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Abstract: There is always an increasing demand for data storage and transfer; therefore, data com-
pression will always be a fundamental need. In this article, we propose a lossless data compression
method focused on a particular kind of data, namely, chat messages, which are typically non-formal,
short-length strings. This method can be considered a hybrid because it combines two different algo-
rithmic approaches: greedy algorithms, specifically Huffman coding, on the one hand and dynamic
programming on the other (HCDP = Huffman Coding + Dynamic Programming). The experimental
results demonstrated that our method provided lower compression ratios when compared with six
reference algorithms, with reductions between 23.7% and 39.7%, whilst the average remained below
the average value reported in several related works found in the literature. Such performance carries
a sacrifice in speed, however, which does not presume major practical implications in the context of
short-length strings.

Keywords: data compression; dynamic programming; huffman coding; chat compression

1. Introduction

Handling the increasing amount of digital data generated every day is not an easy task.
To address the aforementioned issue, there are at least two unmistakable solutions, using
better hardware, or by using better software. A third solution would be a combination of
the two. Although hardware manufacturers are always providing more robust solutions, it
seems almost impossible to escape from the well-known consequences of Moore’s law, that
is, the amount of data grows at a higher rate than hardware can, unless some heretofore
unknown technology is developed.

From the software perspective, compression is a solution, however, not simply any
compression but specifically lossless compression. From a broad perspective, compression
means encoding information using fewer bits than the original representation in order to
reduce the consumption of critical resources, such as storage and bandwidth, or even for
security reasons [1–10]. Compression can be either lossy or lossless. Lossy compression
reduces bits by removing unnecessary or less important information, whereas lossless
compression does so by identifying and eliminating statistical redundancy. As its name
implies, no information is lost in lossless compression. In other words, lossless compression
allows the original data to be entirely reconstructed from the compressed data, whereas
lossy compression permits reconstruction of only an approximation of the original data.

Considering the above, in this paper, we present a lossless compression method based
on a traditional algorithm: Huffman coding. However, we took a different path; instead
of using variable length encoding for individual characters, we decided to use a dynamic
programming approach for encoding substrings in an optimal way. In addition to this
feature, our proposal involves two other important considerations. First, it focuses on
the compression ratio, not on the compression speed. Second, it is not a general-purpose
method. Instead, this method is intended for a particular kind of data: chat messages.
In the very first line of this introduction, we talked about data volumes, and the chat
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function is no exception to such volumes. Taking into consideration only two platforms,
Goode [11] stated that, in 2016, Facebook Messenger and WhatsApp combined processed
nearly 60 billion messages a day, three times more than the global volume of SMS messages.

We describe our method in two sections: first, we explain the preparation of the
dictionary that will be used in the compression process. In this section, we use sample texts
to obtain the most frequent characters and, later, the most frequent substrings. Then, we
apply a filtering process to reduce the size of the dictionary, and we find an unambiguous
way to encode each entry in the dictionary. Second, we explain the encoding process of a
given text. Here is where the dynamic programming enters the scene. Finally, we compare
the method against several alternatives.

2. Chat as a Form of Communication

Though ubiquitous, chatting is a relatively new form of communication that exhibits
oral as well as written features. Holgado and Recio [12] defined a chat as an oral conversa-
tion over a written medium whose primary aim is real-time interaction with other people.

Now, what makes chat so uniquely fitted to our research purposes? That is, why did
we focus only on chat for our compression method? There are at least two main features of
chat compared with other written forms that we were principally interested in; the first
is linguistic and the second is technical. From a linguistic perspective, chat contains a
significant amount of non-normative uses [13–18], which makes using a standard, formal,
dictionary approach not possible for compression purposes. For example, according to
Llisterri [19], elision and epenthesis are two common phonetic deviations. Elision means
the loss of sounds within words. It could be at the beginning of the word (apheresis), in the
middle of the word (syncope), or at the end of the word (apocope). Some examples include
“cause” for “because”, or “fav” for “favorite”. The opposite of elision is epenthesis, which
is the addition of sounds at the beginning of the word (prosthesis), in the middle of the
word (epenthesis), or at the end of the word (paragoge). Some examples include “Oo. . .
oh” for “oh”, “Wo. . . ow” for “wow”, and “Helloo. . . ” for “Hello”.

There are also many other non-normative uses in chat. One of them is the graphical
representation of an oral sound (onomatopoeia). Some examples include “hahaha” for
laughter, or “weeeee” for happiness. Another deviation is the excessive use of abbreviations
and acronyms. An abbreviation often used in the chat function is “CU” for “see you”,
whereas some examples of acronyms are “LOL” for “laugh out loud”, or “BTW” for “by the
way”. There are also combinations of both, like “CUL8R” for “see you later”. Perhaps the
most representative lexical deviation is the use of emoticons. An emoticon, a term created
from the combination of the words “emotion” and “icon”, is a pictorial representation of a
facial expression using punctuation marks, numbers, and letters, usually written to express
a person’s mood.

From the technical perspective, there is something very particular about chat: it is
generally composed of small conversations. According to Xiao et al. [20], the average text
length of chat messages stands between the tens and the hundreds of bytes. What this
means, in the context of data manipulation, is that these conversations may be seen as a set
of short length strings. Therefore, some compression methods that are based on long texts
are not suitable.

3. Lossless Compression Algorithms and Huffman Coding

There are different types, or families, of lossless compression algorithms. One of
these families is the dictionary-based methods, which build a dictionary of full words
or substrings and assigns them a particular index or pointer code under the assumption
that the same elements will appear as frequently in the future as they did in the past.
Some examples are LZ77, LZ78, and LZW. Another family is the statistical methods, which
analyze the most frequent characters and assign them shorter binary codes to obtain a
shorter average coding length of the text. Some examples of these methods are Huffman
Coding, Shannon–Fano coding, and arithmetic coding.
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Huffman coding was defined in 1952 by David Huffman [21] and has been used
as the basis for several compression methods for multiple data types. In this algorithm,
the characters of a particular alphabet are converted to binary codes, where the most
common characters coming from some input have the shortest binary codes, whereas the
least common have the longest. In order to do so, and, as the “heart” of the algorithm, it
builds a binary tree that allows for coding each character without ambiguity. This way,
the coding process may be seen as the sum of two phases—the construction of the frequency
table and the construction of the binary tree.

The construction of a frequency table is a straightforward process, which consists of
counting the occurrences of each individual character in a sample text. As a result, a table
with pairs [character, frequency] is obtained. Then, the construction of the binary tree
works as follows:

Step 1: Move each pair of the previously obtained table into a list of nodes. Each node has
four attributes: symbol, frequency, left, and right. The first two correspond to the
character and frequency values of the table. The last two aid in the construction
of the binary tree structure and are initially set to NULL in this step for all nodes.

Step 2: Select the two nodes A and B with the lowest frequency from the list.
Step 3: Create a parent, empty, node C to “merge” them, setting its symbol to the con-

catenation of A and B symbols, its frequency to the sum of A and B frequencies,
its left child as A, and its right child as B.

Step 4: Remove A and B from the list and add C.
Step 5: Repeat steps 2 to 4 until a single node remains in the list.

This iterative procedure guarantees a single and optimized binary code for each
character by simply traversing the binary tree from the root to the leaf nodes: each move
to the left child adds a ‘0’ and each move to the right child adds a ‘1’ to corresponding
node coding. While doing so, a table with pairs [character, binary code] is created. This
table is called the codes dictionary. As consequence of this process, characters with lower
frequencies are “sacrificed” in the earlier iterations and, therefore, end up with larger
binary codes, whereas characters with higher frequencies are “saved” for the later ones
and end up with shorter codes.

For decoding, i.e., the opposite process of turning a binary array into the original data,
the next procedure must be followed:

Step 1: Start at the beginning of the binary code.
Step 2: Read the next bit and form with it a subarray of bits.
Step 3: Look into the codes dictionary to find if such an array has a character translation.

If so, append that character to the decoded data and clear the subarray. If not,
read the next bit and append it to the subarray.

Step 4: Repeat steps 2 and 3 until reaching the end of the binary code.

4. Proposed Method

In the last 15 years, there have been several studies on methods to compress
text [22–30]. Some of them were based on the Huffman coding algorithm [27,28], whereas
others were intended particularly for chat messages [26] or for other types of short-length
messages [22,25,29]. Some focused on compression speed [24,29], whereas others, as in our
proposal, focused on effectiveness [23]. What makes our proposal special? Essentially, we
introduce two significant changes concerning the standard Huffman algorithm. First, our
method does not use only individual characters of the given alphabet to construct the codes
dictionary. Instead, it considers multiple length strings. By doing so, single characters
become a particular case of the algorithm, i.e., strings of length one. Our claim here is
that chats, in general, are composed of common substrings, whose frequencies are large
enough that it is worth coding them as a whole and not as individual characters. This way,
the coding process is no longer trivial. The second change is that an optimization process
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is used to determine the best way to divide a given text into substrings, to ensure that the
corresponding coding has the minimum length.

In this sense, the method proposed may be considered hybrid, algorithmically speak-
ing because it combines a greedy algorithm with a dynamic programming one. The greedy
algorithm (Huffman coding) allows for the construction of the codes dictionary, whereas
the dynamic programming algorithm allows for determining the optimal way to codify a
text accordingly.

Considering these two issues, Figure 1 summarizes the method proposed where three
main processes are clearly identified: pre-processing, coding, and decoding.

Figure 1. Method summary.

4.1. Pre-Processing

During pre-processing, three sub-tasks are performed. However, before this, a sample
text is necessary, which must be large and meaningful enough. On the one hand, being
meaningful means that it must represent the context in which the text compression will
take place. One obvious condition is that the language must be the same. However, it must
also be as coherent as possible. If chat messages are the main goal, actual chat records
should preferably be used. On the other hand, being sufficiently large means that it should
contain hundreds, or hopefully even thousands or dozens of thousands of lines. This
guarantees that the frequency count is statistically significant.

Considering the sample text, the first sub-task begins with counting the frequency of
each single character of the considered alphabet. Until this point, this task works exactly
the same as the one described in Section 3 for the Huffman algorithm. It is necessary,
however, to define precisely what that alphabet will be. In this proposal, we used a subset
of the UTF-8 standard and, more specifically, all the letters a–z, A–Z, plus the digits 0–9.

We also considered a special character for a new line; some characters needed for
writing Spanish, i.e., the letters ñ, Ñ, and accented vowels, as well as several characters
for emoticons and other purposes in chats. In total, as shown in Table 1, 112 characters
were considered; therefore, the frequency count for individual characters had 112 entries.
Those characters that did not appear even once in the sample text appear in the table with
a frequency of zero. An important consideration for the algorithm is that the previous
characters’ subset can be changed depending on the considered language and context.
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Table 1. Characters considered in the alphabet.

(space) ! " # $ % &
’ ( ) * + , -
. / 0 1 2 3 4
5 6 7 8 9 : ;
< = > ? @ A B
C D E F G H I
J K L M N O P
Q R S T U V W
X Y Z [ \ ] ˆ
_ a b c d e F
g h i j k l m
n o p q r s t
u v w x y z {
| } ∼ ¡ ¬ º ¿
Á É Í Ñ Ó Ú Ü
á é í ñ ó ú ü

From this point, the standard procedure was no longer followed. After establishing
these 112 values, we counted the frequencies of all substrings of length two. Considering
an arbitrary sample text, this would give us up to 1122 new entries. Then, we did the same
for substrings of length three, obtaining up to 1123 new entries, and so on. Considering
the exponential effect of doing so, we selected a value of six for the maximum substring
length. Even though such a value may seem short, it makes perfect sense considering that
there would be relatively few longer substrings, at least in Spanish and English, with a
statistically significant frequency. Even with that simplification, the total number of entries
could be as large as 1.99× 1012.

We then reduced this table considering only the first 112 one-character entries, plus
the remaining k′ more frequent entries. For the sake of clarity, we named k = k′ + 112 as
the size of the dictionary D. The first 112 entries are needed, even if some of them have a
frequency of zero because, without them, it would not be possible to code any arbitrary text
within the controlled alphabet. As will be evidenced later during the experimental results,
choosing a suitable value of k is critical because it alters the ratio of compression. The larger
the k, the more possibilities for coding the same string, however, the more complexity to
obtain the optimum.

Once we established this table, we proceeded with the second sub-task, which was
running the Huffman algorithm. This procedure does not differ from the one described in
Section 3. However, instead of a binary tree for characters, one for substrings is obtained.

Once we have this binary tree, the third sub-task refers to “translating” it into a table
of pairs of substring–binary code. Again, this may be done by traversing the binary tree
from the root to the leaf nodes: each move to a left child adds a ‘0’, and each move to a right
child adds a ‘1’ to corresponding node coding. Here, we introduce another feature: this
table is stored in a data structure that guarantees a fast search of a value given a key during
the coding process. In this case, the keys refer to the substrings, whereas the values refer to
the corresponding binary codes. Alternatives of efficient data structures for that purpose
include self-balanced binary search trees, crit-bit trees, and hash tables, among others [31].
From those, we chose a hash table for our implementation.

Algorithmically speaking, the full pre-processing has a time complexity of O(S) for
the frequency count, with S as the length of the sample text, plus O(k · log(k)) for obtaining
the coding as a binary tree using the Huffman algorithm. Even if the values of S and k are
large, the full process must be performed only once and, in all cases, prior to the actual
compression; therefore, it should not be a concern.
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4.2. Coding

Once the binary tree is obtained in the standard Huffman algorithm, the coding
process is practically trivial. In our case, however, such a process is the core of the proposal
and is not trivial at all. If, for example, with the standard algorithm, the text “yes” needed
to be coded, what we would have is the binary codes for the three characters ‘y’, ‘e’,
and ‘s’. However, considering multiple length strings instead of just individual characters,
we might have also the substrings “ye”, “es”, or “yes”. In this case, there would be,
in total, four different ways to divide such a text. In general, given a string composed of
m characters, there would be up to 2m−1 different ways to split it depending on all the
sub-stings that are part of the dictionary. For instance, with a word like “dictionary”, we
could have up to 512 options.

Considering the aforementioned issue, the coding process transforms into an opti-
mization problem. More specifically, given a text T of length n we need to find, from up
to 2n−1 possibilities, the one that minimizes the total length of the obtained binary code.
In other words, we must find the partitions T1, T2, . . . , Tj, such as T = T1 + T2 + · · ·+ Tj,
and the sum of the code lengths of such partitions is minimal. This problem may be solved
using a dynamic programming approach as presented next.

Step 1: Find the optimal way to code all consecutive substrings of length 1 from T. Such
solutions are trivial, we simply have to search the corresponding individual
characters in the dictionary D obtained during pre-processing.

Step 2: Find the optimal way to code all consecutive substrings of length 2 from T.
For this, we need to compare if such a two character substrings is better than
adding the optimal partitions found in the previous step. Here, “better” indicates
that (i) such a substring is in D, and (ii) the corresponding code is shorter.

Step 3: Find the optimal way to code all consecutive substrings of length 3 from T.
For this, we need to compare if such a three character substrings is better than
adding the optimal partitions found in the previous steps.

Step h (4 ≤ h ≤ n): Find the optimal way to code all consecutive substrings of length h
from T. For this, we need to compare if such an h character substring is better
than adding the optimal partitions found in the previous steps.

A more detailed description of this procedure is presented in Algorithm 1, which
is based on the solution for the matrix chain multiplication problem described by Cor-
men et al. [32].

As in the matrix chain multiplication algorithm [32], this yields a running time of
O(n3), due to the triple loop in lines 8 to 27, and requires O(n2) space to store the matrices.
It is, however, insufficient to solve the coding process. Once we obtain matrices A and
B, we must find the indexes in which we should divide T (until now, we obtained the
optimal length but not the corresponding partitions). This procedure is performed by a
backtracking algorithm (Algorithm 2) that takes the matrix B as a parameter and finds the
required indexes.

The result of this algorithm is a list L with the indexes of the optimal partition of T.
With those indexes, the corresponding substrings may be searched in D and, therefore,
the whole binary coding of T may be found. This last algorithm yields a running time of
O(n2), and thus it does not add extra complexity to the dynamic programming approach.

The whole optimization process through the dynamic programming approach guar-
antees, at least, the same compression performance as the standard Huffman algorithm.
This worst-case scenario would exist only in the case that no substrings at all appear in the
text with a significant frequency, i.e., almost as “white noise”, something not common in
written text, and definitely not common in chat messages.
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Algorithm 1 Optimal partition

function OPTIMALPARTITION(Text T, Dictionary D)

Let A be a matrix with order n× n

Let B be a matrix with order n× n

for i = 0 to n− 1 do

A[i][i] = D.getValue(T.charAt(i)).length()

B[i][i] = i

end for

for l = 2 to n do

for i = 0 to n− 1 do

Let j be an integer

j = i + l − 1

Let s be a String s = T.substring(1, j + 1)

if D.containsKey(s) then

A[i][j] = D.getValue(s).length

else

A[i][j] = ∞

end if

for k = j− 1; k ≥ i; k−− do

Let q be an integer

q = A[i][k] + A[k + 1][j]

if q < A[i][j] then

A[i][j] = q

B[i][j] = k

end if

end for

end for

end for

end function
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Algorithm 2 Backtrack

function BACKTRACK(Matrix B, List L, i, j)

if i == j− 1 then

if B[i][j] 6= j then

L.add(B[i][j])

end if

else

if B[i][j] 6= j then

L.add(B[i][j])

BACKTRACK(B, L, i, B[i][j])

if c[i][j] + 1 < B.length then

BACKTRACK(B, L, B[i][j] + 1, j)

end if

end if

end if

end function

4.3. Decoding

Considering that, independently of how the coding occurred, the binary codes in D
are unambiguous; therefore, the decoding process may be performed in the exact same way
as in the standard Huffman algorithm, i.e., sequentially through the coded string searching
for the corresponding translations in the dictionary D. However, and as a consequence of
the introduced changes, differently to the standard algorithm, the coded text is not decoded
necessarily character by character but substring by substring.

5. Experimental Results

To demonstrate the usefulness of the method proposed, named HCDP for Huffman
Coding + Dynamic Programming, we performed a comparison with several alternatives.
However, before doing so, it was important to determine the comparison criterion. Here,
we chose the Compression Ratio, a very common measure in the compression context [2–7]:

CR =
Bytes of the compressed file

Bytes of the original file
. (1)

From the start, we discarded other conventional measures, like running time be-
cause we are well aware that an O(n3) complexity is far from being promising for
that matter.

For the comparison, we selected six algorithms that are often used for compression
benchmarking: LZMA, LZW, PPM, PAQ8, gzip, and bzip2. In addition to these, we
attempted to use algorithms specifically designed for the compression of chat or, at least,
of short text messages. From the four mentioned in Section 4, only one [29] had the code
available: b46pack (https://github.com/unixba/b64pack, accessed on 28 February 2021),
which has a fixed compression ratio of 0.75 for messages of up to 213 characters. Of the
other three, one [26] used LZW, whereas the other two [22,25] used their own algorithms
for which, although not available, the authors reported average compression ratios of
0.4375 and 0.445, respectively.

https://github.com/unixba/b64pack
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As sample texts, we used several well-known literary works: Don Quixote by Miguel
de Cervantes Saavedra, Alice in Wonderland by Lewis Carroll, Paradise Lost by John
Milton, The House of the Spirits by Isabel Allende, and A Hundred Years of Solitude
by Gabriel García Márquez. Some of these texts were found in the Canterbury corpus
(http://corpus.canterbury.ac.nz, accessed on 28 February 2021), a collection of files created
in 1997 at the University of Canterbury and intended for use as a benchmark for testing
lossless data compression algorithms.

The method proposed was intended for chat compression; therefore, we expected
sample texts from chat records. This is difficult, however, mainly because chat messages
are usually private. An alternative could have been saving our own private chat messages,
but that, in the best case, would have introduced biases in the text. To solve this issue, we
found a method for obtaining chat messages from multiple users in a Learning Management
System (LMS) of our University, with the explicit permission of those users.

Using such sample texts, we tested the compression ratios of each method. For the
comparison, we prepared a dictionary D for each text, and then we compressed them
one by one, breaking them down into blocks of up to 100 words. The compression ra-
tio was calculated for each text block, and then they were averaged. This ratio in our
proposal does not include the size of the dictionary D because this remains saved in the
compressor/decompressor, not in the compressed files. The results are shown in Table 2.

Table 2. Compression ratios.

Sample Text Size in Bytes Compression Ratio

LZMA LZW PPM PAQ8 gzip bzip2 HCDP

1: A Hundred Years of Solitude * 827,014 0.6734 0.6084 0.5683 0.5799 0.5991 0.5991 0.4131
2: Alice in Wonderland 152,086 0.6920 0.6181 0.6065 0.6110 0.6218 0.6640 0.4172
3: Don Quixote * 323,156 0.6730 0.6065 0.5607 0.5820 0.5998 0.6219 0.4068
4: House of the Spirits * 981,187 0.6804 0.6104 0.5745 0.5868 0.6048 0.6225 0.4250
5: LMS chat * 316,292 0.6379 0.5943 0.5685 0.5709 0.5865 0.6431 0.4339
6: Paradise Lost 481,859 0.7185 0.6269 0.6345 0.6218 0.6380 0.6671 0.4456

Mean 0.6792 0.6108 0.5855 0.5921 0.6083 0.6393 0.4236

* Text in Spanish.

In all cases, the HCDP method performed better, demonstrating the lowest compres-
sion ratio. More specifically, HCDP had, on average, a 37.6% lower compression ratio
when compared with LZMA, 30.6% lower compared with LZW, 27.7% lower compared
with PPM, 28.5% lower compared with PAQ8, 30.4% compared with gzip, and 33.4% lower
compared with bzip2.

Considering only our context of interest, i.e., chat compression, HCDP also had the
best compression ratio in the LMS chat sample text. It is curious, though that this text had
the second largest ratio for HCDP, whereas, for all the others, its ratio was the lowest or the
second lowest.

With regard to other algorithms designed specifically for the compression of short
text messages, including chat, HCDP had, on average, a 43.5% lower compression ratio
when compared with b64pack and 30.6% lower compared with [26]. It was also lower by
3.2% and 4.8% compared with the values reported in [22,25]. In these two last cases, we
considered the values reported by the authors using their own sample texts.

In keeping with the findings, Table 3 presents the most frequent characters in each
sample text. Here, there are no surprises. The most frequent character by far, despite the
language, was whitespace. This implies that this character has the shortest binary code
in both methods—standard Huffman and HCDP. The vowels A, E, O, and I, jointly with
the consonants T, H, N, S, and R were the next most frequent characters in the two English
sample texts. In the Spanish sample texts, there was less homogeneity, although, in all
cases, the vowels A, E, and O were the most frequent characters.

http://corpus.canterbury.ac.nz
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Table 3. Most frequent characters in the sample texts.

Rank text1 text2 text3 text4 text5 text6

1 “ ” 137,842 “ ” 28,900 “ ” 54,077 “ ” 166,178 “ ” 34,677 “ ” 81,727
2 “a” 84,238 “e” 13,381 “e” 32,568 “a” 102,875 “a” 31,306 “e” 45,114
3 “e” 79,253 “t” 10,212 “a” 29,296 “e” 91,143 “e” 24,668 “t” 29,794
4 “o” 55,751 “a” 8149 “o” 22,760 “o” 65,236 “o” 23,068 “o” 26,309
5 “n” 45,361 “o” 7965 “s” 17,940 “s” 56,228 “s” 14,399 “a” 24,823
6 “s” 45,068 “h” 7088 “n” 15,797 “r” 51,428 “l” 13,462 “n” 24,692
7 “r” 44,534 “n” 6893 “r” 14,756 “n” 50,526 “n” 11,230 “h” 23,690
8 “l” 38,413 “i” 6778 “l” 13,570 “l” 44,302 “i” 11,050 “s” 23,018
9 “i” 36,218 “s” 6277 “d” 12,214 “i” 38,684 “r” 9194 “r” 22,813
10 “d” 33,748 “r” 5293 “u” 11,754 “d” 37,098 “u” 7992 “i” 22,350

When considering substrings rather than individual characters, especially in the LMS
chat as shown in Table 4, several interesting issues appeared. First, there were several cases
in which the method was able to take advantage of frequent substrings to improve the
compression ratio. For example, coding the substring “jajaja” as a whole in that sample text,
resulted in being more efficient (10 bits) than coding “ja” three times (27 bits), or coding
each character individually (42 bits). This similarly occurred with the substring “aaaa”
(8 against 24 bits), with the substring “:v” (13 against 20 bits), and with the substring “:(”
(14 against 24 bits).

Table 4. Examples of LMS chat substrings.

String Frequency Code Length

a 34,677 6
j 4776 8

aaaa 3028 8
ja 2612 9
v 2583 9

hola 1933 9
jajaja 770 10

: 467 11
( 105 13
:v 96 13
:( 63 14

These substrings also highlight the importance of considering chat differently than
formal writing forms: “jajaja” as a common form of onomatopoeia (laugh), “aaaa” as a
common form of epenthesis, and “:v”, “:(” as common emoticons.

To explain these results with a particular example, and to further clarify the coding
process of the proposed algorithm, let us consider the next message: “hola, como estas?
juguemos mas tarde”, which is the Spanish version, with the usual spelling mistakes, of “hi,
how are you? Play later”. If we use, as a reference text, the LMS chat records with the
corresponding codes dictionary, the optimization process for the string partition would
result in:

“hola”—100111000
“, ”—1011100100011
“como”—11110000101
“estas”—010110101101
“?”—100100011
“ jug”—11111101000110
“ue”—00010000
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“mos”—1010101011
“ mas ”—0010100000000
“tar”—0111100100110
“de”—111000010

In this way, the entire binary code array contains 121 bits, compared with the 288 bits
(36 characters ∗ 8 bits per character) of the standard UTF8 coding. This implies a compres-
sion ratio of 121/296 = 0.4201.

Finally, and as we stated earlier in Section 4, one important parameter in the proposed
method is the size of the dictionary. The results presented in Table 2 were obtained with
a value of such a parameter after a calibration process. We ran the method for all sample
texts starting with a size of 256. This initial value stands for the size of the dictionary
considering the 112 individual characters plus 144 substrings. This sum, 256, was chosen
for representing exactly one byte in non-extended ASCII. From that, we ran the method
over and over enlarging that size in factors of 256 as shown in Figure 2.

When the dictionary size increased, the compression ratio decreased. However, that
decrease became slower each time. Therefore, we defined stopping criterion for when
the variation of the mean compression ratio dropped below 0.001, which implies an
improvement in this value of less than 0.1%. This way, the resulting size was 7424 elements.
Although that value implies that we require a large dictionary, it does not affect the
compression ratio because it does not have to be saved along with the compressed files,
but remains in the compressor/decompressor.

Considering that the mean of the compression ratio suggested a logarithmic shape,
we performed a regression, finding the next equation:

r̄ = −0.0321 ln(k) + 0.5198, (2)

with a determination coefficient R2 > 0.99, this equation serves as a good predictor of the
method performance. However, some kind of equilibrium must be achieved. The larger
the dictionary, the more opportunities to treat larger substrings as unique codes, but also
the larger average code length. This is why a stopping criterion, such as the one defined,
was relevant.

Figure 2. Code dictionary size vs. the compression ratio.

6. Conclusions

Lossless compression is a crucial matter in computing, particularly when resources,
like bandwidth or storage, are expensive. What makes the proposal presented in this paper
of interest is that we focused on a specific context—chat messages—and exploited the
inherent features to obtain better performance. In particular, we considered that (1) chat
consists of short text messages, and (2) it is full of non-normative uses of written language
that repeat frequently.

Similar to other approaches [27,28], our approach was based on the Huffman coding
algorithm; however, we introduced two major changes. First, we considered multiple
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length substrings rather than individual characters, and, second, we included an optimiza-
tion procedure based on dynamic programming. This is why we named our method HCDP
(Huffman Coding + Dynamic Programming). These two modifications together made a
significant difference in terms of the compression ratios but with a sacrifice in speed.

Whereas the traditional Huffman algorithm and most of its variants yield a O(n2)
running time, HCDP yields O(n3). However, in computational terms, this represents a
considerable gap, ultimately there is no practical repercussion due to the short nature of
text message chats and to the fact that the entire compression/decompression process is
carried out on the client side.

Our experimental results demonstrated that HCDP performed better than the six
general purpose compression algorithms: LZMA, LZW, PPM, PAQ8, gzip, and bzip2.
Considering six different sample texts, the compression ratio of HCDP, with an average of
0.4236, was lower in all cases with reductions between 23.7% and 45.8% (see Table 2). Due
to the unavailability of the corresponding source codes, these results cannot be directly
compared with related works intended specifically for chats or other types of short text
messages, except for [26], which used LZW, and [29], which exhibited a fixed compression
ratio of 0.75. Instead, in others, such as [22,25], they can be compared with the reported
average values, which are 0.4375 and 0.445, respectively. In these last two cases, HCDP
represents a reduction of only 3.2% and 4.8%, respectively, but a reduction nonetheless.

A good part of the success of our proposal is that, in written narratives, and particularly
in chats, in addition to the frequent use of characters of the language, there is a recurrent
use of substrings, words, and even expressions that, once codified in binary as a whole,
allow the optimization procedure to save even more bits (see Table 4).

Another particular feature that is in favor of the proposed method is that the pre-
processing required for obtaining the code dictionary may be done according to the specific
context and may, therefore, optimize the compression ratio. For example, if someone is
developing a chat messaging service for a dating platform, they could attempt to collect
chat records in that context so that the corresponding dictionary would be optimized for
that matter.

The same would occur in an online game, in a sports app, and so on. In fact, as a
future work, we intend to repeat the performed experiment with much larger, and even
more specific, chat datasets. A perfect case would be, for example, chats from a Massive
Multiplayer Online Game (MMOG). Although access to such records in the case of popular
commercial titles is restricted, we could use academic alternatives, but not before obtaining
the respective informed consent and guaranteeing the corresponding protection of privacy
for the participants.

Finally, and to facilitate further comparisons, the corresponding implementation in
Java is available for anyone to use in https://github.com/hernan232/HCDP (accessed on
28 February 2021).
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Abbreviations
The following abbreviations are used in this manuscript:

ASCII American Standard Code for Information Interchange
CR Compression Ratio
HCDP Huffman Coding + Dynamic Programming
LMS Learning Management System
LZ Lempel–Ziv
LZMA Lempel–Ziv–Markov chain Algorithm
LZW Lempel–Ziv–Welch
MMOG Massive Multiplayer Online Game
PPM Prediction by Partial Matching
SMS Short Message Service
UTF Unicode Transformation Format
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