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Abstract: The extensive research in the field of multimodal biometrics by the research community
and the advent of modern technology has compelled the use of multimodal biometrics in real life
applications. Biometric systems that are based on a single modality have many constraints like
noise, less universality, intra class variations and spoof attacks. On the other hand, multimodal
biometric systems are gaining greater attention because of their high accuracy, increased reliability
and enhanced security. This research paper proposes and develops a Convolutional Neural Network
(CNN) based model for the feature level fusion of fingerprint and online signature. Two types of
feature level fusion schemes for the fingerprint and online signature have been implemented in
this paper. The first scheme named early fusion combines the features of fingerprints and online
signatures before the fully connected layers, while the second fusion scheme named late fusion
combines the features after fully connected layers. To train and test the proposed model, a new
multimodal dataset consisting of 1400 samples of fingerprints and 1400 samples of online signatures
from 280 subjects was collected. To train the proposed model more effectively, the size of the training
data was further increased using augmentation techniques. The experimental results show an
accuracy of 99.10% achieved with early feature fusion scheme, while 98.35% was achieved with late
feature fusion scheme.

Keywords: biometric fusion; feature-level fusion; multimodal biometrics; fingerprint and online
signature recognition; convolutional neural network

1. Introduction

Biometric recognition has become an important part of daily life applications such as
forensics, surveillance systems, attendance systems, unlocking the smart phones, Auto-
mated Tailored Machines (ATMs) and border and control systems in many countries due
to the extensive research in this field [1]. The extensive use of the biometric data makes the
end users concerned about the privacy of their biometric data. For example, in a password
protected system if the password is compromised or hacked then the owner of the password
can reset the password. In contrast to passwords and Personal Identification Numbers
(PINs), the human biometrics is so naturally associated with the owner that it cannot be
changed. For example, if facial data of someone is compromised or hacked then the actual
owner cannot change his/her face. The biometric data like the facial data, fingerprint, hand
geometry, voice, ear, iris and gait will remain unchanged for a user. Therefore, it is crucial
to take all possible measures to protect the users’ biometric data. Several measures have
already been in practice which, ensure the privacy of the end users [2,3].

One of the solutions to ensure the end user’s privacy is to combine the features from
more than one biometrics [4]. The use of multimodal biometrics not only provides the
reliability and accuracy but also ensures the security of the end user’s data [5]. As the
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data are stored in fused form, even if compromised, it will be more difficult to re-use the
same data as the data fused from more than one biometrics trait does not pertain to any
single biometric modality. Although the fusion of various biometric traits produces a more
effective biometric system, fusing different biometric traits at feature level is complex due
to incompatibilities in different features from the biometric modalities and a larger number
of dimensions in the fused feature-set. Once the feature level fusion is achieved it yields
more effective information as compared to other levels of fusion like sensor level and score
level fusions [1].

The biometric may be explained as the measurement of the physiological or behavioral
characteristics used to identify a person. Mainly, the biometrics is classified into two
types: physiological and behavioral biometrics. Physiological biometric may be described
as the calculations for the measurements of physical characteristics of a human body
such as fingerprint, face, iris and hand geometry, whereas behavioral biometric may be
defined as the measurements of the behavior of a person while performing some task,
for example, voice, signature, gait and keystroke dynamics [6]. The physical biometric
is comparably more accurate and reliable. However, there are some challenges to the
security of the physical biometrics as those are more public and open in nature [6]. The
face and fingerprints of the human beings are open to the public and can be easily captured
by anyone. Once a high-resolution photograph is obtained, anyone can re-create and
reuse human face or fingerprint [6]. While the behavioral biometrics is not as accurate
and reliable as the physical ones, they are more personal to the owner and cannot be
copied easily.

One of the solutions to enhance the security of biometric data is to use the multimodal
biometrics. In a multimodal biometrics system, more than one biometric traits or modal-
ities may be used to store the biometrics data in a fused form and thus provides more
security as regeneration or replication of one biometric trait is very difficult from a fused
biometrics template. Fusion of face with fingerprint, face with iris, fingerprint with iris
and fingerprint with finger vein are among the common combinations for a multimodal
biometrics system [7–9]. Therefore, it is essential to combine one of the physical traits
with behavioral biometric traits to ensure the accuracy and privacy [10]. Furthermore, the
combination of physical and behavioral biometric traits will increase the accuracy of a
biometrics system and reduce the spoof attacks.

The biometrics data, if stored in an unencrypted form, is always prone to security
attacks. One of the examples of such breach in security is “BioStar2” database [11]. The
database stored biometrics data including fingerprints, facial recognition records and
passwords of the users in an unencrypted form. The breach in the security in the database
was discovered in 2019 by a team of security researchers. The services of the database were
being used by thousands of the institutions of the developed and developing countries of
the world including United Kingdom, United States of America, United Arab Emirates,
Finland, Japan, Germany and many more. The data were obtained by security researchers
just through the web browser by applying some operations. This shows that the biometric
data of users can be compromised, thus it should be stored in such a fused and encrypted
form, so that it cannot be reused, even if compromised.

Keeping in view the privacy of the users’ biometric data, this research proposes and
develops a feature level fusion scheme based on Convolutional Neural Network (CNN)
for fingerprints and online signatures. This paper implemented two types of feature level
fusion schemes using CNN—one is early fusion and the other is late fusion. Following are
the main contributions of this study.

• A multimodal biometric dataset has been collected with 1400 fingerprints and 1400 on-
line signatures from 280 subjects. As there are only a few databases that contain
samples from both fingerprint and online signature biometric traits, there was a strong
need to collect the data on a large-scale from the real users. For this reason, the data
are collected from 280 subjects and utilized in this research. Furthermore, an Android
application was developed to collect the online signatures.
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• A CNN model is developed that fuses the features from fingerprints and online
signatures into a single biometric template. Two types of fusion schemes: early and
late fusion using CNNs are developed.

• Several experiments are performed by fine-tuning the hyper parameters of CNN
using early and late fusion techniques on the new custom multimodal dataset, where
the best results are obtained with early fusion and are compared with the related
multimodal biometric systems.

Rest of the paper is organized as follows: Section 2 presents an overview of the research
contribution in the field of biometric especially for the feature level fusion. Section 3
describes the database of fingerprints and online signatures collected for this research
paper. Different steps of the proposed system based on both early feature fusion scheme
and late feature fusion scheme, along with the experimental setup, are explained in detail
in Section 4. Section 5 discusses the experimental results and compares the results with the
related multimodal biometric systems while Section 6 concludes the paper and suggests
some future directions for this research.

2. Related Work

The effectiveness of biometric fusion at the feature level is evident from the work of
many researchers [4,7–9]. Biometric systems based on the fusion of features from multiple
biometric traits offer more accuracy as compared with the accuracy achieved by using a
single biometric trait. For example, Ahmad et al. [12] fused the features from the palmprint
and face to achieve the higher accuracy rates than the palmprint or face alone. In their
research the features were extracted using Gabor Filter. As the resultant feature vector
offers a high dimensional data, hence the dimensions were reduced with the help of
Principal Component Analysis (PCA) as well as Linear Discriminant Analysis (LDA).
Then the features were combined serially and the Euclidian Distance algorithm was used
to classify the fused template. The authors experimented on 400 images from the ORL
face database and 400 images from Poly-U palmprint database. The Euclidean Distance
classifier produced 99.5% accurate results for fused data. Similarly, Chanukya et al. [13]
fused the features from fingerprint and ear biometrics. They extracted the features by
applying modified region growing algorithm and Gabor filters to achieve an accuracy of
98% using a conventional neural network classifier.

It has always been important to select a good fusion technique to fuse the biometrics at
the feature level. Various fusion schemes to fuse the biometric features have been adopted
by the research society. Thepade et al. [14] fused the features from the human iris and
palmprint. First, the images of palmprint and iris were fused together, then the features
were reduced by using different transforms of energy distributions and comparison is
made for various methods of the energy transform. The highest Genuine Acceptance
Rate (GAR) achieved was 58.40% by Hartley transform. Another method for the fusion
of iris and fingerprint was proposed by Guesmi et al. [15]. They extracted the features
of iris and fingerprint using curvelet transform and selected the relevant features. The
selected features were matched with the database using possibility matching and a GAR
of 98.3% was achieved. Similarly, Xing et al. [16] proposed a new method for the feature
level fusion of gait and face to be especially used by the images obtained from a Closed-
circuit television (CCTV) camera. They extracted the eigenvalues from input images and
minimized the difference between the values from same person. They fused the features
by projecting the features of the same person into coupled subspace. To demonstrate
their approach, they constructed a chimeric database comprising of 40 subjects using two
publicly available databases of CASIA gait and ORL face. They used a nearest neighbor
classifier and obtained an accuracy of 98.7%.

Different methods for the feature extraction of biometric modalities have been reported
by the research community. For example, Sheikh et al. [17] used Dual Tree-Discrete Wavelet
Transform (DT-DWT) to extract the features from the palmprint and finger knuckleprint.
They used AdaBoost classifier and achieved the accuracy of 99.5%. In the same way,
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Haghighat et al. [18] used Discriminant Correlation Analysis (DCA) for feature extraction
from different sets of biometric modalities. It is proposed and experimentally proved by
their research work that DCA assists in maximizing the difference between different classes
and minimizing the difference between the same classes. They performed experiments on
the feature fusion of face with ear and fingerprint with iris. They achieved the accuracies
of over 99% by using a nearest neighbor classifier called k-Nearest Neighbors (kNN). In
2016 Jagadiswary et al. [19] presented their research on fusing features from the fingerprint,
finger vein and the retina. In this work the feature extraction for the fingerprint was
performed by extracting minutiae points from the fingerprints. The feature extraction for
the retina was performed by extracting the blood vessel segmentation using threshold
techniques based on Kirch’s template. The blood vessel pattern of a finger vein was
obtained using maximum curvature method and repeated line tracking method. The
features were fused by concatenation method. The fused template was also encrypted to
ensure further security. They achieved maximum GAR of up to 95%, the False Acceptance
Rate (FAR) was reduced to as low as 0.01%. Some of the researchers even fused different
feature extraction techniques to achieve the better results. To fuse the features from
fingerprint, finger vein and the face, [8] calculated the Fisher vectors of the extracted
features and then trained three classifiers including Support Vector Machine (SVM), Bayes
classifier and kNN for recognition. Authors collected a dataset from 50 students with
5 samples from each student. The authors also tested the system using fake data and the
maximum accuracy achieved by the system was 93%. It is evident from their experimental
results that the kNN classifier outperformed the other two classifiers.

Some of the research has also demonstrated the power of biometric fusion by using
different levels of fusions simultaneously. Azome et al. [20] combined the feature level
and score level fusions. They proposed a multimodal biometric system based on iris
and face. They applied the combination of various feature extraction methods to the
face images from the ORL face database and iris images from the CASIA iris database.
After feature combination they applied weighted score fusion to get the resultant accuracy.
They used the nearest neighbor classifier and achieved up to 98.7% accuracy. Similarly,
Toygar et al. [21] combined the features from the ear and the face profile for identical
twins. They used both feature level and score level fusions to achieve the best recognition
results. They used five separate feature extraction methods such as PCA, Local Binary
Patterns (LBP), Scale-Invariant Feature Transform (SIFT), Local Phase Quantization (LPQ)
and Binarized Statistical Image Features (BISF). Their best achieved recognition results
were 76% using kNN classifier. In the same way another noticeable research work was
published by Sharifi et al. [22]. They fused the face and iris modalities at different levels to
achieve a novel scheme for multimodal fusion. The modalities were fused at feature, score
and decision levels. Features were extracted using Log-Gabor Transform technique. The
LDA was used to reduce the size of the feature set. The best GAR achieved was 98.9%. In
another research, the features from face, fingerprints and iris were fused together by Meena
et al. [23]. Authors used a dataset of 280 subjects. Each subject contributed 4 samples for
each of the 3 biometric traits. Hence a dataset of 2400 samples was used. Features were
extracted by Local Derivative Ternary Pattern (LDTP). Two classifiers k-NN and SVM were
trained to assess the accuracy and a maximum accuracy of 99.5% was acquired by the
proposed system.

Recently, deep learning techniques have demonstrated the significant improvements
over the traditional methods in the field of biometric recognition [24–26]. Deep feature level
fusion techniques have been applied in several studies to fuse the features from different
biometric traits for the multimodal biometric systems. In recent years, a multimodal
biometric recognition using feature level fusion proposed by Xin et al. [8] combined the
features from fingerprint, finger vein and the facial images for the recognition of persons.
Zhang et al. [27] fused the periocular and iris features with the help of a deep CNN model
for the mobile biometric recognition. For generating the specific and concise representation
of each modality, they applied a maxout in the CNN and then merged the distinct features
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of both modalities with the help of a weighted concatenation process. In the same manner,
Umer et al. [28] combined the periocular and iris features for the biometric recognition of a
person. They deployed different deep learning based CNN frameworks such as ResNet-50,
VGG-16 and Inception-v3 for feature extraction and classification. They demonstrated that
the performance of the system was improved by combining the features from various traits.

Similarly, Surendra et al. [29] developed a biometric based attendance system using
a deep learning-based feature fusion technique on the iris features. The features from
fingerprints and electrocardiogram (ECG) were fused by Jomaa et al. [30] to detect the
presentation attacks. They deployed three CNN architectures including fully connected
layers, 1-D CNN and 2-D CNN for the feature extraction from ECG and an EfficientNet for
the feature extraction from the fingerprint. Recently, the periocular and the facial features
have been combined by Tiong et al. [31] in a multi deep learning network for the facial
recognition system. They further improved the recognition accuracy by combining the
textural and multimodal features. The recent research discussed in this section has been
summarized in Table 1.

Table 1. Summary of the recent research in the field of feature level fusion of biometrics.

Reference Biometric Traits Classifier Accuracy or EER

Kaur et al. [9] face and fingerprint Neural Networks 94.4%.

Xin et al. [8] fingerprint, face and finger vein SVM, Bayes classifiers and
kNN 93%

Ahmad et al. [12] palmprint and face Euclidean Distance 99.5%

Chanukya et al. [13] fingerprint and ear CNN 98%

Thepade et al. [14] iris and palmprint Hartley transform GAR = 58.40%

Guesmi et al. [15] iris and fingerprint Possibility theory EER = 0.3%

Xing et al. [16] gait and face Nearest Neighbor 98.7%

Sheikh et al. [17] palmprint and finger knuckleprint AdaBoost classifier 99.5%

Haghighat et al. [18] face with ear and fingerprint with iris kNN classifier 99%

Azome et al. [20] iris and face Nearest Neighbor 98.7%

Toygar et al. [21] ear and profile face kNN classifier 76%

Sharifi et al. [22] face and iris GAR = 98.9%

Meena et al. [23] face, fingerprints and iris kNN and SVM 99.5%

Zhang et al. [27] periocular and iris CNN EER = 0.6%

Umer et al. [28] periocular and iris ResNet-50, VGG-16 and
Inception-v3 CRR = 99.91%

Jomaa et al. [30] fingerprints and electrocardiogram
(ECG) CNN 95.32%

As seen in Table 1 the literature on multimodal biometric fusion presents the diversity
in fusion of biometric traits. However, most of the multimodal systems are based on
the fusion of physiological traits only. As a person’s most of the physiological traits are
open to the public, it is beneficial to fuse the physiological biometric trait(s) with the
behavioral biometric trait(s). To the best of our knowledge there has been no previous
research on feature level fusion of fingerprints and online signatures using deep learning
techniques. The feature level fusion of fingerprint and online signature was proposed
in [32] however, they only proposed the fusion scheme and no experimental results were
presented. Furthermore, the fingerprints and online signatures were fused at feature level
using machine learning approach by Imran et al. [33]. However, they did not apply deep
learning technique and used simple machine learning algorithms such as kNN and SVM.
Their proposed system achieved an accuracy of 98.5% on a chimeric dataset synthesized
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from Fingerprint Verification Competition (FVC) 2006 fingerprint dataset and MCYT-100
signature corpus. This research presents the feature level fusion of the fingerprint, the
most common physiological biometric with the signature, the most common behavioral
biometric for biometric identification using deep learning approach.

3. Dataset

A novel multimodal biometric dataset based on fingerprints and online signatures was
collected for this paper. Most of the data were collected from the volunteer undergraduate
students from four different universities and campuses including University of Sindh
Dadu Campus, University of Sindh Mirpurkhas Campus, Quaid-e-Awam University
of Engineering, Science & Technology Nawabshah and Sindh Agriculture University,
Tandojam, Pakistan. Ages of the subjects were between 19 and 23 years. The dataset consist
1400 fingerprints and 1400 online signatures collected from 280 subjects. Each subject
contributed five samples of the fingerprint from the same finger (i.e., ring finger of left
hand) and five samples of their online signature. Fingerprint data were collected using
SecuGen Hamster Plus fingerprint reader. The SecuGen Hamster Plus fingerprint reader
uses Light Emitting Diode (LED) light source to capture the fingerprint images and saves
the image in .bmp file format. The resolution of the captured image was 500 Dots Per Inch
(DPI). Size of each fingerprint image was 260 × 300 pixels and the images were stored
in a gray-scale format. A few samples of the fingerprints from the collected dataset are
illustrated in Figure 1.

Computers 2021, 10, x FOR PEER REVIEW 6 of 15 
 

[32] however, they only proposed the fusion scheme and no experimental results were 
presented. Furthermore, the fingerprints and online signatures were fused at feature 
level using machine learning approach by Imran et al. [33]. However, they did not apply 
deep learning technique and used simple machine learning algorithms such as kNN and 
SVM. Their proposed system achieved an accuracy of 98.5% on a chimeric dataset syn-
thesized from Fingerprint Verification Competition (FVC) 2006 fingerprint dataset and 
MCYT-100 signature corpus. This research presents the feature level fusion of the fin-
gerprint, the most common physiological biometric with the signature, the most common 
behavioral biometric for biometric identification using deep learning approach.  

3. Dataset 
A novel multimodal biometric dataset based on fingerprints and online signatures 

was collected for this paper. Most of the data were collected from the volunteer under-
graduate students from four different universities and campuses including University of 
Sindh Dadu Campus, University of Sindh Mirpurkhas Campus, Quaid-e-Awam Univer-
sity of Engineering, Science & Technology Nawabshah and Sindh Agriculture University, 
Tandojam, Pakistan. Ages of the subjects were between 19 and 23 years. The dataset 
consist 1400 fingerprints and 1400 online signatures collected from 280 subjects. Each 
subject contributed five samples of the fingerprint from the same finger (i.e., ring finger 
of left hand) and five samples of their online signature. Fingerprint data were collected 
using SecuGen Hamster Plus fingerprint reader. The SecuGen Hamster Plus fingerprint 
reader uses Light Emitting Diode (LED) light source to capture the fingerprint images 
and saves the image in .bmp file format. The resolution of the captured image was 500 
Dots Per Inch (DPI). Size of each fingerprint image was 260 × 300 pixels and the images 
were stored in a gray-scale format. A few samples of the fingerprints from the collected 
dataset are illustrated in Figure 1. 

 
Figure 1. A view of the Multimodal Biometric Dataset collected for this paper: Fingerprint Samples 
(left), Online Signature Sample (right). 

The other part of the dataset consists of online signatures. To collect online signature 
samples, an Android application was developed. The application was installed and used 
on a Samsung Galaxy Note 3 mobile phone with the S-Pen. The signatures were drawn 
on the screen of the smart phone with a pen and the application captured and stored the 

Figure 1. A view of the Multimodal Biometric Dataset collected for this paper: Fingerprint Samples
(left), Online Signature Sample (right).

The other part of the dataset consists of online signatures. To collect online signature
samples, an Android application was developed. The application was installed and used
on a Samsung Galaxy Note 3 mobile phone with the S-Pen. The signatures were drawn on
the screen of the smart phone with a pen and the application captured and stored the data
in a text file in four columns namely x coordinates, y coordinates, pressure applied and the
time data for each of the pixels of the signature. Each of the subject provided 5 samples of
their signature. Figure 1 (right), presents a part of online signature template.

For the training of classifier, the data were separated into three sets: the training set,
the validation set and the testing set. The training set consists of 60% of total data, the



Computers 2021, 10, 21 7 of 15

validation set consists of 20% of the total data and the testing set also consists 20% of the
total data. When five samples were divided into 60% for training, 20% for validation and
20% for testing the number of samples for each category became 3, 1 and 1, respectively.
This small number of samples was not sufficient to train a deep learning model.

One of the problems encountered in this paper was the lack of samples for each class.
The total of 5 samples have been collected for each subject or class. The justification for
collecting the smaller quantity of samples was to represent the real-life situation. In real-life,
it is unlikely for a person to provide 20 to 30 fingerprints or signatures for registering into
a biometric system. Therefore, the data augmentation methods were applied to expand
the data up to the three folds. For fingerprint images, data augmentation techniques such
as rotation (not more than 10 degree), flipping, zooming and changing width, height and
brightness or contrast of images were applied for expanding the size of training samples.
Similarly, the augmented files for online signatures were created by slightly changing the
values of x-coordinates and y-coordinates. This change made the effect of rotation of the
signature, the increase in the height and width of the signature and the position of the
signature. Similarly, the time data were changed slightly. However, the pressure data
for each signature was not changed. After data augmentation, the dataset expanded up
to 4200 fingerprints and 4200 online signatures for 280 classes with 15 samples of each
modality per class.

4. Proposed Multimodal Biometric System Based on CNN

In the proposed multimodal biometric system, initially the fingerprint images and the
online signature files were given as the input to the network and preprocessed to be used
for the process of feature extraction. Preprocessing steps for the fingerprint include various
methods from general image preprocessing techniques like image enhancement to more
sophisticated techniques like thinning and binarization. First, the fingerprint image was
enhanced in order to improve the quality of the image so that the ridges and the valleys
on a fingerprint become clearly visible. After that, as all the images in the dataset were
in gray-scale (0-255) so each image was binarized, means each pixel of the image was
made equal to either 0 or 1. Some of the fingerprints during the preprocessing stage are
illustrated in Figure 2.

In the next step, each ridge was thinned or skeletonized so that it becomes exactly
one pixel in width. If the image was not enhanced, then the ridges were supposed to be
distorted during the process of thinning and the one continuing ridge would have been
shown as a broken ridge. Similarly, the preprocessing was accomplished for the online
signature file by removing the duplicate values from the file. The values that were exactly
same for all the four columns of the file were removed. After removal of the duplicate
values, the zeros were appended to the end of the files to make the number of rows same
in all the files.

After pre-processing, the task of feature extraction and classification is performed
by the proposed CNN model. After the features are extracted from online signature and
fingerprint by convolutional layers, the extracted features are fused together. Two types of
feature fusion schemes; early and late fusion are proposed and developed in this paper.
The early fusion technique achieved better accuracy than the late fusion technique. Both
feature fusion techniques use same number of convolutional and fully connected layers.
However, in the early fusion technique, the features are fused before the fully connected
layers, while in the late fusion technique; the features are fused after the fully connected
layers as illustrated in Figures 3 and 4. Each network is divided into two parts: fingerprint
and online signature. The fingerprint part extracts features from the fingerprint images
and online signature part extracts features from online signature file. The fingerprint
part consists of five convolutional, five max pooling and two fully connected layers. The
convolutional layers are used to extract the features from the fingerprint images. The
low-level features were extracted by the initial convolutional layers, the later convolutional
layers extract the middle and higher-level features, while the fully connected layers extract
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more specific features. Similarly, online signature part consists of four convolutional layers,
from which first and third layers were followed by a zero-padding layer and a pooling layer.
Pooling layer in online signature part of the layer was also implemented using the max-
pooling. In the feature fusion layer, the concatenation of features obtained by fingerprint
part of the network and online signature part of the network has been performed using
simple equation as below:

FF = concat( f p, os), (1)

where the FF represents the feature vector that contains fused features from fingerprint
and online signature. The fp was obtained by:

f p = WT ∗ K + b. (2)

In Equation (2) the K represents the filter matrix of fingerprint, b denotes the network
bias and the WT stands for the weight metrics for the fingerprint. In the same way the os
was obtained by the same equation.
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The dimensions of the online signature were fixed to 1 × 17, where 1 and 17 are
the width and height of the signature, while for fingerprint image, the dimensions were
fixed to 150 × 150 × 1, where 150, 150 and 1 are the width, height and the depth of the
fingerprint image. As the proposed feature fusion techniques combine the features of
online signatures and fingerprint images and the CNN takes fixed size three-dimensional
input, the dimensions of the online signature were reshaped to 1 × 17 × 1 and passed to
the input layer of the online signature network. Here the last 1 added shows the depth
of the online signature. Though, reshaping of online signature from 1-D to 3-D increased
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the network parameters but the fusion of two feature vectors, that is, fingerprint images
and online signatures is possible when both have same dimensions. Therefore, the feature
vectors of both fingerprint images and online signatures were fused together. The max
pooling layer applied for online signature reduced the spatial dimensions of the feature
vector. For online signature, the kernel size of the max pooling was set to 1 × 2. This
reduced only the height of the signature without changing its width. Furthermore, the
down-sampling of the signature to 1 × 8 after applying max pooling, reduced the accuracy
of the overall system. The reason of the reduction in the accuracy was the smaller size
of the signature data. The smaller number of features was extracted from the signature
by the convolutional layers and the pooling layer further reduced the features. For that
reason, two zero padding layers were applied to the signature before down-sampling by
the pooling layer. The zero padding layers added an extra row and column of zeros to
the signature data. The configuration of the online signature network is shown in Table 2.
After adding zero padding layer to the signature data the accuracy of the system improved
significantly.

Table 2. Configuration of the FingerNet and SigNet feature fusion model. ‘F’, ‘K’,’P’, ‘S’, ‘T’, ‘B’, ‘L’ and ‘R’ represent
convolutional filters, kernel size, padding, stride, top, bottom, left and right values respectively.

Layer Type FingerNet Parameters Layer Type SigNet Parameters

Input 150 × 150 × 1 Input 1 × 17 × 1
Convolutional F: 64, K: 3 × 3, P: ‘same’ Convolutional F: 64, K: 3 × 3, P: ‘same’
Max-Pooling K: 2 × 2, S: 2 × 2 Zero Padding T: 2, B: 2, L: 1, R: 1

Convolutional F: 128, K: 3 × 3, P: ‘same’ Max-Pooling K: 1 × 2, S: 1 × 2
Max-Pooling K: 2 × 2, S: 2 × 2 Convolutional F: 128, K: 3 × 3, P: ‘same’

Convolutional F: 128, K: 3 × 3, P: ‘same’ Convolutional F: 128, K: 3 × 3, P: ‘same’
Max-Pooling K: 2 × 2, S: 2 × 2 Zero Padding T: 2, B: 2, L: 0, R: 0

Convolutional F: 256, K: 3 × 3, P: ‘same’ Max-Pooling K: 1 × 2, S: 1 × 2
Max-Pooling K: 2 × 2, S: 2 × 2 Convolutional F: 256, K: 3 × 3, P: ‘same’

Convolutional F: 256, K: 3 × 3, P: ‘same’
Max-Pooling K: 2 × 2, S: 2 × 2

Concatenate [FingerNet | SigNet]
Fully Connected Neurons: 512

Dropout Ratio: 0.3
Fully Connected Neurons: 512

Dropout Ratio: 0.3
Softmax Classes: 280

4.1. Early Feature Fusion Scheme

As discussed, two types of feature fusion schemes are proposed in this paper. One
is based on early fusion scheme in which the features extracted by convolutional layers
were fused or concatenated together before the fully connected layers. The concatenated
feature vector was passed to two fully connected layers each followed by a ReLU layer.
As the fully connected layers increase the training data by extracting more features from
the data, so the dropout layers were added after both fully connected layers to randomly
drop the learning parameters with a value of 0.3 to boost the training time of the network.
Finally, a Softmax layer was used to distribute the results into the classes using probability
distribution obtained for each class.

4.2. Late Feature Fusion Scheme

The second type of feature fusion scheme proposed for the fusion of fingerprint and
online signature is the late feature fusion scheme. In this type of feature fusion scheme, the
features extracted by convolutional layers were further passed to the two fully connected
layers each followed by a dropout layer. Then the extracted features were concatenated and
passed to the Softmax layer for the classification. Here again the dropout layers randomly
drop the learning parameters with a value of 0.3 in order to improve the training time
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of the network. Finally, a Softmax layer has been used for the classification based on the
probability distribution obtained for each class.

5. Experiments and Results

This section discusses different parameters used during the performance of experi-
ments for this research. Then the results obtained are discussed and compared with the
related multimodal biometric systems.

5.1. Implementation Details

The proposed network was deployed with the help of the Keras library. Several
experiments were performed by fine-tuning the hyper parameters of the CNN and the best
results were achieved with the network configurations as shown in Table 2. To extract more
useful features, a 3 × 3 filter was used by the convolutional layer. In the convolutional
layer the number of filters and their sizes have the values as follows: {number_filters:
filter_size}{64: 3}, {128: 3}, {128: 3}, {256: 3} and {256: 3}. To keep the same size of input and
output of convolutional layer, each convolutional layer in fingerprint and online signature
networks used the ‘same’ padding value with a stride of 1.

A window size of 2 × 2 with a stride value of 2 × 2 was used by the max-pooling
layer. The number of filters in last convolutional layer was set to 256 for both fingerprint
feature extraction sub-layer and online signature feature extraction sub-layer. Setting
the output filter size equal to the 256 reduced the number of features and increased the
accuracy. The feature level fusion was performed by feature concatenation operation on
the output of both feature extraction sub-layers. Some experiments were also performed in
which the number of outputs from the last convolutional layer was set to 512. However,
increase in the output filter increased the dimensions of the fused vector and decreased the
performance of the network. For that reason, the number of output filter from the last layer
was set to 256 as it yielded the best performance.

Furthermore, an addition operation was also performed for fusion of the features from
fingerprint feature extraction sub-layer and online signature feature extraction sub-layer to
analyze the effects of addition on the performance. However, the addition operation on the
extracted features did not increase the performance of the network in terms of accuracy.

5.2. Network Training

The training of the network was performed using Stochastic Gradient Descent (SGD)
optimizer with a momentum rate of 0.9, learning rate of 0.005 and a weight decay of 0.00025.
Different batch sizes were trialed during the network training but the best accuracy was
achieved with a batch size of 64. The network was trained for 200 epochs. The network was
trained on the real and augmented dataset of fingerprint and online signatures collected
from 280 users.

5.3. Evaluation Metrics

The experimental results of this paper are presented in terms of the common evaluation
metrics such as precision, recall, f1-scores and the accuracy scores. The precision was
calculated by using following equation:

Precision =
TP

TP + FP
. (3)

The Precision represents the percentage of the relevant results, where TP stands for the
true positives and represents the number of actually correct matches that are classified as
the correct matches by the classifier and FP stands for the false positives and represents
the number of actually false matches that are misclassified as the correct matches by the
classifier. Similarly, the recall is calculated by the following equation:

Recall =
TP

TP + FN
. (4)
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In Equation (4) the Recall represents the percentage of the total relevant results that are
correctly classified by the classification algorithm. Here the FN stands for false negatives
and represents the positive values that are incorrectly classified as the negative values by
the classifier. In the same way f 1-score represents the harmonic means of the recall and
precision and is presented in Equation (5). Furthermore, the accuracy of the proposed
model is obtained using the Equation (6).

f 1 − score = 2 × Precision × Recall
Precision + Recall

(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

5.4. Results

The early and late fusion networks were evaluated on the new collected dataset.
Table 3 presents the results obtained from both types of feature fusion on proposed dataset
in terms of recall, precision, f1-score and accuracy. From the early feature fusion scheme,
the precision achieved is 98%. The recall obtained by the proposed model using early
fusion is 99% while the f1-score is also 99%. Similarly, the precision achieved from the
late fusion is 98%. And the same values of 98% have been achieved for both recall and
f1-score from the late fusion scheme. The accuracy obtained with early and late feature
fusion schemes is 99.10% and 98.35%, respectively. To further validate the performance of
the proposed early and late fusion techniques on the newly developed dataset, five-fold
and ten-fold cross validations have also been performed for each fusion technique where
97%, 96%, 95% and 95% validation scores were obtained with early and late feature fusion
methods, respectively. Table 4 shows the results of 5-fold and 10-fold cross validation
performed for early and late fusion techniques.

Table 3. Precision, recall and f1-score of the proposed early feature fusion and late feature fusion
schemes.

Fusion Scheme Precision Recall F1-Score Accuracy

Early Feature Fusion 98% 99% 99% 99.10%
Late Feature Fusion 98% 98% 98% 98.35%

Table 4. 5-fold and 10-fold cross validation scores obtained with early and late fusion schemes.

k-Fold Value Cross Validation Score:
Early Fusion Scheme

Cross Validation Score:
Late Fusion Scheme

5-fold 97% 95%
10-fold 96% 95%

5.5. Comparison with the Related Feature Level Fusion Methods

Table 5 presents related multimodal biometric fusions and compares their results with
the results obtained from the proposed multimodal biometric fusion system. It can be
learnt from Table 5, that most of the multimodal biometric fusion experiments have been
performed using a limited amount of data [8]. Most of the researchers like [33,34] have
used chimeric data by merging one biometric modality from one dataset and the other
biometric modality from the other dataset to compose a larger multimodal dataset. Many
research works have been using simple machine learning classifiers. Recently, it has become
a common practice to use deep learning and convolutional neural networks for biometric
recognition [7] instead of simple machine learning classifiers [8,9,33–37]. Research shows
that the use of deep neural networks can increase the accuracy rates [38]. It is evident from
Table 5, that the proposed multimodal biometric fusion is comparable with most of the
related fusion schemes.
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Table 5. Comparison of proposed deep learning based multimodal biometric fusion approach with some of the related
multimodal fusion methods.

Reference Biometric Traits Database Classifier Accuracy

Xin et al. [8] Fingerprint, face and
finger vein

5 samples per trait from
50 subjects

SVM, Bayes classifiers
and kNN 93%

Huang et al. [39] Face and Gait 100 videos of 25 persons Baysian and Nearest
Neighbour classifier 65% to 100%

El-Alfy et al. [34] Face and Gait
CMU PIE, FERET, AR Face

database and USF Human ID
gait database

SVM 88.6%

Gawande et al. [35] Face and Gait CASIA database SVM 96.3%

Kondapi et al. [7] Face and Iris 158136 Facial images of
550 persons

Convolutional Neural
Network 95%

Milind et al. [36] Face and Palmprint Face 94, Face 95, Face 96 and
IIT Delhi database SVM 98%

Xinman et al. [37] Face and Voice
100 subjects with 10 face

images and 5 voice samples for
each subject

SVM 93.6%

Proposed deep feature
fusion of fingerprint
and online signature

Fingerprint and Online
Signature

1400 fingerprints and
1400 online signatures from

280 subjects

Convolutional Neural
Network 99.1%

6. Conclusions and Future Work

In this paper, deep learning models based on the CNN architecture have been pro-
posed for the feature level fusion of online signatures and fingerprints. Two feature fusion
techniques, that is, early and late have been developed where the features extracted from
both biometric modalities are fused together at convolutional and fully connected layers.
The size of the input image for the fingerprint is fixed to 150 × 150 × 1 and the size of the on-
line signature file is 1 × 17. To fuse the features of fingerprint and online signature, the size
of the signature was reshaped to 1 × 17 × 1 before passing to the online signature network.
To fuse the features of fingerprint image and online signature, different approaches were
tried. However, the accuracy and other values for other evaluation metrics for the proposed
system did not improve because of the width of the online signature’s feature vector which
was equal to 1. The problem was addressed and the accuracy and the values for other
evaluation metrics for the system was increased by adding two zero-padding layers in the
signature network. By this zero-padding technique, the extra zeros were added at all four
sides of the feature vector, that is, top, bottom, left and right. In this way, the dimensions of
the final feature vector became 4 × 4 in size. Similarly, the size of final feature vector of
fingerprint was 4 × 4. These features have been fused by concatenation and passed to the
fully connected layers for more abstract feature extraction and classification. The model
was trained and tested on the new collected dataset and finally, the overall system achieved
an accuracy of 99.10% with early fusion scheme and 98.35% with the late fusion scheme.

In future, low level characteristics or level 3 features of the fingerprint like ridge
contours and active sweat pores may also be used for the fusion to ensure more accuracy
and liveness of a user. In future one of the different-state-of-the-art cryptography techniques
for biometrics may also be applied to the proposed system to further ensure the security of
the fused biometric template.
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