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Abstract: Monitoring the development of infectious diseases is of great importance for the preven-
tion of major outbreaks. Syndromic surveillance aims at developing algorithms which can detect
outbreaks as early as possible by monitoring data sources which allow to capture the occurrences
of a certain disease. Recent research mainly concentrates on the surveillance of specific, known
diseases, putting the focus on the definition of the disease pattern under surveillance. Until now,
only little effort has been devoted to what we call non-specific syndromic surveillance, i.e., the use
of all available data for detecting any kind of infectious disease outbreaks. In this work, we give
an overview of non-specific syndromic surveillance from the perspective of machine learning and
propose a unified framework based on global and local modeling techniques. We also present a set
of statistical modeling techniques which have not been used in a local modeling context before and
can serve as benchmarks for the more elaborate machine learning approaches. In an experimental
comparison of different approaches to non-specific syndromic surveillance we found that these
simple statistical techniques already achieve competitive results and sometimes even outperform
more elaborate approaches. In particular, applying common syndromic surveillance methods in a
non-specific setting seems to be promising.

Keywords: syndromic surveillance; outbreak detection; multivariate surveillance; anomaly detection

1. Introduction

The surveillance of health-related data is of major importance to preserve public
health. In particular, the early detection of infectious disease outbreaks enables to apply
control measures at an early stage, which indeed can save lives and reduce suffering [1].
In this regard, syndromic surveillance has been introduced which aims to identify clusters
of infected people before final diagnosis are confirmed and reported to public health
agencies [2]. The fundamental concept of syndromic surveillance is to define indicators for
a particular infectious disease on the given data, also referred to as syndromes, which are
monitored over time to be able to detect unexpectedly high numbers of infections which
might indicate an outbreak of that disease. This can be done in many different ways, e.g., by
tracking over-the-counter sales of specific pharmaceuticals or by observing the number of
patients arriving at an emergency department with a particular medical condition [3].

Depending on the available data sources and the disease under surveillance, the defi-
nition of syndromes is a challenging task, since symptoms are often shared by different
diseases and a particular disease can have different disease patterns in the early phase of
an infection. Moreover, this kind of filtering is a highly handcrafted approach and only
allows to monitor known infectious diseases.

Rather than developing highly specialized algorithms which are based on specific
indicators and assume particular characteristics of outbreak shapes [4], we argue that the
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task of outbreak detection should be viewed as a general anomaly detection problem,
where an outbreak alarm is triggered if the distribution of the incoming data changes
in an unforeseen and unexpected way. On the one hand, this interpretation does not
require manual specification of suitable syndromes in advance, while, on the other hand,
the algorithms are able to capture individual behaviour for each given data source. For ex-
ample, the reporting of chief complaints (the documented reason for patient visit) can
vary between different hospital staff, making it difficult to monitor a particular syndrome
across different emergency departments. Moreover, approaches to interpretable machine
learning [5] can be leveraged for syndromic surveillance to support epidemiologists after
an anomaly has been detected to ease the investigation of the raised signal.

Therefore, we distinguish between specific syndromic surveillance, where factors
related to a specific disease are monitored, and non-specific syndromic surveillance, where
general, universal characteristics of the stream of data are monitored for anomalies. How-
ever, until now, only few approaches have been proposed which make use of available
data to detect any kind of infectious disease outbreaks.

In this paper, we revisit approaches which can be used for non-specific syndromic
surveillance and propose a general framework in which these can be integrated. Even
though most of the previous works present extensive evaluations, we found it difficult
to assess the actual performance of these algorithms. In particular, only little effort has
been spent on implementing appropriate benchmarks which serve as reference to judge
the ability of how well the algorithms can detect outbreaks. Therefore, we also propose a
set of benchmarks relying on simple statistical assumptions, which have been widely used
in syndromic surveillance before. Moreover, to close the gap between specific and non-
specific syndromic surveillance, our framework also allows to apply well-studied statistical
algorithms for outbreak detection in the setting of non-specific syndromic surveillance.
For comparability, we evaluate the techniques on the same synthetic data which have been
used in previous works [6,7]. In addition, we have performed extensive evaluations on real
data of a German emergency department to which we injected synthetic outbreaks with a
controlled number of infections, in order to assess the sensitivity of the algorithms.

1.1. Contributions

In summary, in this paper we make the following contributions: (1) We formulate
and motivate the problem of syndromic surveillance from the perspective of machine
learning to make it more attractive for the machine learning community. (2) We present
a local and a global modeling strategy for non-specific syndromic surveillance in an
unified framework. (3) We review the few available machine learning approaches for
non-specific syndromic surveillance in face of our proposed modeling framework. (4) We
propose a set of benchmarks for non-specific syndromic surveillance relying on simple
distributions which have been widely used in syndromic surveillance. Moreover, we
introduce a way how specific syndromic surveillance methods can be applied to the non-
specific setting. (5) We analyze previous proposed approaches and our benchmarks using
an extensive experimental evaluation based on synthetic and real data and demonstrate
that simple statistical approaches, which have been disregarded in previous works, are in
fact quite effective.

A preliminary version of this paper has previously appeared as [8] which focuses
on the comparison of our proposed benchmarks with respect to more elaborate machine
learning approaches addressing the task of non-specific syndromic surveillance, including
common anomaly detection algorithms. New to this version are, in particular, a detailed
survey of related work in syndromic surveillance, the novel modeling framework for
non-specific syndromic surveillance, and a considerably more extensive description and
analysis of the experimental results.
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1.2. Outline

The remainder of this paper is organized as follows: In Section 2, we first give an
overview of syndromic surveillance and its relation to data mining and machine learn-
ing. Afterwards, we explain the framework for non-specific syndromic surveillance in
Section 3, proposing a local and a global modeling strategy. We then show how existing
approaches for non-specific syndromic surveillance can be categorized by this framework
in Section 4, and propose a set of benchmarks in Section 5. Section 6 presents the results of
a comparative evaluation of the performance of various known approaches in comparison
to our benchmarks using synthetic and real data. Finally, we conclude and planned future
extensions in Section 7.

2. Syndromic Surveillance

The main objective of syndromic surveillance is to monitor the presence of an in-
fectious disease over time and to allow to conduct an investigation by epidemiologists
if an unexpectedly high number of infections is observed. Rather than tracking the con-
firmed cases, which can take up to several days until the laboratory results are available,
syndromic surveillance focuses on early indicators of a disease to allow a more timely
detection of outbreaks [4]. In the context of syndromic surveillance, such indicators are
usually encapsulated as syndromes:

Definition 1 (Syndrome [9]). A syndrome is a set of symptoms or conditions that occur together
and suggest the presence of a certain disease or an increased chance of developing the disease.

Notably, this definition differs slightly from the original meaning of a syndrome, which
is only described by a set of symptoms, to also include the monitoring of nonclinical data
sources [2]. For example, the sales of a specific pharmaceutical product against flu could
be used for the detection of influenza outbreaks, but cannot be described as a symptom
directly. In general, syndromic surveillance can be defined as:

Definition 2 (Syndromic Surveillance [10]). Syndromic surveillance is an investigational ap-
proach where health department staff, assisted by automated data acquisition and generation of
statistical alerts, monitor disease indicators in real-time or near real-time to detect outbreaks of
disease earlier than would otherwise be possible with conventional reporting of confirmed cases.

The general approach to syndromic surveillance is to first decide on a disease under
surveillance and based on that a syndrome is specified which needs to be monitored.

Definition 3 (Specific Syndromic Surveillance). We speak of specific syndromic surveillance if
a specific syndrome for a given disease is monitored over time in order to be able to detect possible
outbreaks of this particular disease early on.

However, for this approach the disease and the related syndrome need to be known in
advance for which reason an outbreak of an unknown infectious disease might be missed
due to a different disease pattern. Only little research has been put on what we refer to as
non-specific syndromic surveillance, i.e., universal approaches to syndromic surveillance
which aim to detect any suspicious anomalies in the given data, indicating an infectious
disease outbreak.

Definition 4 (Non-Specific Syndromic Surveillance). We speak of non-specific syndromic
surveillance if a data source is monitored over time in order to be able to detect possible outbreaks of
any disease early on.

In particular, this universal approach can also be seen as the surveillance of all possi-
ble syndromes at the same time. Obviously, this comes with an increased computational
complexity, but also allows to detect outbreaks with an, at this time, yet unknown disease
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pattern. Moreover, any anomaly is an indicator that something unexpected is happen-
ing, which does not necessarily relate to an infectious disease outbreak. For example,
Rappold et al. [11] investigated the health effects associated with exposure to wildfire
emissions in emergency department (ED) data. Therefore, non-specific syndromic surveil-
lance could also be used as a general tool for public health surveillance to increase the
preparedness for unexpected events.

2.1. Overview of Prior Work in Syndromic Surveillance

Most of the research in syndromic surveillance is devoted to monitoring specific syn-
dromes. A survey of syndromic surveillance for influenza is provided by Hiller et al. [12].
However, many other infectious diseases have been monitored as well, such as pneumo-
nia [13] or norovirus [14]. In contrast, we found only a few publications which relate
to non-specific syndromic surveillance. Reis et al. [15,16] monitor the total number of
patient visits in an emergency department rather than particular syndromes. However,
a high number of patient visits can be caused by various reasons, making the resulting
signal of the syndromic surveillance method noisy and unreliable. Furthermore, small
outbreaks are hard to detect with such frequency-based approaches. On the other hand,
it has been proposed to monitor a set of syndromes at the same time in order to be able
to detect outbreaks of various known diseases, e.g., [17–21]. However, these works are
more related to specific syndromic surveillance, since the syndromes need to be specified
in advance and all of them are monitored and investigated individually. In particular,
for syndromic surveillance based on emergency department data, it has been shown that
the monitoring of multiple indicators for a particular disease in one data source can im-
prove the ability for detecting outbreaks. For example, Reis and Mandl [22] show that the
surveillance of chief complaints and diagnostic codes together yield better results than
alone. The selection which information (e.g., diagnostic codes, discharge diagnosis or chief
complaint) should be used to form syndromes is discussed in the works of Begier et al. [23],
Fleischauer et al. [24] and Ivanov et al. [25]. Generally speaking, a clear preference cannot
be stated since the usefulness depends on the disease under surveillance. However, the use
of diagnostic codes (such as the International Classification of Diseases (ICD) codes) allows
a more fine grained specification of diseases, but comes with the drawback of reporting
delays up to several days due to laboratory testing [26].

In general, monitoring multiple syndromes or multiple data sources simultaneously
facilitates the detection of outbreaks [27]. This area is known as multivariate syndromic
surveillance and can be categorized as follows: (1) spatial surveillance (e.g., simultaneously
monitoring of disease counts at different locations with possible spatial correlations),
e.g., [19,20]; (2) simultaneous surveillance of a syndrome with respect to particular groups
of patients which differ in their demographic characteristics (e.g., monitor the syndrome for
children and adults separately), e.g., [28]; or (3) monitoring of different types of data sources
at the same time (e.g., over-counter sales in pharmacies and emergency department visits),
e.g., [29]. Non-specific syndromic surveillance can be seen as multivariate syndromic
surveillance over all infectious diseases if we assume that all possible syndromes are
monitored simultaneously. While the monitoring of different demographic characteristics
is implicitly included in this scenario, non-specific syndromic surveillance methods can also
be designed to include spatial information and multiple data sources. However, if multiple
data sources are monitored at the same time, one needs to take into account the problem of
autocorrelation and multiple testing [16], as we will discuss later in Section 3.2.2.

2.2. Data for Syndromic Surveillance

The presence of an infectious disease outbreak can only be determined through
the actions of infected people. If an infected person does not contact any service that
allows to collect information about the case, the infection remains unknown and cannot be
detected by a syndromic surveillance system. Consequently, the data sources for syndromic
surveillance can only be seen as a weak indicator for disease outbreaks.
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Syndromic data can be obtained from (1) clinical data sources (e.g., diagnoses in an
emergency department), which provide measurements of the symptoms of individuals,
as well as (2) alternative data sources (e.g., internet-based health inquiries), which indirectly
measure the presence of a disease [2]. A selected set of possible data sources is displayed
in Table 1.

Table 1. Exemplary data sources for syndromic surveillance.

Data Source Type

emergency department visits clinical
emergency hotline calls clinical

insurance claims clinical
laboratory results clinical

. . . . . .

school or work absenteeism alternative
pharmacy sales alternative

internet-based searches alternative
animal illnesses or deaths alternative

. . . . . .

An important property of syndromic data is that the underlying probability distri-
bution can change over time. A specific characteristic of syndromic data is seasonality,
in machine learning also known as cyclic drift [30], a special form of concept drift, in which
the target concept changes over time with respect to a fixed time frame. For example,
Hughes et al. [31] and Dirmyer [32] show that the cold weather in winter has an influence
on the symptoms of the people arriving in emergency departments. Johnson et al. [33]
capture seasonal patterns in emergency department data due to respiratory illnesses. In par-
ticular, this kind of drift is predictable, and appropriate outbreak detection algorithms can
take advantage of it.

The evaluation of syndromic surveillance methods is usually difficult due to the lack
of labeled data. In particular, for some scenarios of infectious disease outbreaks, such as
the intentional release of Bacillus anthracis, none or only very few outbreaks happened
in the past. In addition, a precise definition for the labeling of outbreaks does not exist,
making it difficult to obtain standardized data sets on which algorithms can be evaluated.
According to this, the evaluation data used for syndromic surveillance can be described by
three categories: (1) wholly authentic, (2) wholly simulated, and (3) simulated outbreaks
superimposed onto authentic data [34]. Most of the proposed algorithms in the literature
are evaluated using data from categories (2) or (3), which allows a detailed analysis of the
performance of the proposed algorithm in a controlled setting.

2.3. Relation to Data Mining and Machine Learning

Seen from a machine learning perspective, syndromic data are a constant stream of
instances. For specific syndromic surveillance the data are pre-processed in order to extract
only the information pertinent to the definition of the monitored syndrome, whereas for
non-specific syndromic surveillance all available data are monitored for unusual distri-
butional changes. To detect such changes in the data stream, which might indicate an
outbreak, the instances are usually grouped together according to pre-specified time slots.
For example, all patients which arrive at an emergency department on a specific day
are grouped together as a set of instances. Hence, the stream can be represented as a
time series of sets of instances. The goal of syndromic surveillance is to detect any major
changes for the last observed set in the stream which might indicate an outbreak of an
infectious disease.

Generally speaking, the main objective of syndromic surveillance can be described
as anomaly detection, which refers to the problem of finding patterns in data that do
not conform to expected behavior [35]. In particular, the focus is put on patterns which
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indicate an increasing number of infections over time which can be described by collective
and sequential anomaly detection at the same time. Directly applying point anomaly
detection, which aims to identify single instances as outliers, such as encountering a patient
over a hundred years old in the ED, is not of interest for syndromic surveillance [36].
However, by forming a univariate time series of counts for a particular syndrome, as it
is done in specific syndromic surveillance, the problem can be reduced to point anomaly
detection. Most approaches to syndromic surveillance can be categorized as statistical
anomaly detection techniques (e.g., EARS [37], Farrington [1], and many more).

In contrast, the area of emerging pattern mining [38], which aims to discover item
sets whose support increases significantly from one data set to the other, directly relates to
the problem of non-specific syndromic surveillance, in that each item set can be seen as a
specific syndrome. Similarly, contrast set mining [39] aims to find conjunctions of attributes
and values that differ meaningfully in their distributions across data sets. Such techniques
can be used to compare the last observed set of instances to the previous sets of instances
in order to detect significant changes in the frequencies of any group of instances. Both
approaches have also been viewed as instantiations of a general framework for supervised
descriptive rule learning [40], a generalization of the subgroup discovery [41], where labels
(e.g., w.r.t. to a concrete syndrome) are assumed to be available.

Because of the lack of labeled data, most algorithms for syndromic surveillance are
unsupervised. Apart from unsupervised anomaly detectors, generative machine learning
algorithms can also be used for syndromic surveillance, such as sum-product networks [42]
or Bayesian networks [43]. Such algorithms allow to capture the underlying probability
distribution of the data source and, therefore, can capture the normal behavior. Afterwards
an expectation can be created with the generative machine learning algorithm which
is then compared to the current observed set of instances to detect anomalies. In this
way, syndromic surveillance can also be seen from the perspective of exceptional model
mining [44] in that it can be formulated as the identification of a subset of instances in
which a model of the current set of instances differs substantially from the models for
previous set of instances.

In general, the output of an anomaly detector for syndromic surveillance should be
seen as a signal that an outbreak may be occurring which triggers a further investigation of
the situation by public health officials [9]. To avoid unnecessary and costly interventions,
the signal ideally includes information about the reason of the detected anomaly allowing
the epidemiologist to quickly judge the importance of the alarm. Therefore, syndromic
surveillance could also benefit from the area of interpretable machine learning, focusing on
approaches which can provide explanations to their predictions [5].

Furthermore, machine learning can also be used to address data quality issues, which
can be a major issue in health-related data due to the manual capturing. For example,
the manually inserted initial assessments in an emergency department may experience
gaps as the frequency of patient visits increases. In this respect, missing data imputation
algorithms, such as generative adversarial networks [45] or mean-field-type filters [46], can
be leveraged to improve data quality before syndromic surveillance methods are applied.

3. Non-Specific Syndromic Surveillance

In this section, we formulate the problem of non-specific syndromic surveillance
from the perspective of machine learning and propose two modeling strategies. The used
notation is summarized in Table 2.
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Table 2. Notation.

Notation Meaning

A = {A1, A2, . . . , Am} response attributes
E = {E1, E2, . . . , Ek} environmental attributes
C ∈ A1 × A2 × . . .× Am population of cases
c ∈ C a single case

t index for the time slot
C(t) ⊂ C cases of time slot t
e(t) ∈ E1 × E2 × . . .× Ek environmental setting for time slot t
(C(t), e(t)) information about time slot t
H = ((C(1), e(1)), . . . , (C(t− 1), e(t− 1))) information about previous time slots

G(e(t),H) = Ĉ(t) global model
Ĉ(t) expectation for C(t)

X = {X1, X2, . . . , Xn} set of characteristics
X̂ = {X̂1, X̂2, . . . , X̂n} expectations for the characteristics
L(X ,H) = {LX1 , LX2 , . . . , LXn} local model creator
LX(e(t)) a local model monitoring characteristic X

S set of all possible syndromes
s ∈ S a particular syndrome
s(t) count of syndrome s for time slot t
Ts = (s(0), s(1), . . . , s(t)) time series of counts for syndrome s

R ⊂ C reference set of patients

3.1. Problem Definition

Let us denote the population of instances as C, to which we will also refer to as
cases. For example, a case c ∈ C can be a patient arriving at the emergency department.
As mentioned above, the cases are grouped together according to pre-specified time slots
in order to detect sudden changes in the data. Hence, the cases for a specific time slot t
are denoted as C(t) ⊂ C. Each case c ∈ C(t), is represented by a set of attributes A =
{A1, A2, . . . , Am}, where each attribute can be either categorical (e.g., gender), continuous
(e.g., age) or text (e.g., chief complaint). Following the notation of Wong et al. [6], we refer
to such attributes which basically represent the information under surveillance as response
attributes. Note that spatial information can also be included in the response attributes
which can be used for spatial surveillance (e.g., postal code of the patients arriving in the
emergency department).

While the cases are described by response attributes, information about external
influences is represented by a set of environmental attributes E = {E1, E2, . . . , Ek}. The en-
vironmental attributes are independent of the response attributes and represent external
factors which might have an influence on the distribution of cases C(t) for a given time slot
t. For example, during the winter, we expect to have a higher number of patients with flu
symptoms than during the summer. In order to consider such effects, the season can be
represented as an environmental attribute which can be used by the algorithms. Hence,
the use of suitably chosen attributes allows to capture periodic trends for the population of
instances C(t). Depending on which information is available, the environmental attributes
can be freely configured by the user based on their domain knowledge apart from the
collected data C.

From a machine learning perspective, the instances C(t) can be seen as a tabular
data set, where a row represents a particular case c ∈ C(t) and the columns represent the
response attributes A. In addition, each data set C(t) is associated with an environmental
setting e(t) ∈ E1 × E2 × . . .× Ek, defining external factors which might have an impact on
the distribution of C(t). Thus, the information available for time slot t can be represented
by the tuple (C(t), e(t)) and the information about prior time slots can be denoted as
H = ((C(1), e(1)), (C(2), e(2)), . . . , (C(t − 1), e(t − 1))). The main goal of non-specific
syndromic surveillance is to detect any anomalies in the set C(t) of the current time
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slot t w.r.t. the previous time slots H, which may indicate an outbreak of an infectious
disease. Therefore, the historyH can be used to fit a model and the information given by
environmental setting e(t) can be used to condition the model on the current time slot t.

3.2. Modeling

The general approach to non-specific syndromic surveillance is to model the normal
activity by analyzing H, which can be seen as an expected observation, and compare it
to the set C(t). A significant difference between the expectation to the actual observed
set C(t) can indicate an outbreak of an infectious disease. Especially an increase in the
number of instances following a particular syndrome can be a good indicator for an
outbreak, while under normal circumstances the absence is not of interest. The difference
between the expectation and the current observed subset C(t) can be modeled in two
ways, namely via global and local modeling. While global modeling tries to solve the
problem of outbreak detection with a single universal model, a local modeling approach
breaks down the problem into many local tasks, each representing an expectation for a
particular characteristic of C(t). For example, the expectation could be an expected count
for a specific syndrome which is then compared to the actual count of the syndrome in
C(t). The local tasks are executed independently and their results need to be aggregated
afterwards, in contrast to the global modeling where the outcome is already a single result.

3.2.1. Global Modeling

The basic idea of global modeling is visualized in Figure 1. Given the information
of prior time slots H, which serve as training data, and the information about the envi-
ronmental attributes of the current time slot e(t), the learning objective of the model is to
create an expectation for the distribution of cases G(e(t),H) = Ĉ(t). In the following step,
the distribution Ĉ(t) is compared to the actual observation of cases C(t). Depending on the
used algorithm, the representation of C(t) and Ĉ(t) can have arbitrary forms. For example,
the information about all cases for a particular time slot can be encapsulated as one vector,
as it is done by Fanaee-T and Gama [7]. Depending on the representation of Ĉ(t), statistical
tests such as the normality [7] or the Fisher’s test [47,48] are typically used for assessing
the difference between C(t) and Ĉ(t). However, instead of making a binary final decision,
it is much more preferable to directly use the p-value [49]. The complement of the p-value
can be seen as the likelihood of being in an outbreak and, therefore, contain much more
information about the belief of being in an outbreak than the binary decision. This allows
us to analyze the performance of the model in the evaluation more precisely and, more-
over, we are able to defer the specification of the significance level during the evaluation.
Depending on the results, an appropriate significance level can be selected for applying
the model in practice.

Figure 1. Global modeling.

3.2.2. Local Modeling

The major drawback of global modeling is that all the information about the cases
C is summarized in one representation. Thus, information about individual cases, which
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could be a good indicator for an outbreak, might be lost. This is particularly important
for detecting outbreaks of very rare diseases, for which a relative small increase of cases
is already alerting. Therefore, local modeling breaks down the problem of non-specific
syndromic surveillance into several local modeling tasks, each focusing on a different
characteristic of the data (cf. Figure 2). The general idea of composing a global model from
many local models has previously been proposed by Knobbe et al. [50].

Figure 2. Local modeling.

Problem Formulation

Given some information of prior days H, local modeling generates a set of local
models L(X ,H) = {LX1 , LX2 , . . . , LXn}, each responsible for monitoring a specific pattern
Xi ∈ X = {X1, X2, . . . , Xn} of the data. As we will discuss in more detail in Section 4, most
of the algorithms differ in what patterns they monitor. For example, one can use high-
frequency association rules, as in DMSS (Section 4.1), or all possible patterns up to a certain
complexity, as in WSARE (Section 4.2). In dependence of the environmental attributes
of the current time slot e(t), each local model defines an expectation LX(e(t)) = X̂ for
their pattern. A local model can monitor any kind of pattern which might be helpful to
detect an outbreak of an infectious disease. Subsequently, the expectation for the patterns
{X̂1, X̂2, . . . , X̂n} are compared to the actual observations of the patterns X obtained from
the data set C(t). Like for the global modeling, the comparison is usually performed with
statistical tests which yield a p-value, as explained in the previous section. As each local
model yields a single p-value, the results of the local models need to be aggregated to a
final p-value for the respective time slot.

Aggregation of p-Values

Heard and Rubin-Delanchy [51] review multiple methods for combining p-values,
such as Edgington’s and Fisher’s methods which have already been used for syndromic
surveillance [52]. Each of the combination procedures have different statistical properties,
not allowing to generally prefer one particular method. In addition to these methods, we
introduce as a simple baseline the naive approach that reports the smallest p-value, which
basically represents the most significant observation. We have to note that in this case the
reported value for a time slot is not a valid p-value anymore. The complement should be
seen as a mere score for being in an outbreak.

Problem of Multiple Testing

The aggregation of p-values is a difficult task due to the problem of multiple testing.
In particular, with an increasing number of statistical tests executed at the same time, it
becomes more likely that an extreme p-value for one of the tests is computed by chance,
increasing the number of false positives.

Generally speaking, it is impossible to check whether a single extreme p-value is an
indicator for an outbreak or just created by random noise if all tests are assumed to be
independent of each other. In this case, several techniques can be used for controlling
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the likelihood of obtaining false positives, such as Bonferroni corrections or permutation
tests [53]. The general concept is to make each individual underlying statistical test less
sensitive to changes, so that chance false positives are less likely to occur. However, this
also has the drawback that the sensitivity to detect events is reduced. Moreover, these kind
of corrections are focused on determining whether to raise an alarm or not, while we are
interested in obtaining an aggregated p-value. In particular, Roure et al. [27] argue that the
Bonferroni correction corresponds to an aggregation of p-values based on the minimum
function. Such correction methods do not have an influence on the performance if we
evaluate our approaches using ROC-curves (cf. Section 6.1).

Specifically for contrast set mining, a modified version of the Bonferroni correction
has been proposed by Bay and Pazzani [39]. Based on statistical significance pruning, tests
performed on specifications of item sets are pruned if they have similar support to its
parent item set or fail X 2 test of independence with respect to its parent item set.

If the executed statistical tests are correlated, which is true for a scenario in which
we monitor all possible syndromes, this knowledge can be used to reduce the number of
false alarms. For example, in the area of neuro-imaging, cluster-extent based thresholding
techniques are used to identify areas of brain activity [53]. In this case, it is assumed that the
statistical tests which are performed for areas which are close together are likely to correlate.
However, not always such domain knowledge is available. Without any prior information
about the correlations, the framework proposed by Leek and Storey [54] can be used, which
captures the dependencies in the data before the statistical tests are conducted, and then
adjust the data in a way so that the actually performed statistical tests are independent of
each other.

In summary, if a relative assessment of the findings is sufficient our proposed aggrega-
tion of taking the minimum is sufficient. Nonetheless, more sophisticated approaches, such
as the exploitation of correlations, can likewise be integrated in our proposed framework.
We leave the investigation for future work.

Relation to Syndromic Surveillance

Viewed from the perspective of syndromic surveillance, a special case of the local
modeling is to monitor all possible syndromes at the same time. The set of all possible
syndromes can be defined as

S =

{
∏
i∈I

Ai | Ai ∈ A ∧ I ⊆ {1, 2, . . . , m} ∧ |I| ≥ 1

}

where ∏i∈I Ai for |I| = 1 is defined as {{a} | a ∈ A ∧ A ∈ A}. Hence, each local model is
responsible for a pattern X ∈ X which represents the count of a particular syndrome s ∈ S .
Therefore, X̂ of the local model LX represents the expectation for the count of syndrome
s. In particular, by extracting the counts for the syndrome s from the historic dataH, we
obtain a univariate time series Ts = (s(1), s(2), . . . , s(t− 1)) which can be used to fit the
local model. In fact, the most common outbreak detection algorithms in the literature of
syndromic surveillance are based on univariate time series. Apart from the environmental
attributes, most of these methods are able to consider effects such as seasonality and trend
by just analyzing the change of the counts over time. The idea is to apply these well-studied
syndromic surveillance methods in the setting of non-specific syndromic surveillance.

4. Machine Learning Approaches to Non-Specific Syndromic Surveillance

As mentioned above, only little research has been devoted to non-specific syndromic
surveillance. In our literature research, we have identified only a few algorithms which we
will discuss in this section from the point of view of our modeling framework.
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4.1. Data Mining Surveillance System (DMSS)

Brossette et al. [47] have proposed the first algorithm which is able to identify new
and interesting patterns in syndromic data. The algorithm is based on the concept of
association rule mining and follows the local modeling approach where each local model
LX is represented by an association rule X. The association rules X are obtained by running
an association rule mining algorithm on C(t). Moreover, the authors propose to reduce
the complexity of this process by focusing only on mining high-support association rules.
In order to perform the comparison, a reference set of patientsR ⊂ C is created by merging
the cases of a selected set of previous time slots. This is used for comparing the confidence
of an association rule X on R with the confidence computed on C(t) using a χ2 or a
Fisher’s test. If the confidence has significantly increased on C(t), the finding is reported
as an unexpected event. The technique was evaluated on data collected in an emergency
department using patients of the previous one, three or six months as the reference set
R, and the patients arriving at the ED in a single day as C(t). The authors always report
all findings for a day, since they only focus on identifying potentially interesting patterns.
An aggregation is not performed. Moreover, environmental attributes are not considered
by this approach.

4.2. What Is Strange about Recent Events? (WSARE)

The family of WSARE algorithms has been proposed by Wong et al. [48]. All algo-
rithms share the same underlying concept, namely to monitor all possible syndromes
having a maximum of two conditions S≤2 = {s ∈ S | ∧|s| ≤ 2} at the same time. Again,
these algorithms can be categorized as local modeling in which each local model LX is re-
sponsible for observing one particular syndrome s ∈ S≤2, hence X = s. The three WSARE
algorithms only differ in the way how the reference set of patientsR is created, on which
the expectation for a syndrome X̂ is estimated. For each local model LX, the proportion
of the syndrome on the reference set R is compared to the proportion of the syndromes
observed on the set C(t) using the χ2 or Fisher’s exact test. In order to aggregate the
p-values for one time slot, a permutation test with 1000 repetitions is performed. As for
DMSS, the authors of the WSARE algorithm focused in their evaluation on patient data
using single-day time slots.

The following three versions have been considered:

WSARE 2.0 merges the patients of the 35, 42, 49 and 56 prior days together. The authors
have specifically selected these set sizes in order to consider the day-of-the-week
effect which represents the occurrence of different observations depending on the
day of the week. For example, this effect can have a significant impact on the number
of emergency department visits [55].

WSARE 2.5 merges the patients of all prior days which have the same values for the
environmental attributes as the current day e(t). This has the advantage that the
expectations X̂ are conditioned on the environmental attributes e(t), and that more
patients are contained in the reference setR, allowing to obtain more precise results.

WSARE 3.0 learns a Bayesian network over all recent data H from which the reference
set of patients R is sampled. For the learning of the network, all patients of all
previous days are merged together and encapsulated in a data set where the rows
represent the patients. Each patient is characterized by the response attributes as well
as the environmental attributes of the respective day the patient arrived. Moreover,
the authors make use of domain knowledge for the structure learning of the Bayesian
network and restrict the nodes of environmental attributes to have parent nodes.
This can be done because the environmental attributes only serve as evidence for the
sampling, the prediction of their distribution is not of interest. For the reference set
R the authors choose to generate 10,000 samples given the environmental attributes
e(t) as evidence.
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4.3. Eigenevent

The Eigenevent algorithm proposed by Fanaee-T and Gama [7] can be categorized as a
global modeling approach. Its key idea is to track changes in the data correlation structure
using eigenspace techniques. Instead of monitoring all possible syndromes, as it is done
for the family of WSARE algorithms, only overall changes and dimension-level changes
are observed by the algorithm. This makes the Eigenevent algorithm less susceptible to
noise resulting in a lower false alarm rate. However, this also reduces the sensitivity of
detecting outbreaks which might be caused by only a few cases for a very rare syndrome.

The basic idea of the algorithm is to create a dynamic baseline tensor using the
information of prior time slots H which share the same values for the environmental
attributes as e(t). In the case that not enough prior time slots are available, time slots
with the most frequent value combinations for the environmental attributes will be added.
The conducted experiments showed that this mixing improves the detection power of
the algorithm for unseen value combinations of environmental attributes. In the next
step, information of the patients C(t) and the baseline tensor are decomposed to a lower-
rank subspace in which the eigenvectors and eigenvalues are compared to each other,
respectively. Any significant changes in the eigenvectors and eigenvalues between the
baseline tensor and the information of patients C(t) indicate an outbreak.

5. Basic Statistical Approaches to Non-Specific Syndromic Surveillance

Of all works discussed in Section 4, only the WSARE algorithms have been compared
to common anomaly detection algorithms [48]. These baselines monitor the total number of
observations per time slot, and may thus be viewed as global modeling techniques. In our
opinion, this provides only a very coarse assessment of the outbreak detection performance.

Therefore, we propose a set of local modeling benchmarks which monitor all possible
syndromes S simultaneously. The key idea of our benchmarks is to apply the same way
of monitoring a particular syndrome to all syndromes at the same time and combine the
p-values for each time slot by taking the minimum (cf. the problem of multiple testing
described in Section 3.2.2). As a simple set of approaches, we first propose to use the
parametric distributions in Section 5.1. For more advanced benchmarks, we additionally
propose to use common and universal syndromic surveillance methods in Section 5.2. Since
the monitoring for each of the syndromes is always performed in the same manner, we will
focus on one syndrome s ∈ S and its time series of counts Ts = (s(1), s(2), . . . , s(t− 1)) in
the following explanations. Note that our proposed benchmarks do not make use of the
environmental attributes.

5.1. Parametric Distributions

Similarly to the approaches of Section 4, we choose to use the entire history to fit
the parametric distributions. Thus, we estimate the empirical mean µ and the empirical
standard deviation σ as follows:

µ =
1
|Ts|

|Ts |

∑
i=0

s(i) σ =

√√√√ 1
|Ts| − 1

|Ts |

∑
i=0

(s(i)− µ)2

Given the fitted distribution p(x) and a new observed count s(t), we perform a
statistical significance test in order to identify an outbreak for the monitored syndrome.
As only a suspicious increase in the number of cases is usually associated with an infectious
disease outbreak, we rely on an one-tailed test. With the one-tailed test we only measure the
deviation of the observed count from the estimated distribution with respect to high counts.
Consequently, the one sided p-value estimates the probability

∫ ∞
s(t) p(x)dx of observing s(t)

or higher counts.
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Gaussian. Not suitable for count data but often used is the Gaussian distribution N(µ, σ2).
This distribution will serve as reference for the other distributions which are specifi-
cally designed for count data.

Poisson. The Poisson distribution Poisson(λ) is directly designed for count data. For es-
timating the parameter λ, we use the maximum likelihood estimate which is the
mean µ.

Negative Binomial. Since the distributional assumptions of the Poisson distribution are
often violated due to overdispersion, we also include the Negative Binomial distribu-
tion NB(r, p). This distribution includes an additional parameter, also referred to as
the dispersion parameter, which allows to control the variance of the distribution [56].
We estimate the parameters with r = µ2/(σ2 − µ) and p = r/(r + µ).

Fisher’s Test. Since the Fisher’s exact test has been used by most of the proposed ap-
proaches for non-specific syndromic surveillance, we also include it as a benchmark.
It compares the proportion of cases with the syndrome to all cases on the previous
data to the corresponding proportion on the current day based on the hypergeomet-
ric distribution. In particular, Fisher’s test is known to yield good results on small
sample sizes [57], which is the case for the estimates derived from C(t).

Modifications for Adapting the Sensitivity

Modeling count data with a statistical distribution is often challenging because of
the different forms of count data and distributional assumptions [56]. Especially for our
application scenario, in which we perform multiple statistical tests in parallel, a fitted
distribution which is overly sensitive to changes can cause many false alarms. In fact,
if the number of monitored syndromes is much higher than the average number of cases
observed each time slot, most of the syndromes are rare. Statistical tests performed on these
syndromes report a very low p-value if only one case is observed in C(t). This problem
becomes more frequent with an increasing number of rare syndromes which are monitored
simultaneously, which results in reporting many unusual observations throughout the
time slots. In addition, outbreaks are usually associated with a high number of infections,
for which reason single unusual observations should have less weight. Therefore, we
propose the following modifications for the benchmarks in order to reduce the sensitivity
of statistical tests on rare syndromes.

For the Gaussian distribution, we propose to use a minimal value for the standard
deviation to which we refer to as σmin. Moreover, for the Poisson distribution, we use
a minimal value for the lambda parameter λmin. The Negative Binomial distribution is
similarly lead by the mean number of cases. Hence, we assume a minimal mean µmin for
the Negative Binomial distribution before setting the parameters as indicated. We leave
the standard deviation untouched since manipulating the overdispersion leads to extreme
distortions in the estimation.

5.2. Syndromic Surveillance Methods

In principle, arbitrary outbreak detection methods which operate on univariate time
series can be used in the setting of non-specific syndromic surveillance. Many traditional
methods rely on sliding windows which use the w most recent counts of Ts as reference
values for fitting a particular parametric distribution. Therefore, the mean µw(t) and the
standard deviation σw(t) can be computed over these w reference values as follows:

µw(t) =
1
w

w

∑
i=1

s(t− i) σw(t) =

√
1

w− 1

w

∑
i=1

(s(t− i)− µ)2

In the following, we will only focus on a selected set of outbreak detection methods
which are universally applicable and serve as drop-in approaches for surveillance systems.
In particular, we have chosen to base our work on the following methods which are all
implemented in the R package surveillance [58]:
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EARS C1 and EARS C2 are variants of the Early Aberration Reporting System [37,59]
which rely on the assumption of a Gaussian distribution. The difference between C2
and C1 lies in the added gap of two time points between the reference values and
the current observed count s(t), so that the distribution of s(t) are assumed as in the
following:

s(t) C1∼ N(µw(t), σ2
w(t)) s(t) C2∼ N(µw(t− 2), σ2

w(t− 2))

EARS C3 combines the result of the C2 method over a period of three previous observa-
tions. For convenience of notation, the incidence counts s(t) for the C3 method are
transformed according to the statistics so that it fits a normal distribution.[

s(t)− µw(t− 2)√
σ2

w(t− 2)
−

2

∑
i=1

max(0,
s(t− i)− µw(t− 2− i)√

σ2
w(t− 2− i)

− 1)

]
C3∼ N(0, 1)

Despite the inaccurate assumption of the Gaussian distribution for low counts,
the EARS variants are often included in comparative studies due to their simplicity
and are still considered to be competitive baselines [59–61].

Bayes method. In contrast to the family of EARS C-algorithms, the Bayes algorithm [62]
relies on the assumption of a Negative Binomial distribution:

s(t)
Bayes∼ NB(w · µw(t) +

1
2

,
w

w + 1
)

With this initialization of parameters, the variance of the Negative Binomial distribu-
tion only depends on the window size. For small w a bigger variance is assumed due
to insufficient data, while for big w it converges to a Poisson distribution.

RKI method. Since the Gaussian distribution is not suitable for count data with a low
mean, the RKI algorithm, as implemented by Salmon et al. [58], assumes a Pois-
son distribution:

s(t) RKI∼
{

Poisson(bµw(t)c+ 1), if µw(t) ≤ 20
N(µw(t), σ2

w(t)), otherwise

6. Evaluation

The goal of the experimental evaluation reported in this section is to provide an
overview of the performance of non-specific syndromic surveillance methods and to
highlight the difficulties to detect outbreaks either with global or local modeling. Therefore,
we compare the non-specific syndromic surveillance approaches of Section 4 to the simpler
statistical methods discussed in Section 5. First we conducted experiments on synthetic
data (cf. Section 6.2), which already have been used for the evaluation of the algorithms
Eigenevent and WSARE [7,48]. In particular, this experiment allows us to replicate and
double-check published results, and complement them with new statistical benchmarks,
which provide a deeper insight into the performance of these algorithms. Thereafter,
in Section 6.3, we have evaluated the algorithms and the benchmarks on real data of a
German emergency department. Since no real outbreaks are known to us in advance, we
injected synthetic outbreaks by adding cases with a particular disease pattern on certain
days, which allows us to evaluate and compare the algorithms in a controlled environment.
Tables 3 and 4 show the attributes of the data sets. A detailed description of the evaluation
data is provided in Sections 6.2.1 and 6.3.1, respectively.
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Table 3. Information about the attributes of the synthetic data.

Attribute Type Values #Values

age response child, senior, . . . 3
gender response female, male 2
action response purchase, evisit, . . . 3
symptom response nausea, rash, . . . 4
drug response aspirin, nyquil, . . . 4

location spatial center, east, . . . 9
flu level environmental high, low, . . . 4
day of week environmental weekday, sunday, . . . 3
weather environmental cold, hot 2
season environmental fall, spring, . . . 4

Table 4. Information about the attributes of the real data.

Field Type Values #Values

age response child, senior, . . . 3
gender response female, male 2
MTS response diarrhea, asthma, . . . 16
fever response normal, high, very high 3
pulse response low, normal, high 3
respiration response low, normal, high 3
oxygen level response low, normal 2
blood pressure response normal, high, very high 3

season environmental fall, spring, . . . 4
weekday environmental Monday, Tuesday, . . . 7

6.1. Evaluation Setup

The evaluation of syndromic surveillance methods is usually performed on a set of
data streams, to which we will refer as an evaluation set, since a single data stream does
normally not contain enough outbreaks to draw conclusions about the performance of the
evaluated algorithms.

For each single evaluation, the respective data stream is split into two parts, a training
part, containing the first k time slots, and a test part, which contains the remainder of the
data stream. The test part of the data stream contains exactly one outbreak which covers
one or more successive time slots depending on the duration of the outbreak. Alarms raised
during the outbreak are considered as true positives while all other raised alarms are consid-
ered as false positives. Note that the evaluation on the test part is performed incrementally,
which means that for evaluating each time slot k + i, the model will be newly fitted on
the complete set of previously observed data points H = ((C(1), e(1)), (C(2), e(2)), . . . ,
(C(k + i− 1), e(k + i− 1))).

6.1.1. Evaluation Measures

The complement of the p-value, which we obtain for each time slot in the test part,
can be interpreted as a score which is used for the evaluation measure. For the evaluation
we rely on the activity monitor operating characteristic (AMOC) [63] which has been
predominantly used in previous works. AMOC can be seen as an adaptation of the receiver
operating characteristic (ROC), in which the true positive rate is replaced by the detection
delay, i.e., the number of time points until an outbreak has been first detected by the
algorithm. In case the algorithm does not raise an alarm during the period of the outbreak,
the detection delay is equal to the length of the outbreak. Hence, the computation of
the AMOC curves is based on the sorting of the composite p-values for each time slot
k, k + 1, . . . in the test part and the detection delay that the particular time slots would cause
if there was no alarm raised.
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Contrary to the evaluation in [7,48], in which only specific scores have been evaluated
to create the AMOC-curves, we evaluate the complete range of scores to allow a more
precise analysis. Moreover, for syndromic surveillance, we are interested in a very low
false-alarm rate for the algorithms, and therefore only report the partial area under AMOC-
curve for a false alarm rate less than 5%, to which we refer to as AAUC5%. Note that
contrary to conventional AUC values, in this case lower values mean better results since
small values for the detection delay are better.

Furthermore, in previous works, the computed scores of all evaluated data streams
have been combined together, before the AMOC-curve has been created. This results
in a micro-averaged measure. However, each data stream is handled by the algorithms
independently, possibly resulting in different models across the data streams. Depending
on the properties of the respective underlying data distribution, these models might
perform differently. In order to consider such differences we propose to evaluate the
AMOC-curve on each data stream individually and then take the average of all computed
AAUC5% values representing the macro-averaged result. If not stated otherwise, the macro-
averaged AAUC5% values are reported. However, as long as the streams share similar
properties, which is the case for the WSARE synthetic data, the results of the micro-averaged
and the macro-averaged AAUC5% values are quite similar.

6.1.2. Parameter Configurations

For our proposed benchmarks, all possible syndromes having a maximum of two
conditions S≤2 = {s|s ∈ S ∧ |s| ≤ 2} are evaluated as it is done in the WSARE algorithms.
In addition, we have used a minimal standard deviation of one (σmin = 1), a minimal
lambda of one (λmin = 1) and minimal mean of one (µmin = 1) as the standard setting. Since
the implementation of the EARS algorithms allows to set a minimal standard deviation
as well, we also choose to set it to one for these methods. For the DMSS algorithm two
parameters need to be specified, the minimum support threshold sup for the rules, and the
window size w, defining the number of recent time slots used for the reference set R.
For a fair comparison, we have evaluated all parameter settings for w = {30, 90, 180},
as proposed in [47], and for sup = {3, 5, 7}. Since the described approaches all rely on
a sliding window, we have evaluated the window sizes 7, 14, 28, 56, 112, 182 and 357 to
further analyze the influence of amount of data used for fitting the distributions of the
statistical methods.

6.1.3. Additional Baselines

Following Wong et al. [48], we have also included the control chart, the moving aver-
age and the linear regression algorithms. These baselines only monitor the total number
of patients per time slot and can therefore be considered to be simple global modeling
approaches. Note that this kind of surveillance can also be viewed as monitoring the
universal syndrome, which is true for all observed cases. The control chart algorithm is es-
sentially identical to our proposed Gaussian benchmark and the moving average algorithm
corresponds to the EARS C1 algorithm using a window size of 7 except that both algo-
rithms are only applied on the univariate time series of the universal syndrome. In contrast,
the linear regression model fits a linear model which predicts the number of cases per time
slot solely based on the environmental attributes. To apply linear regression on categorical
features we create a one-hot encoded representation of H using the information of the
environmental attributes. Given the encoded data with binary features X1, . . . , Xi the linear
regression model Y = β0 + β1X1 + . . . + βiXi is fitted where Y represents the estimation
for the total number of patients per time slot. The standard error of the model, which
is computed on all recent time slots which share the same values for the environmental
attributes as the current observed time slot, and the predicted value for the current time
slot are used to fit a Gaussian distribution, on which a p-value is computed for the actually
observed number of patients.
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6.1.4. Implementation

For the Eigenevent algorithm, we rely on the code provided by the authors (https:
//github.com/fanaee/EigenEvent, accessed on 22 April 2020). Unfortunately, we have
not been able to get access to the original code of WSARE and DMSS, and therefore re-
implemented these algorithms in Python, using the libraries pyAgrum [64] for Bayesian
networks and mlxtend [65] for association rule mining. To further compare our implementa-
tion of the WSARE algorithms, we have imported the pre-computed p-values of the WSARE
and Eigenevent algorithms on the synthetic data which are also available in the Eigenevent
repository. As an implementation baseline for the common syndromic surveillance meth-
ods, we have used the R package surveillance [58], and adapted the implementation of
the methods EARS (C1, C2, and C3), Bayes, and RKI so that they also return p-values. Fi-
nally, for performing linear regression, we have used the Python library scikit-learn [66].
Our implementation is publicly available (https://github.com/MoritzKulessa/NSS, ac-
cessed on 9 March 2021).

6.2. Experiments on Synthetic Data
6.2.1. Data

The evaluation set consists of 100 data streams, generated with the synthetic data
generator proposed by Wong et al. [6] ( https://web.archive.org/web/20150920104314
/ http://www.autonlab.org/auton_static/datsets/wsare/wsare3data.zip, accessed on
8 August 2020). The data generator is based on a Bayesian network and simulates a
population of people living in a city of whom only a subset are reported to the data stream
at each simulated time slot. Detailed information about the attributes in the data stream is
given in Table 3. As WSARE, DMSS, and the benchmarks cannot take spatial attributes into
account, such kind of attributes are considered as response attributes for these algorithms.
Each data streamH captures the information about the people on a daily basis over a time
period of two years, i.e., each time slot C(t) contains the patients of one day. The first
year is used for the training part while the second year serves as the evaluation part.
The outbreak in the second year starts at a randomly chosen day and always lasts for 14
days. For simulating the outbreak, a randomly chosen number of cases with a particular
disease pattern is added to the baseline distribution of patients in this time period. A total
of |S≤2| = 270 syndromes are monitored at the same time for the WSARE algorithms and
the benchmarks.

All of the 100 synthetically generated data streams share similar properties. As an
example, we have visualized the total number of reported people for one of the data
streams in Figure 3. As it can be seen, the number of daily cases is considerably low
compared to the number of monitored syndromes |S≤2| = 270 for which reason most of
the syndromes might be rare. To get an impression about the distribution of the observed
counts according to the Gaussian model, we additionally visualized the z-scores (degree of
deviation from the mean measured in number of standard deviations) for all syndromes
S≤2 (minimum standard deviation correction was not applied). As can be seen, extreme
deviations are not uncommon (cf. discussion on the problem of multiple testing described
in Section 3.2.2). As a consequence, we expect that we are only able to reliably detect
injected outbreaks for which the syndrome counts differ more than six standard deviations
from the respective mean.

https://github.com/fanaee/EigenEvent
https://github.com/fanaee/EigenEvent
https://github.com/MoritzKulessa/NSS
https://web.archive.org/web/20150920104314/
https://web.archive.org/web/20150920104314/
http://www.autonlab.org/auton_static/datsets/wsare/wsare3data.zip
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Figure 3. Visualization of number of patients and z-scores of all syndromes of S≤2 over time for one of the synthetic
data streams.

6.2.2. Results
Comparison to the Benchmarks

First of all, we have evaluated the non-specific syndromic surveillance approaches
(cf. Section 4) and compared them to our proposed distributional benchmarks (cf. Section 5.1).
For the WSARE algorithms, we additionally evaluate the results of just reporting the
minimal p-value for each day (min. p-value), instead of performing a permutation test with
1000 repetitions (permutation test). Moreover, we imported the pre-computed p-values for
the data streams from the Eigenevent repository for the Eigenevent and WSARE algorithms
(imported p-values) and rerun the Eigenevent algorithm (rerun). The results are presented
in Table 5. For comparison, we also have included the evaluation of the micro-averaged
AAUC5% measure.

Rerunning the Eigenevent algorithm returns worse results than the imported p-values.
In a personal communication, one of the authors of EigenEvent pointed out that the
performance of EigenEvent depends on the random initialization of the used tensor de-
composition, and suggested BetaNTF as an alternative [67]. However, even the imported
p-values did not achieve competitive results compared to other algorithms, so we did
not further investigate this issue. For the WSARE algorithms, we can observe that our
implementation achieves better results than the imported p-values. In particular, if we
omit the permutation test and only report the minimal p-value for each day, the results
improve. Our investigations reveal that the number of repetitions of the permutation test
is limiting the performance of the approaches. Firstly, the permutation test is based on
randomization, only allowing to obtain precise results if the number of repetitions is high
enough. Secondly, by performing 1000 repetitions with a permutation test the p-values are
mapped onto a coarse grained scale, limited to only three digits after the decimal point, not
allowing to consider fine-grained differences between the found anomalies. Both problems
can be solved by increasing the number of repetitions of the permutation test. However,
increasing the precision by one digit after the decimal point requires to perform ten times as
many repetitions, which is often not feasible in practice. A discussion about the efficiency
of the WSARE algorithm compared to the Eigenevent algorithm can be found in the work
of Fanaee-T and Gama [7].
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Table 5. Results on the synthetic data.

AAUC5%
Global Modeling Micro Macro

Control Chart 5.090 5.086
Moving Average 6.977 7.012
Linear Regression 3.308 3.279

Eigenevent (rerun) 5.721 4.993
Eigenevent (imported p-values) 4.596 4.391

Local modeling

Gaussian 0.971 0.941
Poisson 1.329 1.347
Negative Binomial 1.031 0.966
Fisher’s test 1.057 1.057

WSARE 2.0 (min. p-value) 3.054 2.963
WSARE 2.5 (min. p-value) 1.359 1.321
WSARE 3.0 (min. p-value) 0.925 0.898

WSARE 2.0 (permutation test) 3.922 3.805
WSARE 2.5 (permutation test) 1.656 1.614
WSARE 3.0 (permutation test) 1.348 1.325

WSARE 2.0 (imported p-values) 4.943 4.925
WSARE 2.5 (imported p-values) 1.966 1.931
WSARE 3.0 (imported p-values) 1.608 1.610

DMSS (sup = 3, w = 30) 3.270 3.310
DMSS (sup = 3, w = 90) 3.078 3.011
DMSS (sup = 3, w = 180) 3.384 3.433

DMSS (sup = 5, w = 30) 2.935 2.985
DMSS (sup = 5, w = 90) 2.838 2.817
DMSS (sup = 5, w = 180) 3.057 3.070

DMSS (sup = 7, w = 30) 2.839 2.819
DMSS (sup = 7, w = 90) 2.702 2.764
DMSS (sup = 7, w = 180) 2.955 2.996

The results of the DMSS algorithm suggest that monitoring association rules is not as
effective as monitoring syndromes. In particular, the space of possible association rules
is much greater than the space of possible syndromes S , which worsens the problem of
multiple testing. In contrast to the other local modeling approaches which are limited
to syndromes of maximum length of two, the number of statistical tests performed each
day for the DMSS algorithm is regulated by the parameter sup. For sup = 3 around
980, sup = 5 around 220 and sup = 7 around 68 association rules are checked every day
compared to |S≤2| = 270. The worse results for sup = 3 can be explained by the high
number of tests performed each day. Conversely, with sup = 5 and sup = 7, we perform
less tests in average but these thresholds seem to be too strict for detecting outbreaks early
on. The effect of the window size on the results is discussed in the following experiment in
which we have evaluated the syndromic surveillance methods with different window sizes.

In general, all approaches based on global modeling perform considerably worse than
the local modeling approaches. Linear regression could achieve the best results among
the global approaches, highlighting the importance of capturing seasonal patterns. A
closer examination of the coefficients of a linear ridge regression, shown in Table 6, reveal
that we expect slightly more patients on the weekend than during the week. In contrast,
the analysis of the other coefficients is difficult due to the correlation among these attributes.
For example, the flu season starts during the winter when it is cold. In particular, the co-
efficients of the weather attribute seem to complement the pattern for the season and the
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flu level. As the flu season also may overlap between seasons, we are not able to extract a
precise pattern.

Table 6. Coefficients of a linear ridge regression model build on the first year of a synthetic data
stream. The associated intercept of the model is 36.416.

Attribute Coefficient Value Attribute Coefficient Value

flu level

βdecline 2.805

season

β f all 0.266
βhigh 6.221 βwinter 2.805
βlow −5.830 βspring 3.345
βnone −3.197 βsummer −6.417

day of
week

βsat 1.063
weather

βcold −8.776
βsun 0.683 βhot 8.776

βweekday −1.746

The proposed benchmarks do not take the environmental attributes into account
but still are able to achieve results that are competitive to WSARE 3.0. We are surprised
about the good results of the Gaussian benchmark since this modelling is not specifically
designed for count data. The advantage may be explained with the setting of multiple
testing, allowing the generation of more reliable p-values for the day. Moreover, Fisher’s
test performs well without specification of any minimum standard deviation. In contrast
to the other benchmarks, Fisher’s test also takes the total number of visits on a particular
day into account, which might be an advantage.

Interestingly, the Fisher’s test achieves better results than the WSARE 2.5 algorithm.
The only difference between these algorithms is that the WSARE 2.5 accounts for the
environmental attributes and only computes the proportion for the respective syndrome
on all previous days which match the same values for the environmental attributes. Using
more data for performing the statistical test seems to be more appropriate on this data than
considering environmental effects.

Evaluation of Syndromic Surveillance Methods

In this experiment, we have evaluated common syndromic surveillance methods
(cf. Section 5.2) in the setting of non-specific syndromic surveillance, i.e., monitoring the
syndromes of S≤2 with outbreak detection methods in parallel using the local modeling
approach. The results for the AAUC5% measure are represented in Table 7.

Table 7. Results of the AAUC5% on the synthetic data for syndromic surveillance methods.

Size of the Sliding Window

Algorithm 7 14 28 56 112 182 357

EARS C1 4.885 2.826 1.905 1.620 1.572 1.533 0.997
EARS C2 4.642 2.445 1.723 1.651 1.635 1.568 0.969
EARS C3 3.858 2.580 2.008 1.846 1.708 1.605 1.309
RKI 2.370 2.038 1.767 1.851 2.033 2.125 1.386
Bayes 2.302 1.662 1.760 1.857 2.003 2.203 1.312

In general, we can observe that greater window sizes achieve better results, especially
for the EARS algorithms. Moreover, we can observe that for very small window sizes, like
7 and 14, the RKI and the Bayes method are superior to the EARS algorithms. It seems that
these methods are more suitable in the setting of non-specific syndromic surveillance if
very few data are available. The reason why the results of window sizes 112 and 182 of all
methods do not seem to improve over the results of window size 56 can be explained by the
influence of environmental factors. Due to the annual seasonal pattern of the synthetic data,
each season in the year follows a different underlying data distribution. If the window size
spans over different seasons, like 112 and 180, we also include non-representative data for
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fitting the distributions. The reason that a window size of 357 again works much better for
all methods is due to the inclusion of data for fitting the distributions of the same season
one year ago.

Sensitivity of Statistical Tests

In this experiment, we have evaluated the influence of the σmin, λmin and µmin param-
eters. The results are shown in Figure 4 where the x-axis depicts the respective minimum
value and the y-axis the result of AAUC5% measure.

It can be seen that dampening over-sensitive statistical tests does not have a major ad-
vantage for the Poisson benchmark. The implicit distributional assumptions already reduce
the impact of the statistical tests on rare syndromes. In contrast, the other distributions
benefit from adapting the respective minimum value, resulting in a top performance value
of the AAUC5% slightly below one. In general, the minimum parameter has a stronger
influence on the results for the Gaussian benchmark than for the other benchmarks. In
addition, we have performed experiments in which we only monitor the syndromes with
length of one S≤1 and syndromes with a maximum length of three S≤3. Generally speak-
ing, with an increasing number of syndromes monitored simultaneously, we observe that
the value for the minimum parameter needs to increase as well, which compensates the
problem of multiple testing.
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Figure 4. Influence of the minimum parameter for the statistical test on the benchmarks.

6.3. Experiments on Real Data
6.3.1. Data

For an evaluation on real data, we rely on routinely collected, fully anonymized
patient data of a German emergency department, collected over a time period of two
years. We have extracted a set of response attributes from the emergency department
data (cf. Table 4) which might allow an early detection of infectious disease outbreaks.
Continuous attributes have been discretized, since all of the non-specific approaches can
only operate on nominal data. In particular, we have discretized the temperature (normal
= (−∞, 37.5), high = [37.5, 40), very high = [40, ∞)), the respiration (low = (−∞, 12),
normal = [12, 25), high = (25, ∞)), the pulse (low = (−∞, 60), normal = [60, 100), high
= (100, ∞)), the oxygen level (low = (−∞, 80], normal = [80, ∞)) and the systolic (normal
= (−∞, 130), high = [130, 140), very high = [140, ∞)) and diastolic (normal = (−∞, 80),
high = [80, 90), very high = [90, ∞)) blood pressure. Missing values are imputed with the
value normal. In addition, we include the Manchester-Triage-System (MTS) [68] initial
assessment, which is filled out for every patient on arrival. To reduce the number of values
for the attribute MTS, we group classifications which do not relate to any infectious disease,
such as to various kinds of injuries, into a single value. We did not include ICD codes as
response attributes, since obtaining these values can take several days, hindering a timely
detection of the outbreak [26]. For the WSARE algorithms and the benchmarks, a total of
|S≤2| = 493 syndromes are monitored simultaneously.
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The number of daily visits in the emergency department is shown in Figure 5. With a
mean of 170 patients per day, these are much higher than the synthetic data, which have
about 35 patients per day (cf. Figure 3). Again, we also show the z-scores of the syndromes
S≤2 to obtain an impression about the distribution of the observed counts, especially the
extreme deviations. Compared to the synthetic data, we obtain much stronger deviations
in the syndrome counts, which can be explained by the higher number of syndromes
which are monitored simultaneously. In addition, the synthetic data seem to be very
homogeneous while the real data seem to change a little bit over time (e.g., we can observe
much higher deviations for the end of the second year). Such changes may be due to
changes in the behaviour of the hospital staff that inputs the data into the emergency
department management systems.

6.3.2. Evaluation Process

As the emergency department data do not contain any information about real out-
breaks, we decided to inject synthetic outbreaks, which is common practice in the area of
syndromic surveillance. Therefore, we have specified ten different scenarios of disease
outbreaks, shown in Table 8, each represented by a particular syndrome. For a systematic
evaluation, we have carefully selected these syndromes based on their daily occurrences
in the emergency department data, ensuring a representative range of frequent and rare
disease patterns. Again, we use the first year as the train part and the second year as
evaluation part. To simulate an outbreak for one of the scenarios, we have drawn a fixed
sized random sample of patients from the emergency department data, which have the
respective syndrome, and added these to a randomly chosen single day in the second year,
instead of simulating how the patients would arrive in the emergency department over
time. This allows us to systematically assess the sensitivity of the algorithms to detect
sudden outbreaks by running evaluations with a controlled number of infected people
per outbreak.

Table 8. Statistics about the scenarios.

Scenario Syndrome
Daily

µ σ

1 MTS = unease 22.175 6.432
2 age = adult AND blood pressure = very high 16.568 4.554
3 fever = high 11.952 5.662
4 gender = female AND MTS = abdominal pain 7.274 2.787
5 age = senior AND fever = high 3.403 2.162

6 gender = male AND MTS=diarrhea 2.108 1.570
7 MTS = gastrointestinal bleeding 1.168 1.104
8 age = adult AND MTS = collapse 0.618 0.777
9 fever = high AND respiration = high 0.327 0.584
10 MTS = asthma 0.068 0.263

For each scenario, we have created 25 data streams which differ from each other only
by the day of the outbreak. To evaluate a particular outbreak size, we have added the
same fixed number of patients to all outbreak days of these data streams. We evaluated
all outbreak sizes from one to 20 infected patients per outbreak. Hence, for each scenario
we obtain 20 evaluation sets, each containing 25 data streams. According to this, 500 data
streams are evaluated for each of the 10 scenarios, resulting in a total of 5000 outbreaks.

For each evaluation set, the results for the AAUC5% measure can be computed for an
algorithm, representing the ability to detect the respective outbreak size for the respective
syndrome. Given the results of the AAUC5% measure for the different outbreak sizes, we
can visualize the results of an algorithm as shown in Figure 6. Instead of reporting each
single AAUC5% value for the outbreak sizes, we have chosen to report the area under this
curve, encapsulating the overall ability to detect an outbreak for the respective scenario
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of an algorithm, to which we refer to as OAUC. Small values for the OAUC measure
represent good results.

Figure 5. Visualization of number of patients and z-scores of all syndromes of S≤2 over time for the real ED data.
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Figure 6. Visualization of the results of an algorithm for different outbreak sizes. The area under this
curve represents the OAUC measure.

6.3.3. Configuration of the Algorithms

Due to the better results in the experiments on synthetic data, we choose to report
the minimal p-value for the WSARE algorithms instead of performing a permutation test.
Unfortunately, we could not evaluate the DMSS algorithm, since the high number of cases
each day causes the DMSS algorithm to find too many rules. For example, setting the
minimum support to sup = 5 results in around 60.000 rules for each day. Even by focusing
on rules with a very high support, such as sup = 30, we still obtain an average of 4000 rules
each day, compared to |S≤2| = 493 syndromes. The configuration for all other algorithms
remains the same.

6.3.4. Results
Comparison to the Benchmarks

For the following experiment, we have evaluated the non-specific syndromic surveil-
lance algorithms on all ten scenarios. Table 9 shows the obtained OAUC measure for the
algorithms, followed by the rank across all algorithms for each scenario (in round brackets).
The last column of the table shows the average rank of the respective algorithms over all
scenarios, so that better algorithms will show a low number in this column.
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Table 9. Results of the OAUC measure for all scenarios on the real data in which the algorithms have been applied in the
setting of non-specific syndromic surveillance.

Scenario Avg.

Global Modeling 1 2 3 4 5 6 7 8 9 10 Rank

Linear Regre. 16.43 (1) 17.97 (1) 15.88 (1) 18.09 (15) 17.76 (12) 13.97 (10) 15.83 (13) 17.06 (13) 15.91 (13) 13.33 (13) 9.2
Control Chart 17.32 (2) 18.45 (7) 16.08 (4) 18.08 (14) 18.38 (15) 16.02 (14) 16.77 (15) 17.46 (14) 16.87 (15) 15.35 (15) 11.5
Moving Avg. 17.45 (4) 18.47 (8) 17.67 (12) 17.42 (8) 18.28 (14) 17.67 (16) 17.89 (16) 17.96 (15) 18.05 (16) 15.08 (14) 12.3
Eigenevent 17.77 (9) 18.30 (5) 16.85 (7) 18.69 (16) 18.50 (16) 16.95 (15) 16.58 (14) 18.20 (16) 16.83 (14) 16.35 (16) 12.8

local modeling

Gaussian 17.55 (6) 18.88 (11) 18.02 (13) 16.95 (5) 14.19 (7) 9.82 (5) 5.80 (3) 5.78 (4) 6.15 (5) 5.84 (4) 6.3
Poisson 18.26 (15) 18.92 (14) 17.58 (11) 17.46 (9) 14.79 (8) 12.14 (8) 9.04 (7) 9.17 (8) 9.83 (11) 10.01 (11) 10.2
Neg. Binomial 17.65 (8) 18.41 (6) 17.16 (10) 14.04 (1) 13.33 (5) 8.93 (4) 5.13 (1) 5.37 (2) 5.83 (4) 6.06 (8) 4.9
Fisher’s Test 17.43 (3) 19.00 (16) 18.93 (16) 17.66 (13) 17.77 (13) 15.69 (13) 12.25 (11) 10.57 (11) 9.03 (10) 6.05 (7) 11.3

WSARE 2.0 17.49 (5) 18.25 (4) 17.06 (8) 17.50 (12) 16.39 (10) 15.64 (12) 14.40 (12) 12.61 (12) 12.23 (12) 11.47 (12) 9.9
WSARE 2.5 18.29 (16) 18.20 (3) 18.80 (15) 17.31 (7) 15.90 (9) 13.68 (9) 11.33 (9) 9.83 (9) 8.90 (8) 6.77 (9) 9.4
WSARE 3.0 17.78 (10) 18.14 (2) 18.68 (14) 17.46 (10) 16.90 (11) 14.70 (11) 11.34 (10) 10.04 (10) 7.60 (7) 6.04 (6) 9.1

C1 (w = 56) 17.85 (12) 18.88 (10) 16.03 (2) 15.99 (3) 10.52 (1) 8.13 (1) 5.65 (2) 5.33 (1) 5.42 (1) 5.57 (2) 3.5
C2 (w = 56) 17.59 (7) 18.95 (15) 16.07 (3) 16.16 (4) 10.86 (3) 8.47 (2) 6.00 (4) 5.75 (3) 5.81 (3) 5.96 (5) 4.9
C3 (w = 56) 17.81 (11) 18.89 (13) 16.71 (6) 15.93 (2) 10.69 (2) 8.82 (3) 6.07 (5) 5.82 (5) 5.69 (2) 5.71 (3) 5.2
Bayes (w = 56) 18.14 (14) 18.79 (9) 17.15 (9) 17.49 (11) 13.15 (4) 11.78 (6) 8.92 (6) 7.87 (6) 6.42 (6) 4.27 (1) 7.2
RKI (w = 56) 18.05 (13) 18.88 (12) 16.16 (5) 17.07 (6) 13.33 (6) 11.83 (7) 9.22 (8) 8.66 (7) 9.00 (9) 9.32 (10) 8.3

First of all, we can observe that global modeling improves over local modeling for the
results on frequent syndromes (scenarios 1 to 3) while for the remaining rare syndromes
it is vice versa. The observations on the frequent scenarios seems plausible, since for
the local modeling the signal of the outbreak syndrome needs to surpass the signals of
all other monitored syndromes, and as discussed for Figure 3, strong signals are not
uncommon. Assuming a fixed outbreak size, the outbreak’s signal is obviously stronger
for rare syndromes than for more frequent syndromes, which leads to the observed better
performance of the global models for the frequent syndromes. On the other hand, the
absolute numbers for the frequent syndromes are all close together and relatively high.
This can be explained as we only used a maximum outbreak size of 20 in our evaluations,
which is difficult to detect even for the global modeling approaches taking into account
that an average of 170 patients arrive in the emergency department each day. This also
explains why the global approaches are not able to improve much (in terms of absolute
numbers) as the frequency of the evaluated syndromes decreases.

From scenario 4 onwards, the results of the local modeling approaches improve.
In particular, the benchmark based on the Negative Binomial distribution, the Gaussian dis-
tribution and the EARS methods improve over all other algorithms. In contrast, the Fisher’s
test benchmark only achieves competitive results for scenario 10. The same effect can be ob-
served for the results of the WSARE algorithms, since they are all based on the Fisher’s test.
While the WSARE 2.0 algorithm is not able to achieve good results at all due to the limited
set of reference patients, the WSARE 2.5 and WSARE 3.0 can improve over the Fisher’s test
benchmark. Directly comparing the Fisher’s test benchmark and WSARE 2.5 show that the
environmental attributes can help to better detect the outbreaks. The improvement of in-
cluding environmental variables can also be observed for the global modeling approaches,
for which the Linear Regression algorithm achieve better results. The coefficients of a linear
ridge regression, displayed in Table 10, show that during spring and winter we observe
a slightly higher number of patients which may be caused by the flu season. Regarding
the weekday, we expect a higher number of cases on Monday and Friday while on the
weekend less patients are observed.

The worse results of the approaches which are based on the Poisson distribution (e.g.,
Poisson benchmark and RKI method) suggest that this distribution might not be suitable
for non-specific syndromic surveillance.
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Table 10. Coefficients of a linear ridge regression model build on the first year of a real data stream.
The associated intercept of the model is 170.867.

Attribute Coefficient Value Attribute Coefficient Value

weekday

βmonday 11.219

season

βautumn −8.385
βtuesday 0.840 βwinter 6.225

βwednesday −2.436 βspring 5.527
βthursday −0.021 βsummer −3.367
β f riday 3.886

βsaturday −5.411
βsunday −8.077

Evaluation of Syndromic Surveillance Methods

The results for all window sizes of the syndromic surveillance methods are shown
in Figure 7. Since the all EARS algorithms obtain similar results, we only have visualized
the results of EARS C1. In general we can observe that a very low window size of 7 and
14 achieves the worst results. However, already with a window size of 28 the statistical
methods are competitive with the other algorithms presented in Table 9. They further
improve with a window size of 56 and then stabilize for larger window sizes for all of
the methods.

A closer look at the differences between the syndromic surveillance methods reveals
that all EARS methods achieve similar results for all evaluations. The results of the Bayes
and the RKI method are usually worse than the EARS methods. Only for scenario 10,
the Bayes method can consistently improve over the EARS algorithms for all evaluated
window sizes. In general, the results of the EARS methods with a window size of 56 are
slightly better than the Gaussian benchmark. In contrast, for the synthetic data we observed
that larger window sizes always improved the results. One reason for that difference could
be the heterogeneity of the real data. While the synthetic data is consistently generated
in a controlled environment, the reporting behaviour in the emergency department may
change over time due to the different employees using the hospital system. Apparently,
using a window size of 56 allows to adapt to these kind of changes.
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Figure 7. Visualization of the results for the syndromic surveillance methods.

Results on Specific Syndromic Surveillance

We have transformed the non-specific syndromic surveillance methods into specific
syndromic surveillance methods by monitoring only the syndrome of the respective sce-
nario. This allows us to assess the performance of the algorithms without the effect of the
multiple testing. The results are shown in Table 11. Note that no results are reported for the
global modeling algorithms since such a transformation is not possible for these algorithms.
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Table 11. Results of the OAUC measure for all scenarios on the real data in which the algorithms have been applied in the
setting of specific syndromic surveillance.

Scenario Avg.
Local Modeling 1 2 3 4 5 6 7 8 9 10 Rank

Gaussian 14.79 (10) 9.64 (6) 13.02 (10) 5.31 (6) 2.76 (3) 3.10 (7) 2.16 (8) 1.31 (9) 0.76 (8) 0.48 (12) 7.9
Poisson 14.63 (8) 9.57 (4) 12.63 (9) 5.29 (4) 2.75 (2) 3.08 (6) 2.09 (4) 1.23 (4) 0.69 (2) 0.40 (5) 4.8
Neg. Binomial 14.81 (11) 9.66 (7) 13.13 (11) 5.32 (7) 2.76 (4) 3.06 (5) 2.25 (11) 1.23 (4) 0.69 (2) 0.40 (5) 6.7
Fisher’s Test 14.65 (9) 8.67 (1) 13.15 (12) 5.09 (1) 2.74 (1) 2.90 (3) 2.11 (5) 1.16 (1) 0.74 (6) 0.40 (4) 4.3

WSARE 2.0 14.93 (12) 10.18 (10) 11.62 (7) 6.80 (12) 3.92 (12) 3.23 (11) 2.29 (12) 1.46 (12) 0.69 (5) 0.40 (3) 9.6
WSARE 2.5 13.94 (3) 8.72 (3) 11.16 (6) 5.73 (9) 2.97 (7) 2.88 (2) 2.21 (9) 1.17 (2) 0.75 (7) 0.27 (1) 4.9
WSARE 3.0 14.34 (6) 8.70 (2) 11.66 (8) 5.20 (2) 3.09 (10) 2.81 (1) 2.12 (6) 1.21 (3) 0.68 (1) 0.40 (2) 4.1

C1 (w = 56) 14.16 (4) 10.17 (9) 9.63 (1) 5.80 (11) 3.09 (9) 3.16 (9) 2.03 (3) 1.26 (7) 0.78 (9) 0.41 (10) 7.2
C2 (w = 56) 14.40 (7) 10.20 (11) 9.76 (2) 5.80 (10) 3.09 (11) 3.15 (8) 2.01 (2) 1.27 (8) 0.79 (10) 0.41 (8) 7.7
C3 (w = 56) 13.83 (1) 11.01 (12) 10.95 (5) 5.65 (8) 3.08 (8) 3.52 (12) 2.25 (10) 1.40 (11) 0.81 (11) 0.41 (8) 8.6
Bayes (w = 56) 13.84 (2) 9.87 (8) 9.91 (4) 5.30 (5) 2.85 (5) 2.94 (4) 1.98 (1) 1.32 (10) 0.89 (12) 0.44 (11) 6.2
RKI (w = 56) 14.17 (5) 9.64 (5) 9.86 (3) 5.24 (3) 2.91 (6) 3.19 (10) 2.12 (7) 1.23 (4) 0.69 (2) 0.40 (5) 5.0

It can be seen that all the algorithms perform almost equally well. In general, the out-
breaks of rarer disease patterns are easier to detect by the algorithms, with the exception
of scenario 2. The good results for scenario 2 can be explained by the lower standard
deviation of the monitored syndrome, which indicates that the counts of that syndrome are
more stable. This in turn results in fewer false positives, enabling the algorithms to better
detect the outbreak.

Contrary to the results in the non-specific syndromic surveillance setting, the Poisson
distribution seem to work much better than the Gaussian or Negative Binomial distribution.
Moreover, we were surprised that the algorithms based on Fisher’s test obtain the best
results, because this test is usually not used for specific syndromic surveillance. If we
compare the results of specific and non-specific syndromic surveillance, we conclude that
different distributions should be used depending on the setting at hand.

Sensitivity of Statistical Tests

We have again evaluated the influence of over-sensitive statistical tests by varying the
minimum value parameters σmin, λmin, and µmin for all scenarios. The results can be seen
in Figure 8 where the x-axis depicts the value for the minimum parameter, the y-axis the
scenario, and the color the value of the OAUC measure.

The plots of the Poisson and Negative Binomial benchmark show similar results
when varying the minimum parameter. In particular, by adapting the λmin parameter,
we effectively set a minimal value for the mean as it is done with the µmin parameter
for the Negative Binomial distribution which explains the similarities of the results in
the variation of these parameters. However, there is a clear gap between both OAUC
score tables which can be explained by the ability of the Negative Binomial distribution to
adapt to overdispersion. This statistical effect might be caused for instance by seasonality,
or superspreading events, and different infectious diseases might be more or less prone
to it. When surveilling a set of syndromes with different properties simultaneously, the
adaptation to overdispersion leads to p-values which are better comparable between the
different syndromes. This makes the Negative Binomial distribution generally preferable
over the Poisson distribution for the scenario of non-specific syndromic surveillance.
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Figure 8. Visualization of the influence of σmin, λmin and µmin parameter for the benchmarks.

However, the results also reveal the limitations in adapting to all syndromes simultane-
ously. A closer look at the results of the Negative Binomial benchmark shows a correlation
between the value for the minimum parameter and the original frequency of the syndrome
which was chosen in order to inject the artificial outbreaks. More specifically, the best result
for a particular syndrome is achieved when the value for the µmin parameter is close to
the respective mean. This effect is reasonable since the sensitivity of all statistical tests on
syndromes which actually have a lower mean is dampened by assuming a higher mean,
while we maintain the sensitivity for the statistical test with which the outbreak can be
detected. In particular, we reduce the number of false positives without reducing the ability
to detect the outbreak. In contrast, if the value for the minimum parameter is higher than
the mean of the syndrome which is responsible for the outbreak, we hinder the ability to
detect the outbreak for which reason we obtain worse results again.

A similar behaviour can be observed for the Gaussian benchmark with the difference
that we achieve the best performance for the syndromes whose standard deviations are
closest to the value for the σmin parameter. Moreover, we can observe that small values
for the σmin parameter do not work at all. In order to explain the reason for that behavior,
we have visualized the results of scenarios 8 and 9 of the Gaussian benchmark in Figure 9,
which depicts the results of the AAUC5% measure for different values for the σmin parameter
with respect to the outbreak size. It can be seen that for values σmin < 1.3, the AAUC5%
results cannot obtain the optimal value of zero anymore, even if the outbreak size continues
to increase. A closer look at this phenomenon reveals that such a low σmin causes that
non-outbreak days obtain a p-value of 0 due to the inclusion of very sensitive tests and
numerical problems. A clear separation between these non-outbreak days and the outbreak
day is impossible, resulting in a value above 0 for the AAUC5% measure. This problem can
be solved by increasing the precision of the computed p-values or by reducing the number
of statistical tests which are monitored at the same time.
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Figure 9. Visualization of the influence of σmin parameter for the Gaussian benchmark.

We conclude that the minimum parameter has a major influence on the ability to detect
outbreaks and can be used to deliberately put the focus on a particular type of syndromes.
In general, we could obtain the best results with the Negative Binomial distribution when
properly configured.

7. Conclusions

In this work, we gave an overview about non-specific syndromic surveillance from the
perspective of machine learning. Our main contribution is a unifying framework for this
task based on two modeling strategies: global modeling solves the problem of outbreak
detection with a single model, whereas local modeling breaks down the problem into many
smaller, local tasks, which are executed independently and whose predictions eventually
have to be aggregated into an overall prediction. In addition, we redefine previously
proposed approaches to non-specific syndromic surveillance within this framework. This
framework also allows us to define simple local modeling strategies based on statistical
approaches, which essentially monitor all possible syndromes of the given data source at
the same time.

The second main contribution of this work is an extensive empirical evaluation and
experimental comparison of previously proposed algorithms as well as our newly proposed
simple local modeling benchmarks. The experimental results on synthetic and real data
show that these benchmarks already achieve competitive results or even outperform more
elaborate approaches that have been previously proposed in the literature. Especially in
the setting where multiple tests on count data are performed simultaneously, monitoring
all possible syndromes with Negative Binomial distributions improves over all other
approaches. Moreover, on heterogeneous data sources, simple window-based approaches
can further improve the performance by adapting to concept drift. In general, the evaluated
global modeling algorithms have problems in detecting significant changes for rare disease
patterns and therefore perform worse than the local modeling approaches. However, the
performance of the local modeling algorithms is limited by the total number of local tasks
executed simultaneously, and suffers from the problem of multiple hypothesis testing.

This work can be seen as a foundation for non-specific syndromic surveillance and
our proposed simple statistical approaches can serve as benchmarks for future works.
As potential directions, the set of specific syndromic surveillance methods applied in the
setting of non-specific syndromic surveillance can be enhanced since their results seem
promising and these methods are already designed for outbreak detection. In particular,
based on the statistical properties of the monitored syndromes, different methods could be
used simultaneously. Furthermore, an interesting avenue for future work is the inclusion
of geo-spatial information, which has not been addressed in detail in this work.
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40. Novak, P.K.; Lavrač, N.; Webb, G.I. Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern

and subgroup mining. J. Mach. Learn. Res. 2009, 10, 377–403.

http://dx.doi.org/10.1073/pnas.0335026100
http://dx.doi.org/10.1186/1472-6947-3-2
http://www.ncbi.nlm.nih.gov/pubmed/12542838
http://dx.doi.org/10.1186/1471-2458-8-18
http://www.ncbi.nlm.nih.gov/pubmed/18201388
http://dx.doi.org/10.3201/eid1005.030646
http://www.ncbi.nlm.nih.gov/pubmed/15200820
http://dx.doi.org/10.1016/j.annemergmed.2004.03.030
http://www.ncbi.nlm.nih.gov/pubmed/15332065
http://dx.doi.org/10.3201/eid0903.020363
https://emergency.cdc.gov/surveillance/syndromedef/pdf/syndromedefinitions.pdf
http://dx.doi.org/10.1191/1471082X05st098oa
http://dx.doi.org/10.1002/sim.2818
http://dx.doi.org/10.1007/s10618-015-0448-4
http://dx.doi.org/10.1016/j.puhe.2014.05.007
http://www.ncbi.nlm.nih.gov/pubmed/25065517
http://dx.doi.org/10.1155/2018/2185704
http://dx.doi.org/10.5210/ojphi.v6i1.5164
http://dx.doi.org/10.1016/j.jbi.2004.11.007
http://dx.doi.org/10.1145/1541880.1541882
http://www.ncbi.nlm.nih.gov/pubmed/12791783
http://dx.doi.org/10.1023/A:1011429418057


Computers 2021, 10, 32 31 of 31

41. Wrobel, S. An algorithm for multi-relational discovery of subgroups. In European Symposium on Principles of Data Mining and
Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 1997; pp. 78–87.

42. Poon, H.; Domingos, P. Sum-product networks: A New Deep Architecture. In Proceedings of the 27th Conference on Uncertainty
in Artificial Intelligence (UAI), Barcelona, Spain, 14–17 July 2011; pp. 337–346.

43. Jensen, F.V. An Introduction to Bayesian Networks; UCL Press: London, UK, 1996; Volume 210.
44. Duivesteijn, W.; Feelders, A.J.; Knobbe, A. Exceptional model mining. Data Min. Knowl. Discov. 2016, 30, 47–98. [CrossRef]
45. Li, S.C.X.; Jiang, B.; Marlin, B. Misgan: Learning from incomplete data with generative adversarial networks. arXiv 2019,

arXiv:1902.09599.
46. Gao, J.; Tembine, H. Distributed mean-field-type filters for big data assimilation. In Proceedings of the 2016 IEEE 18th International

Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, NSW, Australia, 12–14 December 2016;
pp. 1446–1453.

47. Brossette, S.; Sprague, A.; Hardin, J.; Waites, K.; Jones, W.; Moser, S. Association Rules and Data Mining in Hospital Infection
Control and Public Health Surveillance. J. Am. Med. Inform. Assoc. 1998, 5, 373–381. [CrossRef] [PubMed]

48. Wong, W.K.; Moore, A.; Cooper, G.; Wagner, M. What’s Strange About Recent Events (WSARE): An Algorithm for the Early
Detection of Disease Outbreaks. J. Mach. Learn. Res. 2005, 6, 1961–1998.

49. Amrhein, V.; Greenland, S.; McShane, B. Scientists rise up against statistical significance. Nature 2019, 567, 305–307. [CrossRef]
50. Knobbe, A.; Crémilleux, B.; Fürnkranz, J.; Scholz, M. From local patterns to global models: The LeGo approach to data mining. In

Workshop Proceedings: From Local Patterns to Global Models (Held in Conjunction with ECML/PKDD-08); Utrecht University: Antwerp,
Belgium, 2008; Volume 8, pp. 1–16.

51. Heard, N.A.; Rubin-Delanchy, P. Choosing between methods of combining-values. Biometrika 2018, 105, 239–246. [CrossRef]
52. Vial, F.; Wei, W.; Held, L. Methodological challenges to multivariate syndromic surveillance: A case study using Swiss animal

health data. BMC Vet. Res. 2016, 12, 288. [CrossRef]
53. Lindquist, M.A.; Mejia, A. Zen and the art of multiple comparisons. Psychosom. Med. 2015, 77, 114. [CrossRef]
54. Leek, J.T.; Storey, J.D. A general framework for multiple testing dependence. Proc. Natl. Acad. Sci. USA 2008, 105, 18718–18723.

[CrossRef]
55. Faryar, K.A. The Effects of Weekday, Season, Federal Holidays, and Severe Weather Conditions on Emergency Department Volume in

Montgomery County, Ohio; Wright State University: Dayton, OH, USA, 2013.
56. Hilbe, J.M. Modeling Count Data. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2011;

pp. 836–839.
57. Fisher, R.A. Statistical Methods for Research Workers, 5th ed.; Oliver and Boyd: Edinburgh, UK; London, UK, 1934.
58. Salmon, M.; Schumacher, D.; Höhle, M. Monitoring count time series in R: Aberration detection in public health surveillance. J.

Stat. Softw. 2016, 70, 1–35. [CrossRef]
59. Fricker, R., Jr.; Hegler, B.; Dunfee, D. Comparing syndromic surveillance detection methods: EARS’ versus a CUSUM-based

methodology. Stat. Med. 2008, 27, 3407–3429. [CrossRef] [PubMed]
60. Bédubourg, G.; Le Strat, Y. Evaluation and comparison of statistical methods for early temporal detection of outbreaks: A

simulation-based study. PLoS ONE 2017, 12, e0181227. [CrossRef]
61. Hutwagner, L.; Browne, T.; Seeman, G.; Fleischauer, A. Comparing aberration detection methods with simulated data. Emerg.

Infect. Dis. 2005, 11, 314–316. [CrossRef] [PubMed]
62. Riebler, A. Empirischer Vergleich von Statistischen Methoden zur Ausbruchserkennung bei Surveillance Daten. Bachelor’s

Thesis, Department of Statistics, University of Munich, Munich, Germany, 2004.
63. Fawcett, T.; Provost, F. Activity monitoring: Noticing interesting changes in behavior. In Proceedings of the 5th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15–18 August 1999; pp. 53–62.
64. Gonzales, C.; Torti, L.; Wuillemin, P.H. aGrUM: A Graphical Universal Model framework. In Proceedings of the 30th International

Conference on Industrial Engineering, Other Applications of Applied Intelligent Systems, Arras, France, 27–30 June 2017;
pp. 171–177.

65. Raschka, S. MLxtend: Providing machine learning and data science utilities and extensions to Python’s scientific computing
stack. J. Open Source Softw. 2018, 3, 638. [CrossRef]

66. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

67. Fernandes, S.; Fanaee-T.H.; Gama, J. The Initialization and Parameter Setting Problem in Tensor Decomposition-Based Link
Prediction. In Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo,
Japan, 19–21 October 2017; pp. 99–108. [CrossRef]

68. Gräff, I.; Goldschmidt, B.; Glien, P.; Bogdanow, M.; Fimmers, R.; Hoeft, A.; Kim, S.C.; Grigutsch, D. The German version of the
Manchester Triage System and its quality criteria–first assessment of validity and reliability. PLoS ONE 2014, 9, e88995. [CrossRef]

http://dx.doi.org/10.1007/s10618-015-0403-4
http://dx.doi.org/10.1136/jamia.1998.0050373
http://www.ncbi.nlm.nih.gov/pubmed/9670134
http://dx.doi.org/10.1038/d41586-019-00857-9
http://dx.doi.org/10.1093/biomet/asx076
http://dx.doi.org/10.1186/s12917-016-0914-2
http://dx.doi.org/10.1097/PSY.0000000000000148
http://dx.doi.org/10.1073/pnas.0808709105
http://dx.doi.org/10.18637/jss.v070.i10
http://dx.doi.org/10.1002/sim.3197
http://www.ncbi.nlm.nih.gov/pubmed/18240128
http://dx.doi.org/10.1371/journal.pone.0181227
http://dx.doi.org/10.3201/eid1102.040587
http://www.ncbi.nlm.nih.gov/pubmed/15752454
http://dx.doi.org/10.21105/joss.00638
http://dx.doi.org/10.1109/DSAA.2017.83
http://dx.doi.org/10.1371/journal.pone.0088995

	Introduction
	Syndromic Surveillance
	Overview of Prior Work in Syndromic Surveillance
	Data for Syndromic Surveillance
	Relation to Data Mining and Machine Learning

	Non-Specific Syndromic Surveillance
	Problem Definition
	Modeling
	Global Modeling
	Local Modeling


	Machine Learning Approaches to Non-Specific Syndromic Surveillance
	Data Mining Surveillance System (DMSS)
	What Is Strange about Recent Events? (WSARE)
	Eigenevent

	Basic Statistical Approaches to Non-Specific Syndromic Surveillance
	Parametric Distributions
	Syndromic Surveillance Methods

	Evaluation
	Evaluation Setup
	 Evaluation Measures
	 Parameter Configurations
	 Additional Baselines
	 Implementation

	Experiments on Synthetic Data
	Data
	Results

	Experiments on Real Data
	Data
	Evaluation Process
	Configuration of the Algorithms
	Results


	Conclusions
	References

