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Abstract: Edge detection is one of the main steps in the image processing field, especially in biomedi-
cal imaging, to diagnose a disease or trace its progress. The transfer of medical images makes them
more susceptible to quality degradation due to any imposed noise. Hence, the protection of this data
against noise is a persistent need. The efficiency of fractional-order filters to detect fine details and
their high noise robustness, unlike the integer-order filters, it renders them an attractive solution for
biomedical edge detection. In this work, two novel central fractional-order masks are proposed with
their detailed mathematical proofs. The fractional-order parameter gives an extra degree of freedom
in designing different masks. The noise performance of the proposed masks is evaluated upon
applying Salt and Pepper noise and Gaussian noise. Numerical results proved that the proposed
masks outperform the integer-order masks regarding both types of noise, achieving higher Peak
Signal to Noise Ratio. As a practical application, the proposed fractional-order edge detection masks
are employed to enhance the Diabetic Retinopathy disease diagnosis.
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1. Introduction

Nowadays, digital imaging has invaded every aspect of our lives, starting from
personal to professional perspectives, including data saving or transferring data through
the internet. The effect of some additive noise may distort data through transmission, which
may cause erroneous results after its retrieval, whether data analysis was performed for
security purposes or medical diagnosis applications or any other purpose. Preserving data
against noise distortion is one of the main concerns in data handling through transmission,
where some image processing steps should be considered to eliminate or even reduce
such losses. Edge detection is mainly one of these steps in digital image preprocessing,
pattern recognition, and biomedical image analysis; hence, it is still an active research
area. By definition, edges are the sudden changes in the intensity of image pixels. They
take place at the boundary of various intensity regions in the image [1]. Edge detection is
performed using gradient masks classified into two main categories: first-order derivative
masks and second-order derivative masks. The edges are inspected by detecting the peaks
using first-order derivative operators such as Sobel or Prewitt or Roberts operators, or
by detecting the zero crossings using second-order derivative operators like Laplacian
operator. These operators are seen as filters, or masks convoluted with the original image
under test to obtain the binary edge detected image, sometimes called “edge map”, thus,
came the term “convolution masks” [2].

The most widely used integer first-order derivative operators are Sobel operator,
Roberts operator and Prewitt operator, shown in Table 1. These are the classical gradient-
based edge detection filters. They detect the horizontal and vertical edges individually
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based on a pair of convolution operators. In Sobel’s case for example, the operator is
applied separately to a center point pixel of 3 × 3 neighbourhood, where some smoothing
can be achieved by using a weight value of 2 to give more importance to the center point [2].
In Table 1, the filters are applied to “Lena” image, and the corresponding edge-detected
images are presented.

Table 1. Firstorder derivative edge detection operators.

Roberts Sobel Prewitt

Operator
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Mathematically, for a continuous two-dimensional function f, the integer order first
derivative is defined by the vector:
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The magnitude of the gradient is given by
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As an approximation, the magnitude of the gradient can be considered using the absolutes:

G[ f (x, y)] ≈ |Gx|+
∣∣Gy
∣∣. (3)

Considering digital images, the derivatives are approximated by differences. Then the
gradient is calculated as

Gx ∼= f [x + 1, y]− f [x, y],Gy ∼= f [x, y + 1]− f [x, y]. (4)

The Fractional Calculus (FC) is thought of as the generalization of the conventional
calculus dealing with non-integer orders for integration and differentiation. Fractional-
order Integral/Differential operators have a continuous manner, unlike the classical integer-
order integration/differentiation, which is just a special case of the FC [3]. Scientists started
to wonder about the existence of fractional-order derivatives at the end of the seventeenth
century. However, fractional-order theories did not cross the boundary of pure theoretical
mathematics to real applications until recently, when researchers discovered the strength
of this mathematical branch in explaining many complex phenomena [4]. Since then, FC
has contributed to nearly every research field [5], such as in electronics design, where FC
was used in the electrical characterization of supercapacitors in [6], and in [7] the design of
oscillators was based on fractional-order capacitors, while in [8] the Field-Programmable
Gate Array (FPGA) implementation of fractional order image edge detector was provided.



Computers 2021, 10, 30 3 of 27

FC also shared in bioengineering [9], encryption [10], and chaos theory [11,12], as well as,
in biomedical image processing like Alzheimer disease detection in [13] and Brain Tumor
Detection in [14] using fractional order edge detectors. The fractional order derivative can
be performed using different operators, based on the definitions of Caputo and Grunwald–
Letnikov’s (GL) [3]. Nevertheless, the GL definition was found to be easily applied in
digital image processing applications than the Caputo one. An extra degree of freedom
is added to any design by including the fractional-order parameter, which increases the
flexibility and controllability of the system.

Similar to Equation (1), for a continuous two-dimensional function f, the fractional-
order derivative operator is defined as follows by the vector:

∇α f =

[
Gx
Gy

]
=
[

∂α f
∂xα

∂α f
∂yα

]T
, (5)

where α is the fractional-order parameter.
In digital images, for the ease of analysis, implementation and faster computation, the

magnitude of the fractional-order gradient will be also computed using the absolutes as
an approximation:

mag(∇α f ) = |Gx|+
∣∣Gy
∣∣. (6)

Based on the target of the image processing step, one can choose between the first-order
or the second-order derivative methods. Generally, the first-order derivative operators pro-
duce thicker edges than the second-order ones, resulting in the loss of some image details.
In some applications, especially in biomedical applications, such as disease diagnosis or
disease progress follow up, this choice could be a disaster missing the crucial details in the
images under test. The second-order derivative methods are more efficient in detecting
the fine details, yet they are more noise sensitive, and in this era of data transfer, images
may be susceptible to some noise degradation. Hence, one cannot neglect this issue also
in applying the second-order masks. Thus, it has been ever a trade-off aspect to decide
whether to use the first-order operators with their sufficient noise robustness at the expense
of producing thick edges and missing some fine details in the detected images; or to use the
second-order operators, with their high capability in detecting fine details at the expense of
their noise sensitivity [2]. Upon employing fractional-order edge detection operators, this
conflict has been significantly resolved to retain high noise robustness and still detect fine
details. This is achieved by targeting specific frequencies by tuning the fractional-order
parameter. This offers the designer higher degrees of freedom while choosing the fractional-
order mask. On comparing the fractional differential operators with the integer-order ones,
it was found that the first outperforms the second in the image processing field [15]. The
reason behind this is that the fractional order derivative consists of infinite number of
terms, exhibiting a memory effect retaining more image details than the integer-order ones,
where the integer is just one special case of the general fractional-order derivative when
α = 1.

This work aims to propose two novel central continuous fractional-order gradient
masks to be employed for image edge detection. The mathematical proofs of the proposed
masks are presented. As a proof of concept of the novel fractional masks, the masks’ noise
robustness is tested against Gaussian noise distortion and Salt and Pepper noise distortion
for different sets of images. As an application, the proposed fractional-order edge detection
masks are employed to aid in the diagnosis of Diabetic Retinopathy patients based on the
superiority of fractional-order masks in detecting more delicate details of noisy images
rather than the integer-order conventional ones.

The paper is organized as follows: Section 2 provides a survey on recent work of
fractional-order edge detection in literature, followed by the novel fractional-order masks
proposed in Section 3. Simulation results of the proposed masks in edge detection are
presented in Section 4, discussing in detail the robustness of the proposed masks against
different types of noise. Section 5 presents the Diabetic Retinopathy (DR) image diagnosis
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as an application of the fractional-order edge detection employing the superiority of the
proposed masks against noise distortion, and finally, Section 6 concludes this work.

2. Survey on Fractional-Order Image Edge Detection

As previously mentioned in the introduction, thicker edges are obtained when first-
order derivative operators are employed, rather than the second-order ones, resulting
in losing some of the image details. The second-order derivative methods should be
used to detect the delicate details efficiently, on the expense of being more noise sensitive.
Fractional-order derivative masks have appeared lately to solve this conflict or trade-off
crucially. Edge detection methods are greatly enhanced upon using fractional-order masks,
regarding noise sensitivity. They also help in controlling some features in the image by
targeting specific frequency components in the image.

Hereby, a fractional-order edge detection survey is presented, elaborating how FC
has contributed in many image processing applications in recent decades. In [15], the
fractional differential approach was employed developing three fractional-order edge de-
tection masks; these Fractional Masks (FM) are shown in Table 2. In [16], the combination
of fractional-order edge detection and a chaos synchronization classifier was proposed to
be employed in fingerprint identification. To overcome the limitations of the integral-order
way, following the GL definition, a fractional-order edge detection mask was proposed
to obtain clearer ridge and valley structures in the fingerprint images. The employed
mask in [16] is shown in Table 2 in both the x- and y- directions. A Fractional Differen-
tial Algorithm was used for Palm Print edge extraction in [17], while in [18], numerical
experiments showed that fractional-order masks have higher capabilities as compared
to the integer-order ones in enhancing the texture details of rich-grained digital images.
In [19], the fractional approach was applied on an RGB bank slip image, where it was
observed that the complex textural information of the original bank slip image became
clearer after implementing the fractional differential approach. At the same time, it was
lost after implementing the integral differential. Another application of the fractional-order
differential calculus was in astronomical image analysis introduced in [20]. A processing
tool was developed to enhance the quality of astronomical images. It was concluded that
using the fractional-order gradient masks helped in detecting faint objects and galaxy
structures as well as surface details enhancement.

In [21], a combination of two different fractional-order derivatives is used for smooth-
ing different image regions and noise removal. A novel edge detector was also introduced
which was superior in dealing with repetitive structures and textures in an image as well as
eliminating noise. In [22], a model is proposed for developing a texture detection algorithm
inspired by edge detection algorithms, assuming that the texture features are similar to
edges, hence reducing the time complexity. Fractional partial derivatives, Gaussian Kernel
smoothing as well as a statistical approach was employed in the proposed model. Different
types of textured images were used for validation, where high classification accuracy
was achieved.

In [23], several fractional masks were presented and applied for image denoising.
These masks were based on the fractional integration method. The first used the GL scheme
called (GL-ABC), while the second used the Toufik–Atangana scheme (TA-ABC), and the
third one used the fractional Euler method (Eu-ABC). The process constructed a square and
then applied it to all the blocks in the noisy image. The results showed that the proposed
masks are efficient, and their performances are compatible with other fractional smoothing
filters. In [24], a fractional-order edge detector was applied to a real application to detect
edges in a railway track measurement system, for improving the detection performance
of noisy images significantly. A new edge detection operator is realized in [25], upon
combining fractional differentiation and integration which resulted in a complex mask;
such mask was efficient in noise suppression while detecting edges of noisy images with
high accuracy as compared with Canny operator. Another application of the fractional
differential theory was also highlighted upon improving the fractional differential Tiansi
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operator, to enhance the edge detection ability of fractional order masks. The improved
masks showed more effective performance than the traditional operators, especially with
images with fine edges as rock fracture images as presented in [26]. In [27], a fractional edge
detection convolution mask was constructed based on the Riemann–Liouville fractional
derivative, which is a special form of the Srivastava–Owa operator. The resultant mask
was able to trap both local intensity discontinuities, as well as, locate Dirac edges. Another
application for fractional-order masks was in road obstacle detection in [28], where it
was found that fractional-order masks yielded more precise edges, which is a desirable
result allowing better obstacle detection. Moreover, a generalized fractional-order Sobel
operator was introduced in [29], presented in Table 2, for structure feature extraction of
medical images.

Some researches were applied for image contrast enhancement using fractional order
masks in [30]. For instance, based on GL definition, a fractional-order mask was presented,
and when followed by a Sobel edge detector, the algorithm was able to detect the details of
low contrast images with better sharpness and higher accuracy than the traditional integer-
order masks [31]. The proposed algorithm in such work enhanced the high-frequency
components in the images while preserving the low-frequency ones. Moreover, Riemann–
Liouville fractional differential operator was utilized to implement feature and contrast
enhancement of images in [32].

In addition to all the previous applications, the fractional-order edge detection masks
exhibited a higher hand in the medical imaging field in the literature [33]. The image
processing of medical images in the fractional order domain was also tackled in [34], while
in [35], a genetic algorithm was used to optimize the fractional order edge detection to
diagnose Alzheimer disease (AD). Another method to detect AD was also presented in [36]
based on fractional-order edge detection of Magnetic Resonance Imaging (MRI) images.
In [37], a new fractional-order mask was introduced for edge detection and was applied
on tracing breast cancer mammograms images. Moreover, a robust image corner detector
based on a fractional gradient operator was proposed in [38], where the gradient operator
was derived using fractional-order differentiation and integration, and further applied on
MRI images for validation. Another edge detection technique based on Riesz fractional
derivative in the Fractional Fourier Transform domain was proposed in [39] and then
used for image enhancement. An edge-based Active contour segmentation model was
presented in [40], where the edge-based term was derived using Caputo–Fabrizio based
fractional-order Gaussian derivatives and then applied to compute the weighted area of
the region inside the contour.

An algorithm based on fractional differential GL definition was also presented in [17];
three filter templates were constructed to extract the thenar palm print edge; one of
these masks is shown in Table 2. The proposed algorithm was proved to be capable of
noise reduction as well as detecting rich edge details of images than traditional methods.
Last but not least, another application of fractional-order edge detection was introduced
in [10], where it was combined with chaotic pseudorandom number generators in an image
encryption system; which system gave comparable results with other existing complex
image encryption schemes.

In this work, two novel fractional-order masks are proposed, where the mathematical
derivations of these masks are presented in detail in the next section.
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3. Proposed Fractional-Order Sobel Mask

The classical integer-order Sobel mask is presented in Table 1, with its gradient com-
ponents in both the x- and y- directions. The mathematical differential form of these
components can be expressed as follows:

Gx = 2
(

∂ f (x+1,y−1)
∂x + 2 ∂ f (x+1,y)

∂x + ∂ f (x+1,y+1)
∂x

)
,

Gy = 2
(

∂ f (x−1,y+1)
∂y + 2 ∂ f (x,y+1)

∂y + ∂ f (x+1,y+1)
∂y

)
.

(7)

The representation of the Gx and Gy components of the original Sobel filter can be
modified as shown in Figure 1. In this section, the modified Sobel filter is generalized to the
fractional-order domain, using the differential form of the gradient operator in Equation (7),
following the GL fractional-order differ-integral operator, to obtain two novel masks named
Left-Sided Fractional-Order Mask (LS-FOM) and the Right-Sided Fractional-Order Mask
(RS-FOM).
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Figure 1. (a) The modified Sobel Representation, (b) Left-sided fractional-order Sobel, and (c) Right-sided fractional-
order Sobel.

3.1. Left-Sided Fractional-Order Mask (LS-FOM)

The left-sided GL derivatives can be defined as follows [41]:

mag(∇α f )Dα
t f (t) = lim

h→0+

1
hα

∞

∑
j=0

(−1)j
(

α
j

)
f (t− jh),= |Gx|+

∣∣Gy
∣∣. (8)
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To assure that a symmetric filter is obtained, the GL operator in Equation (8) is applied
on the modified Sobel filter representation. The fractional-order left-sided differential form
of the gradient components along the x- and y- directions can be written as follows:

Gx = ∂α f (x+1,y−1)
∂xα + 2 ∂α f (x+1,y)

∂xα + ∂α f (x+1,y+1)
∂xα + ∂α f (x,y−1)

∂xα + 2 ∂α f (x,y)
∂xα + ∂α f (x,y+1)

∂xα ,

Gy = ∂α f (x−1,y)
∂yα + 2 ∂α f (x,y)

∂yα + ∂α f (x+1,y)
∂yα + ∂α f (x−1,y+1)

∂yα + 2 ∂α f (x,y+1)
∂yα + ∂α f (x+1,y+1)

∂yα .
(9)

Using the left-sided GL derivative, Equation (9) could be approximated as follows:

Gx = f (x + 1, y− 1)− α f (x, y− 1) + (α)(α−1)
2 f (x− 1, y− 1) + . . . (−1)nΓ(α+1)

n!Γ(α−n+1) f (x + 1− n, y− 1)

+2 f (x + 1, y)− 2α f (x, y)− (α)(α− 1) f (x− 1, y) + . . . 2(−1)nΓ(α+1)
n!Γ(α−n+1) f (x + 1− n, y)

+ f (x + 1, y + 1)− α f (x, y + 1) + (α)(α−1)
2 f (x− 1, y + 1)

+ . . . (−1)nΓ(α+1)
n!Γ(α−n+1) f (x + 1− n, y + 1) + f (x, y− 1)− α f (x− 1, y− 1)

+ . . . (−1)nΓ(α+1)
n!Γ(α−n+1) f (x− n, y− 1) + 2 f (x, y)− 2α f (x− 1, y)

+ . . . 2(−1)nΓ(α+1)
n!Γ(α−n+1) f (x− n, y) + f (x, y + 1)− α f (x− 1, y + 1)

+ . . . (−1)nΓ(α+1)
n!Γ(α−n+1) f (x− n, y + 1),

Gy = f (x− 1, y)− α f (x− 1, y− 1) + (α)(α−1)
2 f (x− 1, y− 2) + . . . (−1)nΓ(α+1)

n!Γ(α−n+1) f (x− 1, y− n) + +2 f (x, y)

−2α f (x, y− 1) + . . . 2(−1)nΓ(α+1)
n!Γ(α−n+1) F(x, y− n) + f (x + 1, y)

−α f (x + 1, y− 1) + . . . (−1)nΓ(α+1)
n!Γ(α−n+1) f (x + 1, y− n) + f (x− 1, y + 1)− α f (x− 1, y)

+ (α)(α−1)
2 f (x− 1, y− 1) + . . . (−1)nΓ(α+1)

n!Γ(α−n+1) f (x− 1, y + 1− n) + 2 f (x, y + 1)− 2α f (x, y)

+(α)(α− 1)F(x, y− 1) . . . 2(−1)nΓ(α+1)
n!Γ(α−n+1) f (x, y + 1− n) + f (x + 1, y + 1)− α f (x + 1, y)

+ (α)(α−1)
2 f (x + 1, y− 1) . . . (−1)nΓ(α+1)

n!Γ(α−n+1) f (x + 1, y + 1− n).

(10)

3.2. Right-Sided Fractional-Order Mask (RS-FOM)

The right-sided GL derivatives can be defined as follows [41]:

Dα
t f (t) = lim

h→0+

1
hα

∞

∑
j=0

(−1)j
(

α
j

)
f (t + jh). (11)

The fractional-order right-sided differential form of the gradient components of the
modified Sobel filter representation shown in Figure 1 along the x- and y- directions can be
written as follows:

Gx = − ∂α f (x,y−1)
∂xα − 2 ∂α f (x,y)

∂xα − ∂α f (x,y+1)
∂xα − ∂α f (x−1,y−1)

∂xα − 2 ∂α f (x−1,y)
∂xα − ∂α f (x−1,y+1)

∂xα ,

Gy = − ∂ f (x−1,y−1)
∂y − 2 ∂ f (x,y−1)

∂y − ∂ f (x+1,y−1)
∂y − ∂ f (x−1,y)

∂y − 2 ∂ f (x,y)
∂y − ∂ f (x+1,y)

∂y .
(12)

Using the right-sided GL derivative, Equation (12) could be approximated as follows:



Computers 2021, 10, 30 9 of 27

Gx = − f (x, y− 1) + α f (x + 1, y− 1) + . . . (−1)n+1Γ(α+1)
n!Γ(α−n+1) f (x + n, y− 1)− 2 f (x, y) + 2α f (x + 1, y)

+ . . . 2(−1)n+1Γ(α+1)
n!Γ(α−n+1) f (x + n, y− 1)− f (x, y + 1) + α f (x + 1, y + 1)

+ . . . (−1)n+1Γ(α+1)
n!Γ(α−n+1) f (x + n, y− 1)− f (x− 1, y− 1) + α f (x, y− 1)

− (α)(α−1)
2 f (x + 1, y− 1) + . . . (−1)n+1Γ(α+1)

n!Γ(α−n+1) f (x− 1 + n, y− 1)− 2 f (x− 1, y)

+2α f (x, y)− α(α− 1) f (x + 1, y) + . . . (−1)n+1Γ(α+1)
n!Γ(α−n+1) f (x− 1 + n, y)− f (x− 1, y + 1)

+α f (x, y + 1)− (α)(α−1)
2 f (x + 1, y + 1) + . . . (−1)n+1Γ(α+1)

n!Γ(α−n+1) f (x− 1 + n, y + 1),

Gy = − f (x− 1, y− 1) + α f (x− 1, y)− (α)(α−1)
2 f (x− 1, y + 1) + . . . (−1)n+1Γ(α+1)

n!Γ(α−n+1) f (x− 1, y− 1 + n)−

2 f (x, y− 1) + 2α f (x, y)− α(α− 1) f (x, y + 1) + . . . (−1)n+1Γ(α+1)
n!Γ(α−n+1) f (x, y− 1 + n)− f (x + 1, y− 1)+

α f (x + 1, y)− (α)(α−1)
2 f (x + 1, y + 1) + . . . (−1)n+1Γ(α+1)

n!Γ(α−n+1) f (x + 1, y− 1 + n)− f (x− 1, y) + α f (x− 1, y

+1) + . . . (−1)n+1Γ(α+1)
n!Γ(α−n+1) f (x− 1, y + n)− 2 f (x, y) + 2α f (x, y + 1) + . . . (−1)n+1Γ(α+1)

n!Γ(α−n+1) f (x, y + n)− f (x + 1, y)+

α f (x + 1, y + 1) + . . . (−1)n+1Γ(α+1)
n!Γ(α−n+1) f (x, y + n).

(13)

It is clear from Equation (8) that the GL operator depends on the signal history. By
applying this operator, the resultant LS-FOM and RS-FOM filters have an infinite number
of terms exhibiting the memory effect feature of the fractional-order domain as derived
above. Out of these generalized equations of both filters, only 3 × 3 masks are displayed in
Table 2, showing the proposed masks in the x- and y- directions. The next section presents
the simulation results upon employing both masks as fractional-order edge detection masks
for both noise-free and noisy images to prove their efficiency in edge detection and noise
robustness, highlighting their superiority over the integer-order counterparts.

4. Simulation Results

In this section, simulation results are being detailed for noise-free as well as noisy im-
ages upon applying both integer-order and fractional-order masks, including the proposed
LS-FOM and RS-FOM for edge detection as a proof of concept.

4.1. Noise-Free Images

The integer-order and the fractional-order masks are applied to a set of images ob-
tained from “The Berkley Segmentation Dataset and Benchmark” dataset [42]. The integer
order filters used are the first-order ones, Sobel, Roberts, and Prewitt, and the second-order
Laplacian operator. The fractional-order masks used in this part are presented in [15], FM1,
FM2, and FM3 as displayed in Table 2, each mask with a specified value for the fractional-
order parameter. Moreover, the proposed masks in this work, LS-FOM and RS-FOM, are
also applied to the same set of images for visual comparison. The edge detected images
after simulation are shown in Figure 2. It is clear that the fractional-order filters have a
higher capability in detecting more edges/details than the integer-order ones.
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Figure 2. Integer-order versus fractional-order masks for noise-free images edge detection. 
Figure 2. Integer-order versus fractional-order masks for noise-free images edge detection.

Figures 3 and 4 show the edge detected image using the LS-FOM and RS-FOM masks
only, respectively, while assigning different values of the fractional-order parameter α.
Changing the value of α, other edge maps are obtained, reaching α = 1 refers to the
conventional, well-known integer order Sobel mask. It can be observed visually from
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Figure 2, that fractional-order masks can detect more details rather than their constant
bitmap images obtained using their integer counterpart. To have a quantitative metric
that could be proportional to the quantity of detailed detected edges, the mean intensity is
calculated. Figure 5 shows the mean intensity values of the edge maps using the integer-
order filters (Sobel, Prewitt and Roberts). Without a doubt, they have only one value of
mean intensity, represented as the first three bars on the left hand side of the figure. The
mean intensity of the same image versus α is also presented in Figure 5, for the three
fractional-order masks (FM1, FM2, and FM3) [15], upon sweeping the value of α from 0.1 to
1. The figure shows that using these masks provides various detected details in the image
upon tuning the required α set by the user, giving the designer the flexibility to “choose”,
or what is called an extra degree of freedom in design, which is the great advantage of
fractional order operators, generally.
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However, one point to note here is that not all fractional-order masks have a con-
tinuous manner, meaning that on setting α = 1, it is not always guaranteed to mimic the
conventional integer-order behaviour, which is apparent in Figure 5. For the three masks in
comparison, none of them has the same value of mean intensity when α = 1, like any of the
conventional integer order masks.The mean intensity is also calculated for the proposed
RS-FOM and LS-FOM, versus their conventional Sobel mask, elaborating that for unity
fractional order parameter, the same value of mean intensity is obtained, based on the
continuity feature offered by the fractional-order masks proposed in this work as shown in
Figure 6.
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4.2. Noisy Images

In this subsection, two types of noise are added to the original images to compare
different masks’ capability in obtaining the edge detected images out of the noisy versions
of the original ones. The Salt and Pepper (S&P) noise is being inspected with two different
densities d = 0.05 and d = 0.1, where d = 0.05 is the default value as declared by the Matlab
Software. The other type is the Additive White Gaussian noise (AWGN) distribution, of
zero mean with variance σ = 0.01 and σ = 0.05, where σ = 0.01 is the default value in the
Matlab Software.

It is well known that visual inspection is the primary method of comparison in the
image processing field. However, in addition to that, two quantitative performance metrics
are evaluated here to justify the results obtained by observation, which are the Root Mean
Square Error (RMSE) and the Peak Signal to Noise Ratio (PSNR). The RMSE measures the
square root of the averaged squared difference between an image and another version of
this image. Generally, it is a measure of image quality. The PSNR is the term for the ratio
of the maximum possible power of a signal to the corrupting noise’s power affecting the
presented image. In this case, the two images are the noisy edge detected image, and the
edge detected one of the noiseless original images. The equations expressing these metrics
are as follows:

RMSE =

√√√√ 1
MN

M

∑
m=1

N

∑
n=1

(E_N(n, m)− E(n, m))2,PSNR = 20 log
1

RMSE
, (14)

where E_N is the edge detected image out of the noisy image and E is the edge detected
image of the noise-free original image. M and N are the image dimensions. Figure 7
summarizes the steps for noise calculation in a flowchart, where noise is added to the
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original image, choosing between the two types of noise. The masks are applied on both
the noise-free original image and the noisy image, where the mask could be integer- or
fractional-order. The RMSE and PSNR metrics are calculated using Equation (14) between
the noise-free and the noisy edge maps obtained. “The Berkley Segmentation Dataset and
Benchmark” dataset is also used in this subsection [42].
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4.2.1. Salt and Pepper Noise

In Figure 8, the S&P noise with density d = 0.05 is added to a set of two images (Tree
and Players), and the noise performance of the integer-order filters is tested versus the
fractional-order ones, including the two newly proposed masks in this work. It can be seen
visually that the integer-order masks cannot have a clear edge detection out of the noisy
images, unlike the fractional-order ones. For the sake of assuring the observed results
quantitatively, Table 3 presents the RMSE and the PSNR values corresponding to each
simulation result in Figure 8, where the numbers prove the efficiency of the fractional-order
masks with less RMSE and higher PSNR than the integer-order ones.

Figure 9a shows the noisy Fly image while adding S&P with density d = 0.05, and the
employed mask, in this case, is the right-sided fractional-order Sobel one. The edges of
the noisy image are better detected for less values of fractional-order parameter α values
than reaching the integer-order case at α = 1. Figure 9b presents the noisy Bird image
while adding S&P with density d = 0.1, which is generally higher than the default value.
The employed mask, in this case, is the left-sided fractional-order Sobel. The edges of the
noisy image are detected more precisely for less values of the fractional-order parameter α
values than reaching the integer-order case at α = 1. The employed threshold values are
detailed in the figures as well, where they are chosen in every case to obtain the best edge
detected image.
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Figure 8. Edge maps of noisy images with S&P noise added, d = 0.05, (a,i) original noisy images, (b–d,j–l) using integer-order
masks,(e) FM 1 [15], (f) FM 2 [15], (m) FM [17], (n) FM [29], (g,h,o,p) Proposed masks.

Table 3. Noise performance metrics for the Salt and Pepper (S&P) noise added, d = 0.05.

Noisy Tree
Integer-order Fractional-order

Masks Sobel Prewitt Roberts FM1 [15]
(α = 0.5)

FM2 [15]
(α = 0.4)

LS-FOM
(α = 0.2)

RS-FOM
(α = 0.1)

RMSE 0.4147 0.4135 0.3649 0.3395 0.3071 0.2219 0.2124
PSNR
(dB) 7.6459 7.6713 8.7575 9.3838 10.2534 13.0778 13.4567

Noisy Players
Integer-order Fractional-order

Masks Sobel Prewitt Laplacian FM [17]
(α = 0.3)

FM [29]
(α = 0.2)

LS-FOM
(α = 0.3)

RS-FOM
(α = 0.2)

RMSE 0.4780 0.4744 0.4889 0.2142 0.3559 0.2207 0.1894
PSNR
(dB) 6.4115 6.4777 6.2164 13.3849 8.9744 13.1255 14.4522
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Figure 9. Edge detected images of a noisy image with S&P noise added, (a) d = 0.1, RS-FOM, (b) d = 0.05, LS-FOM.

For a quantitative comparison, Figure 10 shows the numerical representation of both
RMSE and PSNR for the RS-FOM and LS-FOM when applied to the Fly image after adding
S&P noise with density d = 0.1. The results shown in Figure 10 are also for applying
S&P noise with density d = 0.05 to the Bird image as well, proving that these results
are irrespective of which images are used. The graphs show that as the fractional order
parameter increases from 0.1 to 1, the error represented by the RMSE metric increases
and the PSNR decreases till reaching the worst value of each metric at α = 1, which is the
integer-order case. These numbers prove the superiority of the fractional-order masks over
the integer-order one regarding the noise immunity to the S&P type of noise.
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4.2.2. Additive White Gaussian Noise

In a similar procedure to the previous subsection, the noise performance regarding
the AWGN noise is analyzed in this part. In Figure 11, the Gaussian noise is added to
a set of two images (Starfish and Tower) with zero mean value and variance σ = 0, and
the noise performance of the integer-order filters is tested versus the fractional-order ones
including the two proposed masks. The same visual observations are depicted here also,
that the integer order masks cannot obtain clear versions of the edge maps out of the
noisy images under test, unlike the fractional-order ones. Table 4 is presented to validate
these observations numerically using the RMSE and the PSNR metrics corresponding to
each simulation result in Figure 11. The numbers also prove the fractional-order masks’
superiority with less RMSE and higher PSNR than the integer-order ones.

Figure 12a shows the noisy Bird image after adding Gaussian noise with zero mean
value and variance σ = 0.01, applying the RS-FOM for edge detection, while Figure 12b
includes the edge detected versions of the Pepper image applying RS-FOM, for AWGN of
zero mean and variance σ = 0.05. The edges of the noisy image are better seen for fewer
values of the fractional-order parameter α. Then the performance degrades as reaching the
integer-order case at α = 1. Figure 13 shows the numerical representation of both RMSE
and PSNR for the RS-FOM and LS-FOM when applied to the Bird image and the Pepper
image with the same details explained in Figure 12. The graphs show that as the fractional
order parameter increases, the RMSE increases and the PSNR decreases till reaching the
worst value of each at α = 1, which is the integer-order case exactly the same case for S&P
noise discussed before. This adds that the fractional-order masks also have superior noise
immunity regarding the AWGN type of noise, not only the S&P noise.

Table 4. Noise performance metrics for Gaussian noise added, σ = 0.01.

Noisy Starfish
Integer-order Fractional-order

Masks Sobel Prewitt Roberts FM1 [15]
(α = 0.3)

FM2 [15]
(α = 0.4)

LS-FOM
(α = 0.3)

RS-FOM
(α = 0.4)

RMSE 0.3662 0.3497 0.4066 0.3495 0.3102 0.2679 0.2512
PSNR
(dB) 8.7264 9.1265 7.8167 9.1299 10.1672 11.4411 12.0005

Noisy Tower
Integer-order Fractional-order

Masks Sobel Prewitt Laplacian FM3 [15]
(α = 0.4)

FM [29]
(α = 0.2)

LS-FOM
(α = 0.1)

RS-FOM
(α = 0.4)

RMSE 0.2525 0.2454 0.4935 0.2163 0.1664 0.1481 0.1879
PSNR
(dB) 11.9539 12.2026 6.1344 13.2993 15.5782 16.5883 14.5193
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Computers 2021, 10, 30 19 of 27Computers 2021, 10, x FOR PEER REVIEW 20 of 28 
 

Noisy Bird 𝛂 = 𝟎. 𝟐 𝛂 = 𝟎. 𝟓 

   

𝛂 = 𝟎. 𝟕 𝛂 = 𝟎. 𝟖𝟓 𝛂 = 𝟏 

   
 

(a) 

Noisy Pepper 𝛂 = 𝟎. 𝟐 𝛂 = 𝟎. 𝟓 

   

𝛂 = 𝟎. 𝟕 𝛂 = 𝟎. 𝟖𝟓 𝛂 = 𝟏 

   
 

(b) 

Figure 12. Edge detected images of a noisy image with Gaussian noise added, (a) σ = 0.01, RS-FOM, (b) σ = 0.05, LS-FOM. 

  

Figure 12. Edge detected images of a noisy image with Gaussian noise added, (a) σ = 0.01, RS-FOM, (b) σ = 0.05, LS-FOM.



Computers 2021, 10, 30 20 of 27Computers 2021, 10, x FOR PEER REVIEW 21 of 28 
 

  

  
Figure 13. PSNR and RMSE for LS-FOM & RS-FOM for different densities of Gaussian noisy images. 

5. Application: Diabetic Retinopathy Diagnosis  

As an application to the proposed fractional-order masks in the biomedical field, both 

masks are employed in this section to prove their efficiency in enhancing the ability to 

diagnose the Diabetic Retinopathy disease. Diabetes is now considered to be one of the 

worldwide spread chronic diseases, which may cause harmful effects to human body or-

gans if not being well-controlled. It may cause cardiovascular diseases or may affect the 

nervous system or maybe the cause of some retinal abnormalities like the Diabetic Reti-

nopathy (DR). Diagnosing the DR disease in an early stage is a crucial issue, as the severity 

of such disease increases with time, which may lead to vision loss or even blindness in 

late stages. Figure 14a shows an image of a normal retina, while minor changes in the 

retina’s blood vessels start to appear in the early stage of DR; dilatations in the retinal 

capillaries called microaneurysms can be detected as shown in Figure 14b. They are con-

sidered to be the earliest visible sign of DR, and they appear as small red dots. Weak reti-

nal blood vessels may start to leak or rupture, leading to hemorrhage, as shown in Figure 

14c, which is also detected in the early stages of DR. As time passes, lipid leakage from 

capillaries may start to take place, resulting in hard exudates which look like yellow-white 

deposits of variable shapes in the retina. Soft exudates occur in the case of retinal ischemia 

due to reduced blood flow to the retina and, sometimes called cotton wool spots presented 

in Figure 14d [43]. Progressively, new fragile bleeding blood vessels start to appear, re-

sulting in neovascularization, causing vision loss. Early detection of DR symptoms could 

help in the patient’s treatment and thus limiting the progress of the disease. 

    

(a) (b) (c) (d) 

Figure 14. Diabetic Retinopathy symptoms: (a) normal retina, (b) microaneurysms, (c) hemorrhage 

and hard exudates and (d) soft exudates [43]. 

Detecting the abnormalities in medical images in details helps in the early diagnosis 

of DR saving patients from disease progression [44]. It is a challenging task to efficiently 

Figure 13. PSNR and RMSE for LS-FOM & RS-FOM for different densities of Gaussian noisy images.

5. Application: Diabetic Retinopathy Diagnosis

As an application to the proposed fractional-order masks in the biomedical field, both
masks are employed in this section to prove their efficiency in enhancing the ability to
diagnose the Diabetic Retinopathy disease. Diabetes is now considered to be one of the
worldwide spread chronic diseases, which may cause harmful effects to human body organs
if not being well-controlled. It may cause cardiovascular diseases or may affect the nervous
system or maybe the cause of some retinal abnormalities like the Diabetic Retinopathy
(DR). Diagnosing the DR disease in an early stage is a crucial issue, as the severity of such
disease increases with time, which may lead to vision loss or even blindness in late stages.
Figure 14a shows an image of a normal retina, while minor changes in the retina’s blood
vessels start to appear in the early stage of DR; dilatations in the retinal capillaries called
microaneurysms can be detected as shown in Figure 14b. They are considered to be the
earliest visible sign of DR, and they appear as small red dots. Weak retinal blood vessels
may start to leak or rupture, leading to hemorrhage, as shown in Figure 14c, which is
also detected in the early stages of DR. As time passes, lipid leakage from capillaries may
start to take place, resulting in hard exudates which look like yellow-white deposits of
variable shapes in the retina. Soft exudates occur in the case of retinal ischemia due to
reduced blood flow to the retina and, sometimes called cotton wool spots presented in
Figure 14d [43]. Progressively, new fragile bleeding blood vessels start to appear, resulting
in neovascularization, causing vision loss. Early detection of DR symptoms could help in
the patient’s treatment and thus limiting the progress of the disease.
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Figure 14. Diabetic Retinopathy symptoms: (a) normal retina, (b) 
microaneurysms, (c) hemorrhage and hard exudates and (d) soft 
exudates [43]. 

 
 

Figure 14. Diabetic Retinopathy symptoms: (a) normal retina, (b) microaneurysms, (c) hemorrhage and hard exudates and
(d) soft exudates [43].

Detecting the abnormalities in medical images in details helps in the early diagnosis
of DR saving patients from disease progression [44]. It is a challenging task to efficiently
segment medical images, as these images may suffer from noise, poor contrasts, or diffused
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boundaries or edges. Edge detection is considered a basic step in edge-based segmentation
techniques, and it would be beneficial if the noise imposed on the image is reduced in
a preprocessing step-like edge detection [45]. Different methods were documented in
literature for detecting DR signs, thus its diagnosis. For example, an edge sharpening
method was proposed in [46] to simplify the segmentation process of hard and soft ex-
udates detection. In [47], preprocessing steps using Canny and Kirsch templates edge
detection techniques were presented to enhance the blood vessels segmentation of DR
retinal images. Furthermore, a combination of edge detection and threshold techniques
was introduced to eliminate noise from fundus images, which helped in exudates detection
more accurately in [48]. Moreover, microaneurysms detection was proposed in [49] using
Canny’s edge detector as a step for image segmentation. Hence, employing fractional-order
edge detection filters could greatly enhance the performance of any edge-based technique
used especially for DR diagnosis based on their superior noise performance over integer
ones, as explained in previous sections, showing more texture details of retinal images
improving the disease progress detection.

The dataset used in this work for DR diagnosis is the online database of the STARE
(STructured Analysis of the Retina) Project [50]. Figure 15 shows the edge detected images
using integer order filters versus different values of α of the fractional mask FM2 [15]
for the same DR image. It is apparent that fractional-order filters are more sensitive to
edge changes than the conventional ones showing more texture details of retinal images
which improve the disease progress detection. The proposed fractional-order masks are
employed here for edge detection of the same retina image of a DR patient, for different
values of α ranging from 0.1 to 1, where unity represents the conventional Sobel mask,
and the results are presented in Figure 16. The figure shows that different fractional-order
parameter detects more edges showing more details that would not have been detected in
the integer-order case, which enhances the diagnosis of the disease.
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Three groups of DR retinal images were chosen for testing from the STARE dataset
based on the ophthalmologists’ diagnosis recorded in this dataset. The selected images
suffer from only DR disease, and they were divided into three groups according to the
progress level of the disease. The three groups are Normal, Early Stage Background DR
called BDR and Late Stage Proliferative DR called PDR; each group consists of 12 images,
but only 3 images of each group are illustrated here for elaboration. Table 5 shows the
results of three images of each group when subjected to edge detection using integer and
fractional order masks as well as the proposed LS-FOM for α = 0.4 and RS-FOM for α = 0.6.
It is clear that the integer-order masks miss many details in the images, which will lead to
an incorrect diagnosis of the progress of the DR disease. The mean value of the intensity of
the edge detected images is an indication of the amount of details detected as edges.

The mean intensity values are tabulated in Table 6, corresponding to each case shown
in Table 5. In order to interpret the numerical results correctly, there is one thing to note
here, which is the drawback of the integer-order filters of producing thick edges, which
may lead to a higher value of mean intensity due to the thick edges rather than the number
of useful details detected. However, the fractional-order filters do not produce thick edges;
hence the value of the mean intensity directly represents the fine details detected through
these filters, enhancing the DR progress follow up.

Finally, real cases of DR patients for four cases are described in Figure 17. These cases
are previously diagnosed by ophthalmologists as Late-Stage PDR. The first case is for a
53-year-old male diagnosed with PDR, Diabetic macular edema, and tractional retinal
detachment. The second case is for a 45-year-old patient who suffers from PDR, with small
hyperfluorescent dots (microaneurysms), and blockage from a subhyaloid hemorrhage.
The third case is for a patient that has an advanced PDR in his left eye, while the last case is
for a 39-year-old female suffering from long standing diabetes PDR with microaneurysms
and neovascularization. The images are edge detected using the LS-FOM of α = 0.7 and
RS-FOM of α = 0.5. The edge detected images show obviously the details of the retina
effectively for these late stages of DR.
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Table 5. Diabetic Retinopathy (DR) edge detected images using proposed fractional-order masks.
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Table 6. Mean Intensity values for DR edge detected images.

Normal BDR PDR
NOR1 NOR2 NOR3 BDR1 BDR2 BDR3 PDR1 PDR2 PDR3

Sobel 0.1063 0.1103 0.1075 0.2014 0.1737 0.1833 0.1808 0.3097 0.2763
Robert 0.0939 0.1037 0.0944 0.1782 0.1606 0.1440 0.1546 0.2717 0.2564

FM1
α = 0.2 0.0905 0.0953 0.0917 0.1603 0.1554 0.1569 0.2270 0.2796 0.2652

FM2
α = 0.3 0.0916 0.0920 0.0877 0.1637 0.1567 0.1644 0.2162 0.2841 0.2758

FM3
α = 0.4 0.0839 0.0841 0.0775 0.1581 0.1579 0.1576 0.2096 0.2726 0.2819

LS-
FOM

α = 0.4
0.0990 0.0959 0.0919 0.1666 0.1585 0.1670 0.2264 0.2838 0.2668

RS-
FOM

α = 0.6
0.1237 0.1234 0.1088 0.1591 0.1617 0.1626 0.2306 0.2659 0.2571
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6. Conclusions

Two novel fractional-order masks are proposed in this work with their mathematical
proofs based on the Grunwald–Letnikov fractional-order derivative. The fractional-order
masks are employed in image edge detection, where the fractional-order parameter offers
an extra degree of freedom to detect more fine details with sharper edges. The noise
performance of the two masks is evaluated with respect to Salt and Pepper noise and
Gaussian noise. The fractional-order masks exhibited superior performance than the
integer-order masks regarding both types of noise having higher PSNR for less fractional
order parameter compared to integer-order operators. As a practical application, the
fractional-order edge masks are employed in diagnosing the Diabetic Retinopathy disease
using the STARE database images and followed by testing images of real patients’ cases.
Based on the results obtained in this work, the two proposed fractional-order masks can
contribute in enhancing the noise robustness of any other image processing application,
such as encryption and segmentation.
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Abbreviations

FC Fractional Calculus S&P Salt and Pepper
GL Grunwald–Letnikov AWGN Additive White Gaussian noise
FO Fractional Order RMSE Root Mean Square Error
LS-FOM left-sided fractional-order mask PSNR Peak Signal to Noise Ratio
RS-FOM right-sided fractional-order mask DR Diabetic Retinopathy
FM Fractional Mask BDR Background Diabetic Retinopathy
MRI Magnetic Resonance Imaging PDR Proliferative Diabetic Retinopathy
AD Alzheimer disease STARE STructured Analysis of the Retina
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