
computers

Article

Empirical Assessment of the Quality of MVC Web Applications
Returned by xGenerator

Gaetanino Paolone 1, Romolo Paesani 1, Martina Marinelli 1 and Paolino Di Felice 2,*

����������
�������

Citation: Paolone, G.; Paesani, R.;

Marinelli, M.; Di Felice, P. Empirical

Assessment of the Quality of MVC

Web Applications Returned by

xGenerator. Computers 2021, 10, 20.

https://doi.org/10.3390/computers

10020020

Academic Editor: Paolo Bellavista

Received: 24 December 2020

Accepted: 27 January 2021

Published: 4 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Gruppo SI S.c.a.r.l., 64100 Teramo, Italy; g.paolone@softwareindustriale.it (G.P.);
r.paesani@softwareindustriale.it (R.P.); m.marinelli@softwareindustriale.it (M.M.)

2 Department of Industrial and Information Engineering and Economics, University of L’Aquila,
67100 L’Aquila, Italy

* Correspondence: paolino.difelice@univaq.it; Tel.: +39-320-423-2540

Abstract: Many scholars have reported that the adoption of Model Driven Engineering (MDE) in the
industry is still marginal. Real-life case studies, completed with convincing empirical data about the
quality of the developed source code, is an effective way to persuade the industry that the adoption
of MDE brings an actual added value. This paper reports about the assessment of the quality of
the code outputted by xGenerator: a Java technology platform for the development of enterprise
Web applications, which implements the MDE paradigm. Two recent papers from Aniche and his
colleagues were selected to carry out the measurements. The former study is about metrics and
thresholds for MVC Web applications, while the latter presents a catalog of six smells tailored to
MVC Web applications. A big merit of both of these proposals is that they fix the metric thresholds by
taking into account the MVC software architecture. The results of the empirical assessment, carried
out on a real-life project, proved that the quality of the code is high.

Keywords: code metric; Model Driven Architecture; Model Driven Engineering; Model-View-
Controller; smell; UML; xGenerator; Web application

1. Introduction

“Model Driven Architecture (MDA) is an approach to software design, development
and implementation by the OMG. MDA provides guidelines for structuring software
specifications that are expressed as models. MDA separates business and application
logic from the underlying platform technology” (sentences taken from: https://www.omg.
org/mda/). MDA has been promoted to solve one of the main problems faced by the
software industry: coping with the complexity of software development by raising the
abstraction level and introducing more automation in the process. MDA enables model-
driven software development which treats models as primary development artefacts.

Ref. [1] reports about the state-of-the-art of code generation using MDA. The authors
identified 50 primary studies out of 2145 related MDA articles over the period 2008–2018.
From the studies published in major journals and international conferences, it comes out
that until now scholars have been focused predominantly on:

• modeling languages (e.g., [2]). Here, the open debate is domain-specific modeling
languages versus general-purpose modeling languages (e.g., [3,4]);

• Model-To-Model and Model-To-Text transformations (e.g., [5,6]);
• tools supporting the transformation techniques (e.g., [5,7]). In 2019, Kahani et al. [5]

identified 60 tools based on the used transformation approach. Their study provides
an up-to-date, in depth picture on this topic;

• the state of applying MDE in the industry and the factors considered relevant for its
adoption (e.g., [8–12]).

Very recently, Bucchiarone et al. [13] reported that the adoption of MDE in the industry
is still marginal. Of course “research in MDE is useless without having industrial adoption”,

Computers 2021, 10, 20. https://doi.org/10.3390/computers10020020 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-3552-0199
https://doi.org/10.3390/computers10020020
https://doi.org/10.3390/computers10020020
https://doi.org/10.3390/computers10020020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.omg.org/mda/
https://www.omg.org/mda/
https://doi.org/10.3390/computers10020020
https://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/10/2/20?type=check_update&version=3


Computers 2021, 10, 20 2 of 18

ref. [8] (p. 41). Real-life case studies, completed with convincing empirical data about the
quality of the developed source code, are an effective way to persuade the industry that
the adoption of MDE brings an actual added value. This is the core of the present paper. In
fact, it reports about the assessment of the quality of the code outputted by xGenerator.
The latter is a proprietary Java technology platform for the creation of enterprise Web
applications. xGenerator complies with the Software Development Process described
in [14]. At a high level of abstraction, such a tool acts as a black box that receives as input
a UML model and returns the Java code of the Web application. The present empirical
study completes the previous research by adding the part missing in that paper, namely
the assessment of the quality of the generated code. Hence, this study constitutes an
integral part of the previous one. The assessment of the quality of the code is based on
two quite recent papers from Aniche and his colleagues [15,16]. The former study is about
metrics and thresholds for MVC Web applications, while the latter presents a catalog of six
smellstailored to MVC Web applications. Generally speaking, code metric analysis is the
common method for assessing the quality of programs; while code smell studies propose
ways of detecting violations of coding design principles together with refactoring actions
to enhance the quality. The paper is structured as follows. Section 2 introduces notions
and terms used throughout the paper. In particular, the section (a) provides an overview
of the Software Development Process implemented by xGenerator, (b) recalls the basic
features of such a tool and (c) surveys many papers about the assessment of the quality of
object-oriented source code. A real-life case study is the focus of Section 3, while Section 4
describes the method adopted to carry out the study. Section 5 presents and discusses
the results of the experiments obtained by adopting an open source tool (Springlint).
Section 6 concludes the paper.

2. Background

This section recalls arguments at the core of the present paper. It starts with a light
description of MDA, code generation and the Web Model-View-Controller architecture,
then basic concepts from [14] are recalled and eventually pertinent studies on code metrics
and code smells are surveyed.

Model Driven Architecture MDA provides guidelines for structuring software speci-
fications that are expressed as models [17]. The MDA is structured in terms of three models:
the Computation Independent Model (CIM), the Platform Independent Model (PIM) and
the Platform Specific Model (PSM). A transformation converts models from one level
of abstraction to another, usually from a more abstract to less abstract view, by adding
more detail supplied by the transformation rules. Transformations can be Model-To-Model
(it concerns the transition from CIM to PIM or from PIM to PSM) and Model-To-Text (it
concerns the generation of the code from the PSM to a specific programming language as a
target). Ref. [1] reports about the state-of-the-art of code generation using MDA research
in software engineering.

Code generation Code generators output, from a model, the full code or a template
to be completed with handwritten code [18]. The Generation gap pattern [19] is a technique
able to keep the code and model consistent after a regeneration even when both have
been modified. The strategy isolates the generated code by means of inheritance: the
handwritten classes extend the generated ones. In case of regeneration, the code generator
can safely overwrite the superclasses, while those manually written remain unaffected.

The Model-View-Controller (MVC) The MVC pattern for enterprise Web applica-
tions is given in Figure 1. The rectangles with rounded corners are part of the standard
pattern [20]. Each layer is composed of classes that implement the interactions among the
layers. Model implements the business logic of the application and includes the methods
for connecting to the database. Controller interacts with Model in order to retrieve the
needed data and generate the views. View is responsible for the way data are displayed
and how users interact with it. Moreover, it supports the data gathering from the users.



Computers 2021, 10, 20 3 of 18

Browser displays the HTML statements created by the View classes and sends requests to
the Controller.

Figure 1. The standard Model-View-Controller (MVC) pattern of Web applications.

2.1. Overview of the Software Development Process

The process aims at automating the development of enterprise Web applications. It is
UML-based, implements the MDA and makes use of a proprietary tool (xGenerator). At
the CIM level, both structural and behavioral aspects of the company business are modeled,
as well as the relationships between them. The transformation of models used focuses
on the Use Case (UC) and Class constructs which, together, cover both the behavioral and
the structural aspects. In the Software Development Process, the UC “enters the scene”
at the CIM level to model the business and becomes a Java class in the code of the Web
application. Figure 2 shows the different levels of abstractions of the UCs across the MDA’s
layers. At the CIM, the UCs are called Business UC Realization, while at the PIM they are
called System UC Realization; according to the Rational Unified Process. The UC construct
is also present on the third layer, where it maps the PSM to (Java) code through code
generation. Figure 3 summarizes the approach proposed in [14].

Figure 2. The Use Case (UC) abstraction levels across the Model Driven Architecture (MDA) layers
of the Software Development Process in [14].

2.2. An Overview of xGenerator

This tool supports the Software Development Process proposed in [14]: analysts and
designers develop the artefacts of CIM, while those of PIM and PSM, as well as the source
code, are generated. The source Java code of the Web application is returned in the Eclipse
environment. In accordance with the Generation gap pattern [19], the classes are structured
at two different levels of abstraction: for each class of the PSM, it is generated a superclass
and a subclass. The artefacts of the code model are: (a) one Java class for each class of



Computers 2021, 10, 20 4 of 18

the PSM at each architectural layer; (b) a Java superclass for each class of the PSM at each
architectural layer and a subclass that inherits from the superclass.

Figure 3. Overview of the MDA transformational approach in [14].

Each Java class returned by xGenerator focuses on a specific task of the MVC layer the
class belongs to (high cohesion). The classes (returned by xGenerator) belonging to different
layers of the MVC architecture are independent of each other (low coupling). Cohesion
and coupling relate to the relationships that exist within a class and between classes,
respectively (more in [21,22]). High cohesion and low coupling are desirable features of
object-oriented software, e.g., [23]. The classes belonging to the same layer of the MVC
pattern are structurally identical. This does not necessarily happen if the classes are coded
by a team of programmers. Such a feature of classes of Web applications has direct impact
on the code readability that, in turn, is an essential characteristic of code quality [24].

Figure 4 shows the architecture of the enterprise Web applications that can be de-
veloped with xGenerator. This architecture instantiates the basic MVC pattern. Bean
and QueryContainer classes belong to the Model layer. The Bean classes are mapped to
database’s tables through the Resource component that wraps Hibernate. The QueryContainer
classes define the filter criteria in the queries to be executed against the database. View is
composed of three class sub-layers: ViewBeanInfo displays (in a panel) the information
of a Bean, ViewQueryInfo displays (in a panel) the query criteria and UseCasePanel sends
the information to the browser. Controller is composed of the layer of the UseCases classes;
the latter implement the standard behavior of use cases and the navigation of the panels
they are composed of.

Figure 4. The architecture of the enterprise Web applications developed with xGenerator.



Computers 2021, 10, 20 5 of 18

2.3. Code Metrics and Code Smells

Code metric analysis is the common method for assessing the quality of a software
system. Kent Beck coined the term “code smell” in the context of identifying quality issues
in object-oriented source code [25]. Code smells is one of the symptoms of low-quality
code that, therefore, is claiming for improvement. Code smells do not prevent the software
from working; however, they denote weaknesses in the design part of the system.

The recent study by Tahir et al. [26] has pointed out that there is a high debate between
developers, across technical Stack Exchange sites, on code smells, their meaning and their
impact. As an obvious consequence, the number of empirical studies on the topic is rising
constantly. The smell metaphor has been adopted for several categories of software projects.
Alkharabsheh et al. [27] carried out a systematic analysis of the state-of-the-art about code
smell detection spanning over the period 2000–2017 (the smell metaphor was introduced in
1999 by Kent Beck). Sharma and Spinellis [28] is another up-to-date survey on studies about
smell detection methods published in the period 1999–2016. Kaur [29], in turn, conducted
a literature review that assessed and reported the findings of empirical studies, published
till March 2018, about the impact of code smells on software quality.

The code smell detection analysis can be carried out by taking into account structural,
historical and semantic properties. In the first case, the smell detection task exploits metrics
in order to describe the structure of the code. A well-known suite of object-oriented metrics
is given in [21].

Code smells impact understandability, maintainability, testability, complexity, perfor-
mance, functionality, reusability and change-proneness of the software. Moreover, smells
may increase the effort (and hence the cost) required to produce the code. Table 1, built from
the data in [28], lists the five smell detection methods mentioned in such a paper together
with the number of surveyed studies. From the table, we see that the metrics-based method
is the most investigated by scholars.

Table 1. Smell detection methods and the number of surveyed studies in [28].

Smell Detection Method Number of References

Metrics-based 19
Rule/Heuristics-based 15

Machine learning-based 6
Optimization-based 4

History-based 2

Metrics-based smell detection methods are relatively easy to be implemented; however,
a non-trivial challenge posed by those methods is the choice of the thresholds, as pointed
out by the software engineering community (see, for instance, [30,31]). On this point,
Lacerda et al. [32] write the following: “There is no consensus on the standard threshold
values for the detection of smells, which are the cause of the disparity in the results of
different approaches.” Fontana et al. [33] pointed out that the assessments produced by
metrics-based smell detection tools are prone to high false-positive rates because, as already
said, this category of methods depends on the metrics thresholds. In the metrics-based
methods, the false-positives cannot be eliminated until the context is taken into account,
and this is because one set of thresholds do not hold good necessarily in another context.
According to Gil and Lalouche [34] “the code metric values, when inspected out of context,
mean nothing”; in fact, they proved that metric values vary among projects.

Until a few years ago, software tools and published proposals did not take the system
architecture into account. This means that all classes within an object-oriented application
were treated as they were equal to each other and, hence, assessed in the same way, regard-
less of their specific architectural role. This approach is not satisfactory if applied to an MVC
Web application, where Controller classes are quite different from Model classes simply
because they play very different roles: the former are responsible for coordinating the flow
between the View and the Model layers, while the latter implements business concepts.



Computers 2021, 10, 20 6 of 18

Adding context to code metrics is a recent research topic. In Aniche et al. [15], the
authors adapt the threshold of metrics to the “class’s architectural role” with regard to the
(Spring) MVC pattern (Figure 5); where the architectural role is defined as the particular
role that a class plays in a given system architecture. Specifically, Aniche et al. focus on
the server-side code, namely on the Controller and Model layers. Ref. [15] relies on the
Chidamber and Kemerer metrics suite [21], as it covers different aspects of object-oriented
programming, such as coupling, cohesion and complexity.

Figure 5. The Spring MVC architecture as depicted in [16].

Table 2 shows the class level metrics taken from [21], while Table 3 shows the thresh-
olds found by Aniche et al. [15] for the classes of the five architectural role belonging to the
Controller and Model layers. Each metric varies from 0 or 1 to infinite. The triple [v1, v2, v3]
denotes, in order, the low, high and very high thresholds corresponding to moderate/high-
/very high risk. Classes in which metric values range in the 70–80% have “moderate risk”,
while from 80–90% the risk is “high” and “very high” between 90–100%. A percentile
is a measure used in statistics indicating the value below which a given percentage of
observations in a group of observations falls.

Table 2. The reference class level metrics in [15].

Metric Acronym Meaning

Coupling between Object Classes CBO The number of classes a class depends upon. It counts classes
used from both external
libraries as well as classes from the project.

Lack of COhesion in Methods LCOM The lack of cohesion in a class counts the
number of intersections between methods and attributes. The
higher the number, the less cohesive is the class.

Number Of Methods NOM Number of methods in a class.

Response For a Class RFC It is the count of all method invocations that happen in a class.

Weighted Methods per Class WMC Sum of McCabe’s cyclomatic complexity for
each method in the class.

In a more recent paper, Aniche et al. [16] investigated the link between a set of
metrics and code-smell detection. Several studies have been carried out adopting the
catalog of 22 code smells defined by Martin Fowler and Kent Beck in the Refactoring
book [25], and including smells that fit well in any object-oriented software system. The
code smells from [25] capture general principles of good design, while they ignore the
actual architecture of the software or the role played by each class inside the application.
Aniche et al. [16] argued that it is possible to discover bad practices on software systems
adopting a specific architecture by taking into account specific types of code smells. In
concrete, they proposed a catalog of six smells tailored to MVC Web applications. Their



Computers 2021, 10, 20 7 of 18

findings show that the adopted smells have more chances of being subject to changes and
defects; moreover, the smells survive for long time in the system.

Table 3. The thresholds for the reference class level metrics of Table 2.

Architectural Role CBO LCOM NOM RFC WMC

Controller [26,29,34] [33,95,435] [16,22,37] [62,78,110] [57,83,130]
Repository [15,21,31] [36,106,351] [19,26,41] [50,76,123] [60,104,212]

Service [27,34,47] [133,271,622] [23,32,45] [88,123,190] [97,146,229]
Entity [16,20,25] [440,727,1844] [33,42,64] [8,12,25] [49,61,88]

Component [20,25,36] [50,123,433] [15,22,35] [56,81,132] [52,79,125]

Table 4 reports the six MVC smells of the catalog in [16], while Table 5 collects the
thresholds used to detect them. To know the motivations behind the adoption of those
smells and the detection strategy adopted to spot them, please refer to such a paper.

By exploiting the catalog of smells in [16], this allows to overcome the critical issue
pointed out by Hozano et al. [35]: “the informal and subjective definition of certain
smell types [. . . ] may lead two or more developers to reason about each smell occurrence
differently.”

Table 4. The MVC smells in [16].

Smell Description

Promiscuous Controller Offer too many actions
Brain Controller Too much flow control

Meddling Service The service directly query the database
Brain Repository Complex logic in the repository

Laborious Repository Method A method having multiple actions
Fat Repository A repository managing too many entities

Table 5. The thresholds used to detect the smells in Table 4.

Metric Threshold

Promiscuous Controller
Number of Routes (NOR) 10

Number of Services as
Dependencies (NSD) 3

Brain Controller
Non-Framework RFC

(NFRFC) 55

Brain Repository
McCabe’s Complexity 24

SQL Complexity 29

Fat Repository
Coupling to Entities (CTE) 1

3. The Case Study: The Automated Teller Machine (ATM) Subsystem

This section concerns the development of a Web application named ATMProject. The
example is carried out by following the steps of the Software Development Process recalled
in Section 2.1 and by making use of xGenerator (Section 2.2). A similar example is taken
into account in [36–38]. The basic business vocabulary (i.e., the general concepts) of our
example is composed of the following nouns and noun phrases: Customer, Bank, ATM,
Bank Account, PIN, Bancomat code, Check Balance, Amount, Deposit Money, Transfer
Money, Transaction, Currency, Register ATM, ATM technician, Maintenance and Repair
(hardware, firmware or software upgrade).



Computers 2021, 10, 20 8 of 18

The business rules to be implemented are the following: (a) a customer can hold many
bank accounts, while an account is owned by a single customer. (b) An account may be
linked to many cards. (c) A customer must be able to make a cash withdrawal from any
account linked to the card entered into the ATM; moreover, a customer must be able to make
a deposit to any account linked to the card entered into the ATM. (d) Many transactions
can be made on an account. (e) A transaction refers to one currency and takes place at a
physical ATM. (f) Many maintenances and repairs may happen on ATMs.

Through an ATM, bank customers can perform financial transactions in a public space
without the need for a cashier. An ATM session starts when the customer inserts an ATM
card into the machine; then, he is asked to enter the Personal Identification Number (PIN).
The latter joins the customer to a specific bank account. Then, he is allowed to perform one
or more transactions, choosing from a list of alternatives. To authenticate a customer and
perform transactions, the ATM subsystem must interact with the bank’s database about
accounts. Users’ authentication is out of scope of the ATMProject.

Figure 6 shows the Business UC Diagram. It is composed of a single Business UC
(Automatic Teller Machine) that communicates with the Business Actors (Bank and ATM
Technician) and the Business Worker Customer. As usual in UML, business workers are
stereotyped as «Business Worker», while business actors are stereotyped as «Business Actor».

Figure 6. The Business UC Diagram.

The customer uses the ATM to Check the Balance of his bank account(s), Deposit
Money into a bank account, Withdraw Cash and/or Transfer Money from one account
to another. Check Balance, Deposit Money, Withdraw Cash and Transfer Money are “top
level” UCs, i.e., Business UC Realizations (Section 2.1). Figure 7 shows the Business UC
Realizations that realize the Automatic Teller Machine Business UC.

Figures 8–10 show, respectively, the Business UC Realizations the three “roles” of
Figure 6 interact with. The Business Objects of the ATM Subsystem are shown in Figure 11.
The Business Actors Bank and ATM Technician (Figure 6) do not give rise to business
objects because those actors are managed by the Login component of xGenerator [14].

The Business Worker Customer communicates with the Business UC Realizations
Withdraw, Deposit, Transfer and Check Balance through the Business Object Transaction.
The transaction has sign negative for withdrawals and sign positive for deposits. In the case
of transfers of money between two accounts, there are two business objects Transaction
with opposite sign.

The business object MaintenanceCategory specifies the six categories of maintenance
on the ATMs taken into account in our example, namely: replenishing of cash, ink or
printer paper; upgrade of hardware, firmware or software.



Computers 2021, 10, 20 9 of 18

Figure 7. The Business UC Realization Diagram.

Figure 8. The Business UC Realization the Business Actor Bank communicates with.

Figure 9. The Business UC Realizations the Business Worker Customer communicates with.

Figure 10. The Business UC Realizations the Business Actor ATM Technician communicates with.

Figure 12 shows the class diagram that takes into account the Business Objects of
Figure 11 and the business rules, while Figure 13 shows the tables of the underling Post-
greSQL database.



Computers 2021, 10, 20 10 of 18

Figure 11. The Business object diagram.

Figure 12. The Bean class diagram.

Figure 13. The database of the ATMProject.

4. Method

The quality of the code outputted by xGenerator is high “by definition” because it
implements a model-driven approach based on MDA and, as it is known, “MDA leverages



Computers 2021, 10, 20 11 of 18

models to [. . . ] improve the quality and maintainability of the resulting products” [39]
(p. 1). Kulkarni summarizes a long experience of delivering business applications using
a model-driven development approach as follows: “In our experience, large application
development projects benefited from this approach in terms of technology independence,
enhanced productivity and uniformly high code quality.” [10] (p. 233). Nonetheless, the ob-
jective of our study was the assessment of the quality of the source code of the ATMProject.

ATMProject is composed of 33 classes (7 Controller classes, 8 Bean classes,
4 QueryContainer classes, and 14 View classes) for a total of 2349 lines of Java code. To
measure the quality of such a code (with the exception of the View classes), we used
the Springlint tool based on Mauricio Aniche’s PhD thesis [40]. Springlint compares
the classes playing a given role (e.g., Controller) to a benchmark of thousands of classes
from 120 Spring MVC systems. Red dark squares mean the class is within the 10% worst
classes (classes with highest values) in the benchmark. Light red squares (10–20%), yellow
(20–30%), green (30–100%) are the other categories. In addition, the size of the square is
proportional to the metric value: the bigger the square the higher the metric value. In
practice, we should be worried about red classes. Springlint also detects the six smells of
Table 4 in Spring MVC systems.

The MVC pattern implemented by xGenerator (Figure 4) is not identical to Spring
MVC (Figure 5). The consequence is that the structure, and hence the content, of the three
layers of the code are not identical in the two solutions. Nonetheless, it was possible to
use the Springlint tool because the following correspondences exist between the two
implementations of the MVC pattern:

• Bean classes match the Spring Entity classes.
• UseCase classes match the Spring Controller classes; but, besides implementing

all the actions of the Controller layer of Spring, UseCase classes manage also the
navigation of the use cases according to the UML’s definition.

• QueryContainer classes match the Spring Repository classes. The methods in both
families implement queries against the underlying database; but, while QueryCon-
tainer classes may contain multiple QueryObjects referring to different Bean classes,
Aniche et al. [16] postulated that Repository classes must contain a single QueryObject
linked to a single Bean class.

Coherently with the correspondences listed above, xGenerator tagged the Java classes
of the ATMProject with an annotation that specifies their architectural role. The annotations
are the following: @Controller, @Repository and @Entity.

5. The Results

Figure 14 shows the names of the classes that compose the packages Bean, QueryContainer
and Controller of the layers of the ATMProject. The number of the classes in the fig-
ure comes from the adopted Software Development Process. The Controller classes are
as many as the number of the Business UC Realization (Figure 7). There exists a 1-to-1
correspondence between the Business objects (Figure 11), the database tables (Figure 13),
the classes in the class diagram (Figure 12) and the Java Bean classes of the generated code
(Figure 14). About the QueryContainer classes of the Model layer (Figure 4), their number
and content derive from the project specifications. In the ATMProject, such a number is
4 because it was decided to display information about: (a) the ATMs; (b) the customers
and their bank accounts; (c) the ATMs and the undergone repairs; and (d) the ATMs, the
undergone repairs and the categories of maintenance they were involved in. Regarding
their content, it should be remembered that QueryContainer classes define the filter criteria
inside the queries to be executed against the database (Section 2.2). Therefore, in the
ATMProject QueryContainerATM accesses 1 table (i.e., ATM); QueryContainerBankAccount
accesses 2 tables (i.e., Customer and BankAccount); QueryContainerMaintenance accesses
4 tables (i.e., ATM, Maintenance, MaintenanceCategory and Repair); and QueryContain-
erRepair accesses 2 tables (i.e., ATM and Repair).



Computers 2021, 10, 20 12 of 18

Figure 14. The classes of the ATMProject.

Tables 6–8 collect the numerical values of the metrics of Table 2 returned by Springlint
for the classes Controller, Bean and QueryContainer, respectively. The empty boxes in
these tables denote the zero value. The output of Springlint (Figures 15–17) is an HTML
file. We named it springlint-result ATMProject.html and made it available at URL
www.softwareindustriale.it/ATMProject.html (ATMProject).

Table 6. The values of the metrics for the Controller classes.

CBO LCOM NOM RFC WMC

UseCaseCheckBalance 7 24 6 27 11
UseCaseDeposit 9 24 6 43 10
UseCaseMaintenance 14 6 4 12 16
UseCaseRegisterATM 12 6 4 6
UseCaseRepair 14 6 4 12 16
UseCaseTransfer 10 35 8 51 17
UseCaseWithdraw 9 28 7 48 16

Table 7. The values of the metrics for the Bean classes.

CBO LCOM NOM RFC WMC

ATM 8 56 12 1 12
BankAccount 12 120 17 17
Currency 7 11 6 1 6
Customer 9 91 15 15
Maintenance 12 45 11 11
MaintenanceCategory 7 7 6 6
Repair 11 28 9 9
Transaction 12 120 17 17

The results are excellent with just one pseudo-exception. In fact, the values of the five
metrics for the three different categories of classes are always below the smallest threshold
of Table 3. Those values confirm that the classes returned by xGenerator are characterised
by high cohesion and low coupling (Section 2.2). The pseudo-exception is represented by
value LCOM = 35 for the UseCaseTransfer Controller class (Figure 15); but, as we can
see, value 35 is almost coincident with value 33 of Table 3.

www.softwareindustriale.it/ATMProject.html
www.softwareindustriale.it/ATMProject.html


Computers 2021, 10, 20 13 of 18

With respect to Table 7, we can say the following. The values of metrics NOM and
WMC are identical because the McCabe’s cyclomatic complexity equals 1 for each of
the methods belonging to the Bean classes. The coincidence of values for the classes
BankAccount and Transaction is casual.

With respect to the smells, Springlint produced the following answers:

(a) Are there smells in your Controllers? No!
(b) Are there smells in your Entities? No!
(c) Are there smells in your Repositories?

QueryContainerBankAccount Fat Repository,
QueryContainerRepair Fat Repository,
QueryContainerMaintenance Fat Repository.

Aniche et al. [16] (p. 2130) defines Fat Repository as “a Repository managing too
many entities” (Table 4); where an Entity represents a domain object (e.g., a bank account)
managed by a specific class (in our case a Bean class). They called this metric CTE. If CTE >
1 (Table 5), the class is labeled smelly. The interactions of the 4 QueryContainer classes in
the ATMProject with the Bean classes are detailed below.

QueryContainerATM:
import model.bean.ATM;

QueryContainerBankAccount:
import model.bean.BankAccount;
import model.bean.Customer;

QueryContainerMaintenance:
import model.bean.ATM;
import model.bean.Maintenance;
import model.bean.MaintenanceCategory;
import model.bean.Repair;

QueryContainerRepair:
import model.bean.ATM;
import model.bean.Repair;

It follows that, CTE = 1 for the QueryContainerATM class, while CTE > 1 for the other
three classes. In light of the study of the state-of-the-art, which constitutes the underlying
base of the experiments we carried out and the results we got, it follows that to respect the
constraint CTE = 1, it is necessary to impose a best practice that implements the refactoring
suggestion proposed in [16] when CTE > 1, i.e., move the methods that are related to
other Entities to the Repository specific to them. In our case, this means having as many
QueryContainer classes as the number the database tables. Consequently, complex queries
have to be created by assembling elementary queries, each of which has to access only one
table. Obviously we can do this but it does not necessarily represent a benefit and in any
case it is not a universally shared solution. For example, in [16], the authors carried out
an experiment on 100 Spring MVC projects. It is interesting to note that the most common
smell in terms of percentage of affected classes was the Fat Repository (20.5%, page 2137).
This proves that even Spring MVC programmers often violate the threshold CTE = 1
proposed in [16] because such a constraint is considered by programmers too rigid.

Table 8. The values of the metrics for the QueryContainer classes.

CBO LCOM NOM RFC WMC

QueryContainerATM 7 3 3 6 3
QueryContainerBankAccount 6 4 6 5
QueryContainerMaintenance 13 3 3 5 3
QueryContainerRepair 12 3 3 6 3



Computers 2021, 10, 20 14 of 18

Figure 15. The graphical output of Springlint with the metrics of Table 2 for the Controller classes.

Summarizing, from the experiments carried out, the following can be said. Through
Springlint, it was possible to investigate the quality of the Controller and Model classes
of ATMProject. These are 19 Java classes for a total of 1678 lines of code. The measurements
showed that for all classes the values of the metrics proposed in [15] are below the minimum
threshold (i.e., the v1 value in Table 3). The measurements also showed that the Controller
and Model classes of ATMProject satisfy the thresholds of the six MVC smells part of
the catalog in [16], with the only exception of 3 classes out of the 4 being part of the
QueryContainer sub-layer for which CTE > 1.

5.1. Threats to Validity

There is a number of potential threats to validity that could influence the results of
our study.

• Construct validity is concerned with the relationship between theory and findings.
What was measured in our experiments comes from the small set of metrics intro-
duced by Aniche et al. [15]. Those metrics cover many aspects of object-oriented
programming; nonetheless, in the future, we will carry out further experiments using
a larger set of metrics. Another threat to the construct validity arises because we
considered only the six types of code-smells proposed in [16]. As future work, other
types of code-smells detection methods will be evaluated.

• Internal validity concerns external factors that may impact the experiments’ outcome.
At the moment, we are not able to exclude that projects much more complicated than



Computers 2021, 10, 20 15 of 18

ATMProject may determine results about metrics and smells somehow dissimilar
from those obtained. To mitigate this issue, more experiments are needed.

• Conclusion validity refers to threats that can impact the reliability of our conclusions.
The basic threat in this category comes from the adoption of metrics to assess the
quality of the ATMProject. As already pointed out in Section 2.3, the assessments
produced by metrics-based detection tools are prone to false-positives because this
category of methods depends on the metrics thresholds. In our study, false-positives
are prevented because Aniche et al. defined the thresholds by taking into account the
context [15].

• External validity refers to the relevance of the results and their generalizability. We
conducted the experiments with a Java software project returned by a proprietary
tool (xGenerator); consequently, we cannot claim generalizability of our approach
to projects adopting a different programming language. At the same time, it is
worth notice that the obtained good results emphasize the relevance to the industry
of xGenerator.

Figure 16. The graphical output of Springlint with the metrics of Table 2 for the Entity classes.



Computers 2021, 10, 20 16 of 18

Figure 17. The graphical output of Springlint with the metrics of Table 2 for the Repository classes.

6. Conclusions

The aim of the present paper was to assess the quality of the Java source code returned
by xGenerator: a proprietary tool for the development of MVC Web applications. The
experiments were carried out on a real-life case study (ATMProject: 19 Java classes for a
total of 1678 lines of code) by means of a publicly available tool (Springlint). Through
Springlint, it was possible to investigate the quality of the Controller and Model classes
of ATMProject.

First of all, the values of five different code metrics for the ATMProject were measured.
The measures concerned coupling, cohesion and complexity of the object-oriented code.
The selected metrics are able to distinguish the architectural role of the different layers of
the MVC pattern. This feature is fundamental since Controller classes are quite different
from Model classes. Accordingly, the threshold of the five metrics changes with regard to
the class’s architectural role. The positive side effect is the following: in our study, the
false-positives (an intrinsic problem of metrics-based detection tools) were absent. The
numerical values of the five metrics were always below the threshold. This confirms that
the classes returned by xGenerator are characterized by high cohesion and low coupling.

The second round of experiments concerned the measures of the value of six MVC
smells. The results were good for 16 classes out of 19. The problem with the remaining
3 classes arises because they implement queries against several tables of the underlying
database. A practice not well seen by the catalog of code smells proposed by [16]. In the
future, we want to read more on this topic since there is still an open debate in the literature.



Computers 2021, 10, 20 17 of 18

Overall, the the empirical assessment proved that the code quality is satisfactory.
Hence, xGenerator becomes a candidate for being adopted in the IT industry where,
besides quality, the use of this tool helps achieving the project goals on time. In the
situations where being the first to market is vital to get customers, it is fundamental to
release the software within a strict deadline.

Author Contributions: Conceptualization, P.D.F.; methodology, G.P.; case study, M.M.; software,
R.P.; validation, M.M. and R.P.; formal analysis, P.D.F.; writing, P.D.F.; funding acquisition, G.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Software Industriale.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code of the ATMProject and the results of the experiments are
available at https://www.softwareindustriale.it/ATMProject.html (accessed on 27 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sebastián, G.; Gallud, J.A.; Tesoriero, R. Code generation using model driven architecture: A systematic mapping study. J. Comput.

Lang. 2020, 56, 100935. [CrossRef]
2. Ciccozzi, T.; Malavolta, I.; Selic, B. Execution of UML models: A systematic review of research and practice. Softw. Syst. Model.

2019, 18, 2313–2360. [CrossRef]
3. Czech, G.; Moser, M.; Pichler, J. A systematic mapping study on best practices for domain-specific modeling. Softw. Qual. J. 2020,

28, 663–692. [CrossRef]
4. Mussbacher, G.; Amyot, D.; Breu, R.; Bruel, J.M.; Cheng, B.H.; Collet, P.; Combemale, B.; France, R.B.; Heldal, R.; Hill, J.; et al. The

Relevance of Model-Driven Engineering Thirty Years from Now. In Model-Driven Engineering Languages and Systems; MODELS
2014. Lecture Notes in Computer Science; Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E., Eds.; Springer: Cham,
Switzerland, 2014; Volume 8767. [CrossRef]

5. Kahani, N.; Bagherzadeh, M.; Cordy, J.R.; Dingel, J.; Varró, D. Survey and classification of model transformation tools. Softw. Syst.
Model. 2019, 18, 2361–2397. [CrossRef]

6. Lano, K.; Kolahdouz-Rahimi, S.; Yassipour-Tehrani, S.; Sharbaf, M. A survey of model transformation design patterns in practice.
J. Syst. Softw. 2018, 140, 48–73. [CrossRef]

7. Whittle, J.; Hutchinson, J.; Rouncefield, M.; Burden, H.; Heldal, R. A taxonomy of tool-related issues affecting the adoption of
model-driven engineering. Softw. Syst. Model. 2017, 16, 313–331. [CrossRef]

8. Van Der Straeten, R.; Mens, T.; Van Baelen, S. Challenges in Model-Driven Software Engineering. In MODELS 2008 Workshops;
LNCS 5421; Chaudron, M.R.V., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 35–47.

9. Mohagheghi, P.; Gilani, W.; Stefanescu, A.; Fernandez, M.A. An empirical study of the state of the practice and acceptance of
model-driven engineering in four industrial cases. Empirirical Softw. Eng. 2013, 18, 89–116. [CrossRef]

10. Kulkarni, V. Model Driven Software Development. A Practitioner Takes Stock and Looks into Future. In Modelling Founda-
tions and Applications; ECMFA 2013, Lecture Notes in Computer Science; Van Gorp, P., Ritter, T., Rose, L.M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2013; Volume 7949. [CrossRef]

11. Cuadrado, J.S.; Izquierdo, J.L.C.; Molina, J.G. Applying model-driven engineering in small software enterprises. Sci. Comput.
Program. 2014, 89, 176–198. [CrossRef]

12. Hutchinson, J.; Whittle, J.; Rouncefield, M. Model-driven engineering practices in industry: Social, organizational and managerial
factors that lead to success or failure. Sci. Comput. Program. 2014, 89, 144–161. [CrossRef]

13. Bucchiarone, A.; Cabot, J.; Paige, J.R.F.; Pierantonio, A. Grand challenges in model-driven engineering: An analysis of the state of
the research. Softw. Syst. Model. 2020, 19, 5–13. [CrossRef]

14. Paolone, G.; Marinelli, M.; Paesani, R.; Di Felice, P. Automatic Code Generation of MVC Web Applications. Computers 2020, 9, 56.
[CrossRef]

15. Aniche, M.; Treude, C.; Zaidman, A.; van Deursen, A.; Gerosa, M.A. SATT: Tailoring Code Metric Thresholds for Different
Software Architectures. In Proceedings of the IEEE 16th International Working Conference on Source Code Analysis and
Manipulation (SCAM), Raleigh, NC, USA, 2–3 October 2016; pp. 41–50. [CrossRef]

16. Aniche, A.; Bavota, G.; Treude, C.; Gerosa, M.A.; van Deursen , A. Code smells for Model-View-Controller architectures. Empir.
Softw. Eng. 2018, 23, 2121–2157. [CrossRef]

17. Object Management Group. MDA Guide Version 1.0.1; OMG Document omg/2003-06-01; Object Management Group: Needham,
MA, USA, 2003.

https://www.softwareindustriale.it/ATMProject.html
http://doi.org/10.1016/j.cola.2019.100935
http://dx.doi.org/10.1007/s10270-018-0675-4
http://dx.doi.org/10.1007/s11219-019-09466-1
http://dx.doi.org/10.1007/978-3-319-11653-2_12
http://dx.doi.org/10.1007/s10270-018-0665-6
http://dx.doi.org/10.1016/j.jss.2018.03.001
http://dx.doi.org/10.1007/s10270-015-0487-8
http://dx.doi.org/10.1007/s10664-012-9196-x
http://dx.doi.org/10.1007/978-3-642-39013-5_1
http://dx.doi.org/10.1016/j.scico.2013.04.007
http://dx.doi.org/10.1016/j.scico.2013.03.017
http://dx.doi.org/10.1007/s10270-019-00773-6
http://dx.doi.org/10.3390/computers9030056
http://dx.doi.org/10.1109/SCAM.2016.19
http://dx.doi.org/10.1007/s10664-017-9540-2


Computers 2021, 10, 20 18 of 18

18. Jörges, S. Construction and Evolution of Code Generators: A Model-Driven and Service-Oriented Approach; Springer: Berlin/Heidelberg,
Germany, 2013.

19. Vlissides, J. Pattern Hatching: Design Patterns Applied; Addison-Wesley Professional: Boston, MA, USA, 1998; ISBN: 0201432935.
20. Pop, D.P.; Altar, A. Designing an MVC Model for Rapid Web Application Development. Procedia Eng. 2014, 69, 1172–1179.

[CrossRef]
21. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 1994, 20, 476–493. [CrossRef]
22. Husein, S.; Oxley, A. A Coupling and Cohesion Metrics Suite for Object-Oriented Software. In Proceedings of the 2009 Interna-

tional Conference on Computer Technology and Development, Kota Kinabalu, Malaysia, 13–15 November 2009; pp. 412–425.
[CrossRef]

23. Al Dallal, J.; Morasca, S. Predicting object-oriented class reuse-proneness using internal quality attributes. Empir. Softw. Eng. 2014,
19, 775–821. [CrossRef]

24. Buse, R.P.L.; Weimer, W.R. Learning a Metric for Code Readability. IEEE Trans. Softw. Eng. 2010, 36, 546–558. [CrossRef]
25. Fowler, M. Refactoring: Improving the Design of Existing Code; Addison-Wesley Professional: Boston, MA, USA, 1997.
26. Tahir, A.; Dietrich, J.; Counsell, S.; Licorish, S.; Yamashita, A. A large scale study on how developers discuss code smells and

anti-pattern in Stack Exchange sites. Inf. Softw. Technol. 2020, 125, 106333. [CrossRef]
27. Alkharabsheh, K.; Crespo, Y.; Manso, E.; Taboada, J.A. Software Design Smell Detection: A systematic mapping study. Softw.

Qual. J. 2019, 27, 1069–1148. [CrossRef]
28. Sharma, T.; Spinellis, D. A survey on software smells. J. Syst. Softw. 2018, 138, 158–173. [CrossRef]
29. Kaur, A. A Systematic Literature Review on Empirical Analysis of the Relationship Between Code Smells and Software Quality

Attributes. Arch. Comput. Methods Eng. 2020, 27, 1267–1296. [CrossRef]
30. Ferreira, K.A.; Bigonha, M.A.; Bigonha, R.S.; Mendes, L.F.; Almeida, H.C. Identifying thresholds for object-oriented software

metrics. J. Syst. Softw. 2012, 85, 244–257. [CrossRef]
31. Fontana, F.A.; Ferme, V.; Zanoni, M.; Yamashita, A. Automatic metric thresholds derivation for code smell detection. In

Proceedings of the Sixth International Workshop on Emerging Trends in Software Metrics, Florence, Italy, 17 May 2015; pp. 44–53.
32. Lacerda, G.; Petrillo, F.; Pimenta, M.; Guéhéneuc, Y.G. Code smells and refactoring: A tertiary systematic review of challenges

and observations. J. Syst. Softw. 2020, 167, 110610. [CrossRef]
33. Fontana, F.A.; Dietrich, J.; Walter, B.; Yamashita, A.; Zanoni, M. Antipattern and Code Smell False Positives: Preliminary

Conceptualization and Classification. In Proceedings of the IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering, Suita, Japan, 14–18 March 2016; pp. 609–613.

34. Gil, J.Y.; Lalouche, G. When do software complexity metrics mean nothing? When examined out of context. J. Object Technol. 2016,
15, 1–25. [CrossRef]

35. Hozano, M.; Garcia, A.; Fonseca, B.; Costa, E. Are you smelling it? Investigating how similar developers detect code smells. Inf.
Softw. Technol. 2018, 93, 130–146. [CrossRef]

36. OMG Unified Modeling Language (OMG UML). Version 2.5.1 OMG Document Number: Formal/2017-12-05. December 2017.
Available online: https/www.omg.org/spec/UML/ (accessed on 30 October 2020).

37. Sunitha, E.V.; Samuel, P. Translation of behavioral models to source code. In Proceedings of the 12th International Conference on
Intelligent Systems Design and Applications (ISDA), Kochi, India, 27–29 November 2012; pp. 598–604.

38. Sunitha, E.V.; Samuel, P. Object constraint language for code generation from activity models. Inf. Softw. Technol. 2018, 103,
92–111. [CrossRef]

39. Object Management Group; Model Driven Architecture (MDA). MDA Guide Rev. 2.0, OMG Document ormsc/2014-06-01. June
2014. Available online: http://www.smallake.kr/wp-content/uploads/2016/04/ormsc-14-06-01-2.pdf (accessed on 29 March
2020).

40. Springlint. Available online: http://www.github.com/mauricioaniche/springlint (accessed on 20 June 2020).

http://dx.doi.org/10.1016/j.proeng.2014.03.106
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/ICCTD.2009.209
http://dx.doi.org/10.1007/s10664-012-9239-3
http://dx.doi.org/10.1109/TSE.2009.70
http://dx.doi.org/10.1016/j.infsof.2020.106333
http://dx.doi.org/10.1007/s11219-018-9424-8
http://dx.doi.org/10.1016/j.jss.2017.12.034
http://dx.doi.org/10.1007/s11831-019-09348-6
http://dx.doi.org/10.1016/j.jss.2011.05.044
http://dx.doi.org/10.1016/j.jss.2020.110610
http://dx.doi.org/10.5381/jot.2016.15.1.a2
http://dx.doi.org/10.1016/j.infsof.2017.09.002
https/www.omg.org/spec/UML/
http://dx.doi.org/10.1016/j.infsof.2018.06.010
http://www.smallake.kr/wp-content/uploads/2016/04/ormsc-14-06-01-2.pdf
http://www.github.com/mauricioaniche/springlint

	Introduction
	Background
	Overview of the Software Development Process
	An Overview of xGenerator
	Code Metrics and Code Smells

	The Case Study: The Automated Teller Machine (ATM) Subsystem
	Method
	The Results
	Threats to Validity

	Conclusions
	References

