. The materials
properties (PLA and ABS) and the process parameters are defined in Tables 1 and 2.
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Figure 9. Selected geometry, deposition sequence and build orientations.

Table 3. Number of filaments and contact area with the support for each build orientation.

Build Orientation Number of Filaments Contact Area with the Support (mm2)

P1 (XZY) 28,800 2700
P2 (XYZ) 28,800 5400
P3 (YXZ) 43,200 5400
P4 (ZXY) 43,200 1800
P5 (ZYX) 86,400 1800
P6 (YZX) 86,400 2700

Given the high number of filaments necessary to perform the 3D printing of the part,
in order to identify more easily the differences in cooling associated with each build orien-
tation, as well as understand the rates of cooling of ABS and PLA (here representing the
behavior of amorphous and partially crystalline polymers, respectively), the temperature
evolution for one filament will be followed. The data presented in Figures 10 and 11
concerns the central filament on the 20th layer counting from the support of the 3D printer.
This corresponds to filament no. 2341 for orientations P1 and P4, no. 4681 for P2 and
P5, and no. 7021 for orientations P3 and P6. As before, the data presented refers to the
cross-section in the middle of the filament length, that is, at x = 45 mm for orientations P1
and P2, x = 30 mm for orientations P3 and P4 and x = 15 mm for orientations P5 and P6.
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Figure 11. Temperature evolution of the cross-section at the middle of the central filament of the 20th
layer (counting from the support) for the six build orientations (P1 to P6), for ABS and PLA. The
curves follow the evolution with time of temperature from the beginning of the deposition of the
part. The insets are magnifications of the progress of temperature during short time periods. A, B
and C identify the peaks used to prepare Table 4.

Table 4. The effect of the type of material (ABS vs. PLA) on the temperature of the cross-section at the middle of the central
filament of the 20th layer (counting from the support) for six build orientations, P1 to P6 (maximum temperature difference
and temperatures of peaks A, B and C in Figure 11).

Build
Orientation

Maximum Temperature
Difference between ABS and

PLA (◦C)

Maximum
Temperature of Peaks

A (◦C)

Maximum
Temperature of Peaks

B (◦C)

Maximum
Temperature of Peaks

C (◦C)

P1 40.4 ABS: 56.2
PLA: 64.8

ABS: 40.7
PLA: 45.2

ABS: 33.8
PLA: 36.4

P2 39.4 ABS: 56.1
PLA: 64.9

ABS: 40.6
PLA: 45.2

ABS: 33.7
PLA: 36.4

P3 41.6 ABS: 60.3
PLA: 72.6

ABS: 43.6
PLA: 51.0

ABS: 35.9
PLA: 39.1

P4 41.2 ABS: 61.0
PLA: 70.2

ABS: 43.8
PLA: 49.8

ABS: 35.9
PLA: 39.4

P5 40.4 ABS: 73.6
PLA: 83.6

ABS: 52.6
PLA: 59.7

ABS: 41.4
PLA: 46.1

P6 40.4 ABS: 73.6
PLA: 83.5

ABS: 52.6
PLA: 59.7

ABS: 41.4
PLA: 46.1

For an easier comparison of the thermal history associated with each material and
build orientation, Figure 9 exhibits the temperature evolution during the first 3800 s from
the instant the cross-section of the filaments highlighted was deposited. The actual time
elapsed since building of the part started is identified in the figures labels. Figure 11 uses
the real time scale to study in greater detail the temperature development during cooling,
again for the six build orientations (this is why the time values in the x axis change with
build orientation), and directly comparing the curves for ABS and PLA. The insets in
the figures are magnifications of the progress of temperature during short time periods,
evidencing either specific features of the curves or differences between the two materials.

Each of the two graphs of Figure 10 essentially displays 3 sets of curves, which are
due to the similitudes in heat transfer between P1 and P2, P3 and P4 and P5 and P6. In the
initial seconds, the cooling rate is higher for P1 and P2, followed by P3 and P4, and finally
by P5 and P6. This is directly related to the length of the filaments for each build orientation
(90, 60 and 30 mm, respectively), which leads to different deposition times (3, 2 and 1 s,
respectively) and determines the period of time elapsed between contacts. Indeed, the
figures clearly show that the cooling of the filament is influenced by the physical contact
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with filaments that are deposited later, as well as by heat transfer from newer filaments
belonging to other more recent layers. The peaks around 500 s are a good example of
the latter effect. Also, a comparison between the two graphs will show that at analogous
cooling times the filament temperatures are generally higher for PLA, due to the occurrence
of a phase change (and the inherent thermal properties of each material), but this is more
clearly seen in Figure 11.

As discussed above, Figure 11 reveals in more detail how the temperature of the mid
cross-section of the filament selected evolves with time for the various build orientations
and for the two materials. In each graph, the initial sharp temperature decrease results from
the deposition of the filament. The inset clearly shows that the differences in the cooling
rate between ABS and PLA are due to their intrinsic thermal properties (influencing the
slope of the curve) as well as by their crystalline character, with PLA exhibiting a plateau
due to the phase change. In the same inset, the first temperature peak arises due to the
physical contact with the next filament being deposited. The remaining peaks in each
graph were caused by the heat transfer developing due to the deposition of new hotter
filaments in the same layer and in the layers above.

The magnitude of the initial peak is small, but varies with build orientation. Also, the
time at which it develops differs with build orientation. The longer the filament, the larger
the time elapsed between the successive contributions to heat transfer from new filaments,
and consequently the lower the re-heating effect. As the deposition of the part continues,
the filament being studied reaches the environment temperature. From then onwards, the
intensity of the temperature peaks decreases, because the distance between this filament
and any new filament being deposited also increases.

Table 4 quantifies some of the features of the curves in Figure 11, thus evidencing
the temperature differences upon cooling of ABS and PLA for the part being considered.
It includes the maximum temperature difference between the two materials that was
observed during the global deposition/cooling sequence. This amounts to approximately
40 ◦C and depends little on build orientation. Once the filament reaches the environment
temperature, the temperatures of the next 3 peaks (denoted A, B and C in Figure 11) were
also registered and are included in the Table. As expected, the magnitude of these peaks
decreases as the deposition of the 3D part proceeds, because the new individual filaments
that are deposited are gradually more distant from the cross-section being monitored.
Naturally, the temperature differences between the two materials also decrease (from
approximately 10 ◦C for peak A, to circa 6 ◦C for peak B, to around 4 ◦C for peak C). Also,
the temperatures for PLA are consistently higher than those for ABS, obviously due to the
phase change undertook by the former. Build orientation has an effect on the temperature
of peaks A to C, particularly for the first. A difference of almost 20 ◦C was registered for
orientation P1 (64.8 ◦C) relative to P5 (83.6 ◦C). Again, the higher temperatures occur for
the build orientations dealing with shorter filaments, where the contacts between filaments
at any given vertical cross-section of the part are more frequent. These re-heating peaks
may contribute significantly to the quality of the 3D printed part, because if sufficiently
high temperatures are attained, bonding between contiguous filaments is favored.

6. Conclusions

A simulation method to predict quantitatively the temperature evolution of filaments
during deposition and cooling in FFF, capable of dealing with both amorphous and semi-
crystalline polymers, was implemented. The simulation can be applied to any thermoplastic
or composite as long as its thermal properties are known. When depositing a single
filament of PLA, a temperature difference of almost 14 ◦C is observed when considering a
phase chance relative to ignoring it. In the case of structures with several filaments, the
temperature difference can raise to about 20 ◦C, due to the re-heating effects of neighboring
filaments. The differences between the two types of materials were highlighted studying
the deposition of a single filament and a simple structure with 10 filaments, made with
ABS or PLA. The evolution of temperature with time can become significantly different for



Computers 2021, 10, 19 14 of 15

the two polymers (differences of up to 40 ◦C), especially when several filaments come into
contact with each other.

An applied case study was also presented, by considering the 3D printing of a
90 × 60 × 30 mm brick-like part, which would take 24 h to manufacture under the usual
deposition velocity of 30 mm/s. The influence of the build orientation selected was inves-
tigated. It was shown that the time evolution of the filaments temperature depends on
their length, as this determines the frequency at which heat transfer from newly deposited
filaments contributes to re-heating. Temperature differences of around 30 ◦C were pre-
dicted. The temperature of PLA filaments was always higher than that of ABS for all the
3D printing orientations, due to the inherent thermal properties of the two materials and
the existence of a phase change in PLA.

The work presented is a first step towards predicting the properties of parts produced
by FFF. Knowing the evolution of temperature with time as the deposition proceeds, it is
possible to predict bonding between contiguous filaments by means of a healing criterion,
as well as part shrinkage and warpage arising due to local temperature gradients. As a
further step, the mechanical properties of 3D parts could be estimated; for example, with
the use of sintering models.
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