
computers

Article

A Geometric Approach to Noisy EDM Resolution in FTM
Measurements †

Jerome Henry 1,* , Nicolas Montavont 2, Yann Busnel 2 , Romaric Ludinard 2 and Ivan Hrasko 3

����������
�������

Citation: Henry J.; Montavont N.;

Busnel Y.; Ludinard R.; Hrasko I. A

Geometric Approach to Noisy EDM

Resolution in FTM Measurements.

Computers 2021, 10, 33. https://

doi.org/10.3390/computers10030033

Academic Editors: Anna Maria Vegni,

Marc Kurz and Chunxiao Jiang

Received: 31 January 2021

Accepted: 9 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cisco Systems, Research Triangle Park, NC 27560, USA
2 IMT Atlantique, IRISA, 35510 Cesson-Sévigné, France; nicolas.montavont@imt-atlantique.fr (N.M.);

yann.busnel@imt-atlantique.fr (Y.B.); romaric.ludinard@imt-atlantique.fr (R.L.)
3 Cisco Systems, 821 09 Bratislava, Slovakia; ihrasko@cisco.com
* Correspondence: jerhenry@cisco.com; Tel.: +1-919-508-7894
† This paper is an extended version of our paper published in 16th Wireless and Mobile Computing,

Networking And Communications (WiMob 2020).

Abstract: Metric Multidimensional Scaling is commonly used to solve multi-sensor location problems
in 2D or 3D spaces. In this paper, we show that such technique provides poor results in the case of
indoor location problems based on 802.11 Fine Timing Measurements, because the number of anchors
is small and the ranging error asymmetrically distributed. We then propose a two-step iterative
approach based on geometric resolution of angle inaccuracies. The first step reduces the effect of poor
ranging exchanges. The second step reconstructs the anchor positions, starting from the distances
of highest likely-accuracy. We show that this geometric approach provides better location accuracy
results than other Euclidean Distance Metric techniques based on Least Square Error logic. We also
show that the proposed technique, with the input of one or more known location, can allow a set of
fixed sensors to auto-determine their position on a floor plan.

Keywords: FTM; fine timing measurement; 802.11; mMDS; euclidean distance metric; multidimen-
sional scaling

1. Introduction

With Global Positioning System (GPS) augmented with fusion techniques (cellular
trilateration, dead reckoning, etc.), outdoor location has become a reality on a large part of
the planet. Location is more challenged indoor. The ability for a personal device (phone,
tablet) to display the user location is useful, but GPS availability is often limited indoor.

1.1. FTM Approach to Indoor Location

Alternative techniques have been sought for decades. Among them, 802.11-2016 [1]
Fine Timing Measurement (FTM), expanded in the 802.11az amendment, defines a pro-
cedure for indoor location tracking based on Wi-Fi ranging. Wi-Fi is massively deployed
all over the planet. With common spectrum available worldwide, more than 16 billion
devices in use and more than 4 billion new supporting devices shipped each year, accord-
ing to the Wi-Fi Alliance, it is expected than any personal device (phone or tablet) would
support Wi-Fi, and that Wi-Fi would be available in about any public place, anywhere.
As such, a location method relying on Wi-Fi technologies has all the chances of seeing a
large adoption, and is therefore of high interest. With FTM, an initiating station (ISTA)
exchanges frames with a responding station (RSTA) and uses the times of the exchanges to
deduce its own position relative to the RSTA. Specifically, after negotiating the exchange
parameters, ranging measurements operate through bursts. At the beginning of each burst,
the RSTA sends a frame (at time t1) that reaches the ISTA at time t2. The ISTA sends an
acknowledgement frame at time t3, that reaches the RSTA at time t4. In the subsequent
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frame, the RSTA communicates the t1 and t4 values. The ISTA can now compute the time
of flight of the exchange and its distance d to the RSTA by a simple:

d =
(t4 − t1)− (t3 − t2)

2
× c (1)

where c refers to the speed of light. This computation is only valid if a number of conditions
are met:

1. The drift in timestamp measurement at the RSTA is linear. The RSTA provides a
time value for its frames, but a clock time difference between the ISTA and the
RSTA is inconsequential as only (t4 − t1) is considered (thus the interval between the
associated frames, not the local time at which each value was measured), removing
the need for synchronized clocks. However, a difference in drift rate between the
RSTA and ISTA clocks may cause the (t4 − t1) and (t3 − t2) intervals to be counted at
different tic speeds [2], leading to time and therefore range imprecision.

2. Each side can measure accurately the time of arrival (ToA) and the time of departure
(ToD) of each frame. This time is measured as the arrival (or departure) at the antenna
of the beginning of the first training symbol (the beginning of the frame preamble).
As the part of the system that measures time is not located in the physical antenna,
each system needs to be calibrated to account for the delay between the antenna and
the time measurement module. This calibration is usually done in Line of Sight (LoS)
conditions. Different factors (temperature, noise, etc.) may render this calibration
only partially accurate, thus resulting in larger estimated distances than the ground
truth [3].

3. Measurements are done in LoS conditions. The distance between the ISTA and the
RSTA should be a straight line. If the considered signal is instead a reflection, then
distance accuracy is lost. 802.11az includes mechanisms to detect Line of Sight vs
non-Line-of-Sight (nLoS) signals. 802.11-2016 FTM does not include such mechanism,
causing in some cases the receiver to associate the ToA with the first strong reflected
component instead of the weaker primary LoS component. In some other scenarios,
the signal traverses a strong obstacle where c is different than in the air. With a
technique where each nanosecond represents a travelled distance of approximately a
foot (30 cm), such mismatch can contribute to ranging inaccuracies in a measurable
way.

All these elements play a role in ranging accuracy and need to be accounted for, as
will be shown in this work.

Once computation of the range to multiple RSTAs has been completed, the ISTA only
knows its distance to a set of anchors, but does not know its location. FTM allows the RSTA
to send its Location Configuration Information (LCI) to the ISTA, a geo-position and height
element which content follows a format defined in RFC 6225 [4].

1.2. The Challenges of FTM for Indoor Location and this Article Contribution

The FTM procedure introduces the very problem that it aims to solve. Outdoor, Global
Positioning System (GPS) technologies provide location information to mobile devices in
most environments where LoS to GPS satellites can be established. Indoor, GPS becomes
difficult to use for the same reason and devices cannot reliably establish their geo-position
anymore. But FTM supposes that RSTAs, positioned indoor, can be configured with their
correct geo-position. A common assumption is that these RSTAs would be Wi-Fi access
points (APs). In fact, any other type of 802.11 device could support the RSTA function
(digital signage, printers, Wi-Fi cameras, etc.). We will call all these objects sensors for
simplicity. In most cases, these sensors would be positioned at a static location (or a
location that changes only occasionally). Yet configuring their geo-position is difficult.
These objects typically do not include a GPS sensor. Even if they would, GPS is challenged
indoor. Many implementers are left with manual and time consuming techniques, where
the geo-positions of points at the edge of the building are fist established (using mobile
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devices GPS functions outside, or high-resolution reference aerial pictures), then high
precision ranging techniques (laser, Ultra Wide Band, etc.) are used to finally come to an
evaluation of each sensor position and location. The process has to be reiterated each time
an RSTA is moved or added.

Yet, as soon as the geo-position of one or more device is known, this paper shows
that the other sensors can use FTM to self-locate one another, considerably simplifying
the deployment of an FTM-ready infrastructure. Solving this problem implies seeding the
system with one or more initial positions, which is trivial and can be achieved with a mobile
device ranging to one or more RSTAs from outside the building. The solution also implies
solving the issue of self-positioning, where the various anchors can reliably establish their
respective position based on noisy environments. Thus, the contributions of this article
are as follows: noting that pairwise FTM distance noise is not symmetrical, this paper first
proposes to reduce the noise by identifying its contribution to geometric distortion of the
triangles formed by AP sets, in a phase called Wall Remover. By identifying the effect of
inner walls of FTM exchanges between AP pairs, this phase allows for the reduction of the
effect of walls on FTM measurements. In a second phase, a recursive examination of all
possible Euclidean distance matrices is conducted, to identify the anchors least affected
by noise. By combining standard EDM techniques with geometric projections, this phase
allows the selection of the best sub-matrices (least effected by remaining measurement
noises) to compute the positions of anchors which are most likely to be accurate. From
their position, the location of all other anchors is computed, leading to a better position
accuracy than EDM resolution techniques alone.

An early version of this work was presented in [5]. In this article, we deepen our proof
and extend the applicability of the method to different types of buildings. The rest of this
article is organized as follows: Section 2 briefly examines possible techniques to augment
GPS for indoor location. Section 4 details the general problem space of noisy Euclidian
matrix completion. Section 5 explains our approach, with an asymmetry reduction phase
and an algebro-geometric approach. Section 6 presents numerical validation through
experimental measurements, and compares the accuracy of our proposed method to other
classical Euclidean Distance Matrix (EDM) resolution methods. Section 7 concludes this
paper.

2. Related Work

Outdoor location based on GPS can commonly provide accuracy down to a meter or
less [3]. When nearing a building, the accuracy gets diluted as the building hides some GPS
satellites from view [6]. Different augmentation techniques were proposed to limit this
issue. For example, Liu et al. [7] proposed using detection of the building and comparison
with publicly available aerial imagery to revert to meter precision. Other authors propose
to use the known degradation pattern of the signal [8,9] to adjust the location calculation.
Our measurements in this paper show that accuracy can be maintained at a sub-meter level
in many cases, even near buildings. This will prove useful, as the method proposed in this
paper uses outdoor GPS measurements as a final seed to reorient the graph formed by APs
having computed their relative positions (but not knowing the position of the graph in
the building). Indoor however, GPS accuracy depends heavily on the building structure
(windows, floor size and plan etc.). In some scenarios, location can be obtained [7], but
in most, the signal is lost. Other technologies are then commonly used to deploy anchors
with known positions and perform measurements (signal or distance) against them [10,11].
FTM, studied in this paper, is one of such technologies.

Although FTM is intended for indoor location, the technology allows a mobile device,
still outside and detecting GPS satellites, to range and seed its location to one or more
indoor RSTAs. The idea of seeding GPS measurements from outdoor to indoor systems is
not new, and has for example been studied in [12] and [13]. Once they have ranged to an
initial known outdoor location , these RSTAs could range to one another and determine
their relative position. Such task falls into the general domain of sensor location in a noisy
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environment. This field has been explored widely in multiple contexts, as it represents
the need for several systems to evaluate their distance to one another, thus building a
distance matrix, and then resolving the inconsistencies between measurements. In wireless
technologies, the distance can be evaluated with a variety of techniques (time of flight
measurements, signal estimations), but most of them are noisy, resulting in an imperfect, or
incomplete, distance matrix. Resolving such matrix is a complex problem, which challenges
are summarized in [14]. Ref [15] provides an overview of the main resolution techniques.
In the particular case of sensor location, [16] shows that the problem can be convex if the
dimension space is known, which is often the case for RSTAs in FTM (but not when using
FTM alone, as we will show). An approach close to ours, to reduce the problem with
sub-matrix spaces, is detailed in [7], although the proposed method is strictly algebraic
(while we propose a geometric component). As the distances are organized in a matrix,
algebraic approaches are natural. Some authors, like Doherty and al. [17], explore geometric
resolutions in scenarios where link directionality matters. We will show that the addition
of learning machine can considerably enhance the resulting accuracy.

3. Multidimensional Scaling (MDS) Background

This work focuses on FTM exchanges between fixed points. In this context, Wi-Fi
access points and other static devices (e.g., digital signage) can be configured to play
the role of ISTAs and RSTAs, alternating between one and the other and ranging to one
another over time. As the points are fixed, and as each ranging burst takes a few hundreds
of milliseconds (e.g., a burst of 30 exchanges would consume about 250 ms in good RF
conditions), a large number of samples can be taken (e.g., a burst per minute represents
43,200 samples per 24-hour period). This flexibility allows for obtaining ranges between
pairs far apart, and for which only a few exchanges succeed. From all exchanges, only the
best (typically smallest) distance is retained, as will be seen later. The output of these FTM
measurements is a network of n > 0 nodes, among which 0 ≤ p ≤ n nodes have a known
position.

The measured distance between these nodes can be organized in a matrix that we
will note D̃. Conceptually, the set is similar to any other noisy Euclidean Distance Matrix
(EDM). The set contains an exhaustive table of distances d̃ij, ∀i, j ∈ 1, . . . , m between points
taken by pairs from a list of 0 < m ≤ n points x in N dimensions (xi and xj ∈ RN for
any point xi). Each point is labelled ordinally, hence each row or column of an EDM, i.e.,
∀(i, j) ∈ J0; mK2, individually addresses all the points in the list. The main task of the
experimenter is then to find the dimension N and construct a matrix of distances that
on one hand best resolves the noise (which causes inconsistencies between the various
measured pairs), and on the the other hand is closest to the real physical distances between
points, called ground truth, and which matrix is noted D. Such task is one main object of
Multidimensional Scaling (MDS).

MDS draws its origin from psychometrics and psychophysics. MDS considers a
set of n elements and attempts to evaluate similarities or dissimilarities between them.
These properties are measured by organizing the set elements in a multi-dimensional
geometric object where the properties under evaluation are represented by distances
between the various elements. MDS thus surfaces geometrical proximity between elements
displaying similar properties in some dimension of an RN space. The properties can be
qualitative (non-metric MDS, nMDS), where proximity may be a similarity ranking value,
or quantitative (metric MDS, mMDS), where distances are expressed. This paper will focus
on mMDS.

Two main principles lie at the heart of mMDS: the idea that distances can be converted
to coordinates, and the idea that during such process dimensions can be evaluated. The
coordinate matrix X is an n ∗ N object, where each row i expresses the coordinate of the
point i in N dimensions. Applying the squared Euclidean distance equation to all points
i and j in X (Euclidean distance dij(X), which we write dij for simplicity) allows for an
interesting observation:
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d2
ij(X) = d2

ij =
N

∑
a=1

(xia − xja)
2 =

N

∑
a=1

(x2
ia + x2

ja − 2xiaxja) (2)

Applying this equation to the distance matrix D, noting D(2) the squared distance
matrix for all dij, c an n× 1 column vector of all ones, xa the column a of matrix X, noting
e a vector that has elements ∑N

a=1 x2
ia, and writing A′ the transpose of any matrix A, the

equation becomes:

D(2) = ec′ + ce′ − 2
N

∑
a=1

xax′a = ec′ + ce′ − 2XX′. (3)

This observation is interesting, in particular because it can be verified that the diagonal
elements of XX′ are ∑N

a=1 x2
ia, i.e., the elements of e. Thus, from X, it is quite simple to

compute the distance matrix D. However, mMDS usually starts from the distance matrix
D, and attempts to find the position matrix X, or its closest expression U. This is also FTM
approach, that starts from distances and attempt to deduce location. As such, mMDS is
directly applicable to FTM.

Such reverse process is possible, because one can observe that D, being the sum of
scalar products of consistent dimensions, is square and symmetric (and with only positive
values). This observation is intuitively obvious, as D expresses the distance between all
point pairs, and thus each point represents one row and one column in D. These properties
are very useful, because a matrix with such structure can be transformed in multiple ways,
in particular through the process of eigendecomposition, by which the square, positive and
symmetric matrix B of size n× n can be decomposed as follows: B = QΛQ′, where matrix
Q is orthonormal (i.e., Q is invertible and we have Q−1 = Q′) and Λ is a diagonal matrix
such that ∀(i, j) ∈ J1; nK, λi,j = 0∀i 6= j and λii 6= 0. Values λii, ∀i ∈ J1; nK of Λ are the
eigenvalues of B. Eigenvalues are useful to find eigenvectors, which are sets of individual
non-null vectors ui that satisfy the property: Bui = λiui, i.e., the direction of ui does not
change when transformed by B.

In the context of MDS, this decomposition is in fact an extension of general properties
of Hermitian matrices, for which real and symmetric matrices are a special case. A square
matrix B is Hermitian if it is equal to its complex conjugate transpose B∗, i.e., B = B∗.

In terms of the matrix elements, such equality means that ∀(i, j) ∈ J1; nK, bij = bji. A
symmetric MDS matrix in RN obviously respects this property, and has the associated
property that the matrix can be expressed as the product of two matrices, formed from
one matrix U and its transpose U′, thus B = UU′. Because this expression can be found,
B is said to be positive semi-definite (definite because it can be classified as positive or
negative, positive because the determinant of every principal submatrix is positive, and
positive semi-definite if 0 is also a possible solution). A positive semi-definite matrix has
non-negative eigenvalues.

This last property is important for mMDS and for the FTM case addressed in this
paper. As Bij = Bji can be rewritten as (B−λi I)ui = 0, it follows that non-null eigenvectors
are orthogonal. As such, the number of non-null eigenvalues is equal to the rank of the
matrix, i.e., its dimension. This dimension is understood as the dimension of the object
studied by MDS. With FTM, this outcome determines if the graph formed by APs ranging
once another is in 2 dimensions (e.g., all APs on the same floor, at ceiling level) or in 3
dimension (e.g., APs on different floors). In a real world experiment, B is derived from
D̃ and is therefore noisy. But one interpretation of the eigendecomposition of B is that it
approximates B by a matrix of lower rank k, where k is the number of non-null eigenvalues,
which can then represent the real dimensions of the space where B was produced. This is
because, if qi is the i-th column vector of Q (and therefore q′i the i-th row vector of Q′), then
B = QΛQ′ can be written as:
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B = [λ1q1 λ2q2 . . . λnqn]


q′1
q′2
...

q′n

 (4)

And thus

B = λ1q1q′1+λ2q2q′2+ · · ·+ λnqnq′n (5)

Therefore, if n − k eigenvalues are 0, so is their individual λjqjq′j product, and an
image of B can be written as:

C = λ1q1q′1+λ2q2q′2+ · · ·+ λkqkq′k (6)

C and B have the same non-null eigenvectors, i.e., C is a submatrix of B restricted to
the dimension of B’s non-null eigenvalues. In noisy matrices, where distances are approxi-
mated, it is common that all eigenvalues will be non-null. However, the decomposition
should expose large eigenvalues (i.e., values that have a large effect on found eigenvectors)
and comparatively small eigenvalues (i.e., values that tend to reduce eigenvectors close to
the null vector). Small eigenvalues are therefore ignored and considered to be null values
that appear as non-zero because of the matrix noise.

An additional property listed above is that positive semi-definite matrices only have
non-negative eigenvalues. In the context of MDS, this is all the more logical, as each
eigenvector expresses one dimension of the RN space. However, noisy matrices may
practically also surface some negative eigenvalues. The common practice is to ignore them
for rank estimation, and consider them as undesirable but unavoidable result of noise.
We will apply the same principles for measurements obtained with FTM. However, it is
clear that the presence of many and/or large negative eigenvalues is either a sign that the
geometric object studied under the MDS process is not Euclidian, or that noise is large,
thus limiting the possibilities of using the matrix directly, without further manipulation.

Therefore, if from Equation (3) above, one defines B = XX′, then an eigendecomposi-
tion of B can be performed as B = QΛQ′. As scalar product matrices are symmetric and
have non-negative eigenvalues, one can define Λ1/2 as a diagonal matrix with diagonal
elements λ1/2

i . From this, one can write B = (QΛ1/2)(QΛ1/2)′ = UU′. The coordinates
in U differ from those in X, which means that they are expressed relative to different
coordinate systems. However, they represent the geometric object studied by MDS with the
same dimensions and scale. Thus, a rotation can be found to transform one into the other.

With these transformations, mMDS can convert a distance matrix into a coordinate
matrix, while estimating the space dimension in the process. Thus, classical mMDS starts
by computing, from all measured distances, the squared distance matrix D̃(2) =

[
d̃ij2
]
. The

measured distance matrix D̃ is also commonly called, in MDS in general, the proximity
matrix, or the similarity matrix. Next, a matrix called the centering matrix J is computed,
that is in the form J = In − 1

n cc′ where c is an n× 1 column vector of all ones. Such matrix
is a set of weights which column or row-wise sum is twice the mean of the number of
entries n. This matrix has useful properties described in [18]. In particular, applied to D̃, it
allows the determination of the centered matrix B = − 1

2 JD̃(2) J, which is a transformation
of D̃ around the mean positions of d̃ij ∈ RN . This can be seen as follows:

−1
2

JD̃(2) J = −1
2

J(ec′ + ce′ − 2XX′)J (7)

= −1
2

Jec′ J − 1
2

Jce′ J +
1
2

J(2B)J (8)

By transposing J into the expression, it can easily be seen that, as e′ J = 0 and Je = 0:
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− 1
2

JD̃(2) J = B (9)

At this point, the distance matrix is centered. This phase has a particular importance
for the method proposed in this paper, because we will see below that its direct effect is to
dilute the noise of one pair into the measurements reported by other pairs, thus causing
mMDS to fail in highly asymmetric measurements like FTM. mMDS then computes the
eigendecomposition of B = QΛQ′. Next, the experimenter has the possibility to decide
of the dimensions of the projection space (R2 orR3 in our case, but the dimension can be
any m ∈ N in mMDS). This can be done by arbitrarily choosing the m largest eigenvalues
λ1, λ2, . . . , λm and their corresponding eigenvectors of B. This choice is useful when the
experimenter decides to project the distance matrix into m dimensions, and has decided of
what value m should be. Alternatively, the experimenter can observe all eigenvalues in
B and decide that the dimension spaceRm matches all m large positive eigenvalues in B,
ignoring the (comparatively) small positive eigenvalues, along with the null and negative
eigenvalues as detailed in the previous section.

Then, if we write Λm the matrix of these m largest positive eigenvalues, and Qm the
first m columns in Q (thus the matrix of eigenvalues matching the dimensions decided by
the experimenter), the coordinate matrix is determined to be U = QmΛ1/2

m .

4. Problem Space Framework
4.1. mMDS Limitations in FTM Measurements

We note that mMDS is a family of techniques, with multiple possible variations, but
all of them abide by the general core principles expressed in the previous section. These
principles present properties of great value for multiple distance applications, but also
three unsolvable limitations for indoor measurements like FTM: pairwise asymmetry is
ignored, dimension space cannot be determined, and as the errors are centered, location
accuracy is always typically poor. This section examines these issues in turn.

4.1.1. Pairwise Asymmetry

Although FTM does build a square distance matrix D̃, the FTM distance matrix
displays several specific properties. One such property is asymmetry. In most cases,
measurements are unidirectional, one side acting as the initiator, the other as the responder.
In the case of static anchors, the roles can be inverted at the conclusion of each exchange.
The process repeats for each sensor pair. These exchanges are affected by localities. As the
measurements are collected in a noisy environment, they suffer from the side effects of
multipath. Although most sensors attempt to determine the first signal to establish the line
of sight (and therefore shortest distance), it is common that strong multipath may drown
that signal to a point where the receiver identifies the first strong reflection as the first
signal. In an environment where the position of reflective surfaces cannot be predicted,
such effect may affect differently each receiver. As a consequence, the initial distance matrix
set is asymmetric, where, for many pairs, d̃ij 6= d̃ji.

If obstacles or reflection sources are static (e.g., walls), such asymmetry cannot be
resolved by continuous measurements or by averaging over a long period (asymmetry
persists). In an implementation where FTM sensors are calibrated (i.e., where the computed
distance in line of sight is close to, but never less than, the ground truth), a simple corrective
measure consists to only consider the smaller value for each reported pair distance, thus
allowing d̃ij = d̃ji = min(i,j){d̃ij, d̃ji}.

4.1.2. Dimension Determination

This approximation solves single pair distance inequalities, but indoor measurements
surface another type of asymmetry. As illustrated in Figure 1, indoor walls are local objects.
As the signal passes through a wall, it can be slowed down enough to induce an increased
travel time between the ISTA and the RSTA, and thus a measured distance d̃ij dilated by
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a factor kij (compared to the ground truth dij) different than the dilation for another pair,
between which a wall would not be found, and thus, for 3 APs i, j and l:

d̃ij

dij
6=

d̃jl

djl
6= d̃il

dil
(10)

Algebraically, a similar dilation factor k for all measured distances would be ideal and
would make the dilation easy to resolve. Each measured distance would then be a simple
(dilated) single scalar representation of the ground value matrix. As:

D̃ =

 d̃11 . . . d̃1n
. . . . . . . . .

d̃n1 . . . d̃nn

 =

kd11 . . . kd1n
. . . . . . . . .

kdn1 . . . kdnn

 = k

d11 . . . kd1n
. . . . . . . . .

dn1 . . . dnn

 = kD (11)

Then D̃ would be a simple homothetic transformation of D, and our only task would
be to find the scalar k, the dilation factor. But in real measurements, noise is not linear and
each d̃ij is affected by a different dilation. Finding individual kij values becomes challenging,
even if we reduce the scope by half by making the hypothesis that dij = dji = min{dij, dji}
as above (thus considering that the smallest distance is likely closest to the true LoS
distance), and thus that kij = k ji. This geometry of the indoor space results in two additional
major difficulties when attempting to use mMDS.

Figure 1. Directionality of measurement errors.

The first difficulty relates to dimension definition. FTM measurements are collected
either in 2 dimensions (all APs or sensors at the same level, e.g., at ground or ceiling level
on the same floor) or 3 dimensions (multi-floor scenario). One task is therefore to determine
the dimensions of the collection space, expecting 2 or 3 as a result. However, the inter-
ference locality expressed before results in different inaccuracies between measurements.
This problem is difficult to resolve. A common MDS approach in this case is to let the
experimenter decide of the dimensions, then use the least square error technique to project
the matrix in the assigned Rn space. But this approach is only valid if the experimenter
knows a priori the dimension n. In an indoor setting where RF travels in all directions and
where distances are only measured by time of flight, such an arbitrary decision puts an
unacceptable burden of knowledge on the FTM experimenter. Without knowing a priori
kij, the determination of the vertical component of a set of sensors is only possible if kij
happens to be small relative to dij.

This constraint can easily be understood with the geometric representation of an
example. Suppose 4 sensors. A plane is defined by three non-collinear points. As such, any
set of 3 sensors x1, x2 and x3 will define a plane u, v and their distance matrix will surface 2
positive eigenvalues. Adding a fourth sensor x4 introduces two possibilities: the additional
sensor will either be on the plane (or close to it), or away from the plane (thus indicating
n = 2 or n = 3, and thus a three dimensional space u, v, w) as shown in Figure 2.
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Figure 2. Plane determination from AP sub-sets.

Thus, if we note dij the distance between points i and j, ui the component of point
xi along the u axis, and vi and wi its components along the v and w axis respectively, it is
possible that w4 = w1 = w2 = w3 = 0, bringing x4 to the plane defined by x1, x2 and x3.
Quite naturally, in a multi-storey building, it could also happen that x1, x2 and x3 are on
different floors, forming a plane that is not parallel to the ground (and x4 could be yet on
a third floor). However, as will be seen below, this scenario does not apply in the case of
FTM, as the signal from one sensor would not be detected across two floors.

However, FTM does not provide d12, d13, d14, d23, d24 and d34, but d̃12, d̃13, d̃14, d̃23, d̃24
and d̃34. Determining the dimension of the linear span of {x1, x2, x3, x4} is congruent to
computing w4. As d̃14 = k14d14, and therefore, considering a evaluated distance matrix
reduced to the pair (x1, x4), then the matrix B14 obtained after double centering becomes:

B14 = −1
2

JD̃2
14 = −1

2
k14 JD2

14 (12)

And the simple resolution to U shows that:

d̃14 = ‖k14d14‖2

= k14‖d14‖2

=
√
(k14u4 − k14u1)2 + (k14v4 − k14v1)2 + (k14w4 − k14w1)2

(13)

If w1 = 0 to inscribe x1 onto the plane defined by x1, x2, x3, then:

k2
14w2

4 = k2
14((d14)

2 − (u4 − u1)
2 − (v4 − v1)

2) (14)

And naturally:

w2
4 = k2

14d2
14 − d′214 = d′214(k− 1) (15)

Even if x1, x2, x3, x4 ∈ R2, any imprecision in the measurement of d̃14 generates a
dilation k14 that is directly translated into a non-null w4 proportional to k14 ≥ 1. In an
environment where vertical separation is often considerably less than horizontal separation,
an unknown pairwise kij soon prevents the resolution of N ∈ RN . For example, in
a deployment where APs or sensors are positioned every 20 to 25 meters and floors
(including slabs and isolation) are 4 meters apart, a measurement of d̃14 = 25 prevents
the experimenter from determining if d14 = 25 and w4 = 0 or if 20 ≤ d14 ≤ 24.68 and
4 ≤ w4 ≤ 15, if k14 cannot deterministically be determined to be 1.2 or lower.

In the case of Wi-Fi ranging, this issue is easily solved with Received Signal Strength
Indicator (RSSI) evaluations and LoS path loss equations. But we postulate that time
of flight techniques alone cannot solve this issue unless k is consistent across all dij and
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estimated precisely. As will be demonstrated below, such quantization and uniformization
of k is possible, but the experimenter cannot know if the dilation is due to a wall or the
material separating two floors.

mMDS does introduce the idea of different dilation values with several possible
techniques, commonly centered around the idea of defining a cost function, often called
the strain or stress function. Such function is defined for example in [19] as

σ(D) =
n

∑
i 6=j 6=k=1

wijk(εijk − d̃ij)
2

where εijk is an ideal distance set between the points i, j and k, given the observed measure-
ment d̃ij, and wijk is a weight used to express the relative importance or precision of a given
measurement d̃ij. This relative importance does not aim at resolving dilation asymmetries.
In fact, the resolution to U can take several iterative forms around mechanisms all aiming
at minimizing the cost function σ(D). In all cases, the choice of wijk is critical, as it can be
different for each d̃ij. However, in most cases, wijk is modulated based either on confidence
indices (wijk is high for d̃ij known to be close to the ground truth) or on point criticality
(wijk is high for i and j being anchors important to the problem to solve, e.g., connection
points to other networks etc.), not on dilation asymmetries. Other MDS techniques proceed
with similar logic, with the general idea that distances may be noisy, but the noise being
unknown, it can be considered as Gaussian, i.e., symmetric in most directions. Regardless
of the method chosen, both the minimization and the double centering techniques tend,
as noted in [20], to center the points along the mean of the error, and therefore to center
the error. However, in the case of FTM (and probably multiple other time-of-flight-based
distance estimation techniques), the noise is not Gaussian throughout the matrix.

4.1.3. Error Averaging

This last point causes the third additional difficulty. mMDS only considers the posi-
tive eigenvalues. This is a necessary requirement of the distance-to-coordinate resolution
process, which needs the coordinate U to be derived from a centered matrix B eigende-
composition (B = QΛQ′ described in the previous section). Through this process, the
coordinate matrix U is found as U = QΛ1/2. To maintain Λ in R (i.e., ensure that such
matrix does not have a complex part), and working on the principle that the number of
eigenvalues reflects the object dimension, (Λ1/2)2 needs to have an expression solely in R
(i.e., no complex part). This requirement means that negative eigenvalues are ignored.

However, as displayed in Table 1, real world FTM measurements typically produce
through the mMDS process multiple large positive eigenvalues, but also, sometimes large,
negative eigenvalues. As demonstrated in [20], B is an approximation of XX’, because it is
built from D̃, not from D. As a consequence, writing R = [rij] = B− XX′ and ||R||2F the
square of R Frobenius norm, and tr(R) its trace, [20] shows that the resulting coordinates
estimation error can be found to be:

L(X) = 2n
n

∑
i=1

r2
ii + 2(tr(R))2 + 4||R||2F (16)

This result shows that the error increases as the difference between dij and d̃ij increases.
It is also easily seen that the mMDS process centers the error. This issue can easily be seen
through a simple example. Suppose a simple measured distance matrix with 3 points, each
distance being affected by a specific kij dilation factor:

d̃3 =

 0 k12d12 k13d13
k12d12 0 k23d23
k13d13 k23d23 0

 (17)
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Table 1. Building 1—Matrix of ground truth distances and related eigenvalues.

Device 1 2 3 4 5 6 7 8 9 10 11 12 13 Eigenvalues

1 0 2086 4183 5632 1430 3655 5262 2452 3275 4387 3295 5564 6702 5.6797× 107

2 2086 0 2135 3581 1704 1999 3414 3734 2895 3187 3722 4242 5150 2.1831× 107

3 4183 2135 0 1470 3362 1312 1564 5278 3405 2582 4672 3137 3579 42,674

4 5632 3581 1470 0 4789 2475 1442 6650 4543 3310 5875 3352 3221 34,379

5 1430 1704 3362 4789 0 2507 4135 2045 1875 3007 2200 4182 5375 28,945

6 3655 1999 1312 2475 2507 0 1623 4218 2118 1407 3422 2275 3156 27,480

7 5262 3414 1564 1442 4135 1623 0 5749 3404 1978 4750 1920 2033 21,641

8 2452 3734 5278 6650 2045 4218 5749 0 2504 4118 1530 5172 6490 5206.5

9 3275 2895 3405 4543 1875 2118 3404 2504 0 1605 1345 2670 3987 5.8021× 10−9

10 4387 3187 2582 3310 3007 1407 1978 4118 1605 0 2892 1175 2415 −10,435

11 3295 3722 4672 5875 2200 3422 4750 1530 1345 2892 0 3825 5153 −11,658

12 5564 4242 3137 3352 4182 2275 1920 5172 2670 1175 3825 0 1318 −46,289

13 6702 5150 3579 3221 5375 3156 2033 6490 3987 2415 5153 1318 0 −1.1762× 105

In this simple configuration:

J =

 3
4 − 1

4 − 1
4

− 1
4

3
4 − 1

4
− 1

4 − 1
4

3
4

 (18)

And thus:

B = − 1
16


−3k2

12d2
12 − 3k2

13d2
13 + k2

23d2
23 5k2

12d2
12 − k2

13d2
13 − k23d2

23 −k2
12d2

12 + 5k2
13d2

13 − k2
23d2

23

5k2
12d2

12 − k2
13d2

13 − k2
23d2

23 −3k2
12d2

12 + k2
13d2

13 − 3k2
23d2

23 −k2
12d2

12 − k2
13d2

13 + 5k2
23d2

23

−k2
12d2

12 + 5k2
13d2

13 − k2
23d2

23 −k2
12d2

12 − k2
13d2

13 + 5k2
23d2

23 k2
12d2

12 − 3k2
13d2

13 − 3k2
23d2

23

 (19)

From B, it can clearly be seen that dilation factors that affect a single distance pair in
D̃ are projected as weights for the computation of the centered matrix B, affecting all other
entries of B in the process. The weights, because of the structure of J, affect differently
the various pairs. The sum of the contribution of each dilation factor kij in B is now 1 for
each row or column where the factor was present in D̃ and −1 for each row or column
where the factor was not present. Overall, the contribution in B is reflective of the overall
contribution in D̃. However, centering the matrix also has the effect of distributing the
dilation factors, and thus distributing individual dilation factors.

The outcome of such distribution is that a single large dilation factor will then affect
the computed position of all points in U, thus distributing the error to all positions. In a
distance setting where the noise is Gaussian across all sensors, this distribution has only
minor effects. However, in settings, like indoor location with FTM, where noise asymmetry
is present, and where accuracy depends on identifying the RF interference localities and the
associated dilation differences between pairs, mMDS, used alone, can provide an acceptable
result, but that will always be worse than quality LoS measurements. As a consequence,
highly dilated distance pairs get hidden in the transformation, and precise measurements
get degraded by the contribution of dilated pairs.

Therefore, there is a need for a method that can identify and compensate for the highly
dilated segments, to attempt to reduce their dilation before they are injected in a method,
such as mMDS, where all segment contributions are treated equally.
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5. Materials and Methods
5.1. First Component: Wall Remover-Minimization of Asymmetric Errors

One first contribution of this paper is a method to reduce dilation asymmetry. Space
dimension is resolved using other techniques (e.g., RSSI-based), and Section 6 will provide
an example. Once the dimension space has been reduced to R2 and only sensors on
the same floor, we want to reduce the dilation asymmetry. Figure 1 illustrates a typical
asymmetry scenario. In this simplified representation, a strong obstacle appears between
the sensor x1 and sensors x6, x7 and x8, causing the distances d(x6, x1), d(x7, x1) and
d(x8, x1) to be appear as d(x6, x′1), d(x7, x′′1 ) and d(x8, x′′′1 ) respectively. At the same time,
supposing that the system is calibrated properly and LoS conditions exist elsewhere, the
obstacle does not affect distance measurements between x1 and x2, x3, x4, x5 and x9, that
are all approximated along the same linear dilation factor k.

In such case, using a centering technique to average the error may make sense al-
gebraically, but not geometrically. Finding a method to reduce the error while detecting
its directionality is therefore highly desirable. Luckily, geometry provides great methods
to this mean, that only have the inconvenience of requiring multiple comparisons. Such
process may be difficult when performing individual and mobile station ranging, but
becomes accessible when all sensors are static. When implemented in a learning machine,
this method can be implemented at scale and reduce the distance error only when it is
directional, thus outputting a matrix D̃ which k factor is closer to uniformity. It should be
noted that the purpose of such method should not be to fully solve the MDS problem, as
some pair-distances are usually not known, and the method has a limited scope (i.e., it
cannot assess some of the pairs, as will be seen below). However, in many cases, sensors
can be found that display interesting properties displayed on the left part of Figure 3. In this
scenario, 3 sensors x1, x2 and x3 are selected that form a triangle. The triangle represented
in the left part of Figure 3 is scalene, but the same principle applies to any triangle. A
fourth sensor x4 is found which distance to x1, x2 and x3 is less than d12, d13 or d23, thus
placing x4 within the triangle formed by (x1, x2, x3).

Figure 3. Sensor geometric relationship.

A natural property of such configuration is that δ1 + δ2 + δ3 = 2π and, in any of the
triangles (x1, x2, x4), (x1, x3, x4) or (x2, x3, x4), one side can be expressed as a combination of
the other two and of its opposite angle. For example, d24 in (x1, x2, x4) can be expressed as:

d2
24 = d2

12 + d2
14 − 2d12d14cos(α1) (20)

The above easily allows us to find d24 and can also be used to determine angles from
known distances, for example δ1, knowing that:

cos(δ1) =
d2

14 + d2
24 − d2

12
2d14d24

(21)
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Therefore, angles and missing distances can be found from known distances. In an
ideal world, properties (20) and (21) are verified for each observed triangle
((x1, x2, x3), (x1, x2, x4), (x2, x3, x4) and (x1, x3, x4)). In a noisy measurement scenario, in-
consistencies are found. For example, an evaluation of the triangle (x1, x2, x4) may be
consistent with the left side of Figure 3, but an evaluation of triangle (x1, x3, x4) may
position x4 in the hashed representation x′4 of the right part of Figure 3. It would be alge-
braically tempting to resolve x4 as the middle point between both possibilities (mean error).
However, this is not the best solution. In Figure 3 simplified example, the most probable
reason for the inconsistency is the presence of an obstacle or reflection source between
x3 and x4. If all distances are approximations, some of them being close to the ground
truth and some of them displaying a larger k factor, a congruent representation of such
asymmetry is that k is larger for x4x3 than it is for the other segments. Quite obviously,
other possibilities can be found. For example, in the individual triangle (x1, x2, x4), it is
possible that k is larger for the segments d12 than it is for segments d24 and d14. However,
as x4x3 is compared to other segments and the same anomaly repeats, the probability that
the cause is an excessive stretch on x4x3 increases.

As the same measurements are performed for more points, the same type of inconsis-
tency appears for other segments. Thus an efficient resolution method is to identify these
inconsistencies, determine that the distance surfaced for the affected segment is larger than
a LoS measurement would estimate, then attempt to individually and progressively reduce
the distance (by a local contraction factor that we call 0 < ζij ≤ 1), until inconsistencies are
reduced to an acceptable level (that we call γ).

Thus, formally, a learning machine that we call a geometric Wall Remover engine, is
fed with all possible individual distances in the matrix, and compares all possible iterations
of sensors forming a triangle and also containing another sensor. Distance matrices do not
have orientation properties. When considering (x1, x4, x3) for example, x4 can be found
on either side of segment x1x3, and the solution can also be a triangle in any orientation.
However, adding a fourth point (x2), which distance to x4 is evaluated, can constrain
x4 within the (x1, x2, x3) triangle. As the evaluation proceeds iteratively throughout all
possible triangles that can be formed from the distance matrix, the system first learns
to place the sensors relative to each other. The resulting sensor constellation can have
globally any orientation, but the contributing points partially appear in their correct relative
position.

Then, each time a scenario matching the right side of Figure 3 is found, the algorithm
learns the asymmetry and increases the weight w of the probability p that the matching
segment (x3x4 in this example) has a dilated kij factor (cf. Algorithm 1). As a segment may
be evaluated against many others, its w may accordingly increase several times at each
run. The algorithm starts by evaluating the largest found triangles first (sorted distances
from large to small), because they are the most likely to be edge sensors. This order is
important, because in Figure 3 example, a stretched x2x4 value may cause x4 to be graphed
on the right side of segment x1x3, and thus outside of (x1, x2, x3). This risk is mitigated if
multiple other triangles within (x1, x2, x3) can also be evaluated. An example is depicted
by Figure 4. In this simplified representation (not all segments are marked), the position of
x4 is constrained by first evaluating (x5, x4, x7), (x5, x4, x10), (x10, x4, x12) and (x7, x4, x12)
against (x5, x10, x7), (x5, x10, x12), (x5, x7, x12) and (x10, x7, x12). This evaluation allows the
system to surface the high probability of the stretch of segment x4x7, suggesting that x4
should be closer to x7 than the measured distance d̃x4x7 suggests, but not to the point of
being on the right side of x1x3. The system can similarly detect a stretch between points x3
and x8 (but not between x7 and x8 or x10 and x3).
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Algorithm 1: Wall Remover Algorithm
Input : ε: learning rate

γ: acceptable error range
Output : optimized dij

1 // convert D̃ ∈ R2 to pairwise distance list dij
2 dij[i, j, distij]← dist2list(D̃) ;
3 // set a list of same length ζij of all ones
4 // set a list of same length wij of all ones
5 dij[i, j, distij, ζij, wij] := {dij, ζij, wij};
6 while true do
7 reverse_sort dij;
8 for dij > dik > djk > 0 do
9 find l : dil , djl, dkl 6= 0;

10 compute î jk, ĵki, k̂ij, î jl, ĵkl, k̂il;
11 if î jl > î jk ∨ ĵkl > ĵki ∨ k̂il > k̂ij then
12 find next l (l is outside (i,j,k));

13 if dil/
√

d2
ij + d2

jl − 2dijdjlcos(î jk− k̂jl) > 1 then

14 wil := wil + (dil/
√

d2
ij + d2

jl − 2dijdjl cos(î jk− k̂jl)− 1);

15 repeat along djl and dkl ;
16 next l;

17 foreach dij do
18 pij := 1/(1 + ewij ) ; // compute stretch probability:

19 reverse_sort pij;
20 tpij ← pick_top pij;
21 if tpij < γ then
22 break;

23 dij := dijε;
24 ζij := ζij − ε;

Figure 4. Stretch detection between x3 and x8.

At the end of the first training iteration, the system outputs a sorted list of segments
with the largest stretch probabilities (largest w and therefore largest p). The system then
picks that segment with that largest stretch, and attempts to reduce its stretch by proposing
a contraction of the distance by an individual ζij factor. The ζij factor can be a step increment
(similar to other machine learning algorithms learning rate logic) or can be proportional to
the stretch probability. After applying the contraction, the system runs the next iteration,
evaluating progressively from outside in, each possible triangle combination. The system
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then recomputes the stretch probabilities and proposes the next contraction cycle. In
other words, by examining all possible triangle combinations, the system learns stretched
segments and attempts to reduce the stretch by progressively applying contractions until
inner neighboring angles become as coherent as possible, i.e., until the largest stretch is
within a (configurable) acceptable range γ from the others.

This method has the merit of surfacing points internal to the constellation that display
large k factors, but is also limited in scope and intent. In particular, it cannot determine large
k factors for outer segments, as the matching points cannot be inserted within triangles
formed by other points. However, its purpose is to limit the effect on measurements of
asymmetric obstacles or sources of reflection.

5.2. Second Component: Iterative Algebro-Geometric EDM Resolution

The output of the wall remover method is a matrix with lower variability to the
dilation factor k, but the method does not provide a solution for an incomplete and noisy
EDM. Such reduction still limits the asymmetry of the noise, which will therefore also limit
the error and its locality when resolving the EDM, as will be shown below. Noise reduction
can be used on its own as a preparatory step to classical EDM resolution techniques. It can
also be used in combination with the iterative method we propose in this section, although
the iterative method has the advantage of also surfacing dilation asymmetries, and thus
could be used directly (without prior dilation reduction). Combined together, these two
techniques provide better result than standard EDM techniques.

EDM resolution can borrow from many techniques, which address two contiguous but
discrete problems: matrix completion and matrix resolution. In most cases, the measured
distance matrix D̃ has missing entries, indicating unobserved distances. In the case of FTM,
these missing distances represent out-of-range pairs (e.g., sensors at opposite positions
on a floor or separated by a strong obstacle, and that cannot detect each other). A first
task is to complete the matrix, by estimating these missing distances. Once the matrix
contains non-zero numerical values (except for the diagonal, which is always the distance
dii and therefore always 0), the next task is to reconcile the inconsistencies and find the best
possible distance combination.

Several methods solve both problems with the same algorithm and [21] provides a
description of the most popular implementations. We propose a geometric method, that
we call Iterative Algebro-Geometric EDM resolver (Algorithm 2), which uses partial matrix
resolution as a way to project sensor positions geometrically onto aR2 plane, then a mean
cluster error method to identify individual points in individual sets that display large
asymmetric distortions (and should therefore be voted out from the matrix reconstruction).
By iteratively attempting to determine and graph the position of all possible matrices for
which point distances are available, then by discarding the poor (point pairs, matrices)
performers and recomputing positions without them, then by finding the position of the
resulting position clusters, the system reduces asymmetries and computes the most likely
position for each sensor.

We want to graph the position of each point in the sub-matrix. A pivot x1 is chosen
iteratively in d̃m. In the first iteration, x1 = i1, then x1 = i2 in the second iteration, and
x1 = im in the last iteration. For each iteration, x1 is set as the origin, and x1 = (0, 0). An
example is displayed in Figure 5. The next point x2 in the matrix (i2) is iteratively set along
the x-axis, and x2 = (d̃x1x2 , 0). If m > 2, then the position of each other point xi of the set
{x1, x2, xi} is found using standard triangular formula illustrated by the points in Figure 5
and where:

uxi =
xix2

2 − x1x2
i − x1x2

2
−2x1x2

(22)

and
vxi =

√
x1x2

i − u2
xi

(23)
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Algorithm 2: Iterative algebro-geometric EDM resolution algorithm

Input : D̃m∗m ∈ R2

1 for i from 1 to m− 1: do
2 generate all D̃i∗(i+1) to D̃i∗(m−i) matrices;

3 remove each dij = 0 from each matrix;
4 remove any D̃1∗1 matrix;
5 for generated D̃n∗n do
6 p = q = 1;
7 for o = 1 to n do
8 plot xo = (0, 0);
9 plot xo+p = (dop, 0);

10 xo+q = (uo+q, vo+q);

11 uo+q = (
xo+q x2

o+p− xo x2
o+q−xo x2

o+p
−2xo xo+p

, );

12 vo+q = (
√

xox2
o+q − u2

xo+q );

13 if dxo+q−1xo+q > vo+q then
14 vo+q := −vo+q;
15 next q;
16 next p, compute p̂−1op and rotate new plot onto previous plot coordinates;
17 next o, compute do−1o and translate new coordinates into previous reference;

18 for each point do
19 compute cluster center position;

20 for each cluster do
21 compute σ;

22 for all clusters do
23 compute average σ;

24 record this initial σ;
25 for each cluster do
26 record any point 2σ or more from cluster center;

27 select farthest point of all;
28 if point was an anchor (o or p) then
29 mark matching matrix as invalid;
30 else
31 select next farthest point;
32 go back to plotting all remaining matrices;
33 when no anchor is outlier anymore, remove all non-anchor outliers;
34 compute cluster means for remaining points;

Figure 5. Geometric representation of a set of 3 points in a submatrix.

Formally, the measured distance matrix D̃ of n sensor distances is separated in sub-
matrices. Each sub-matrix d̃m contains 2 ≤ m ≤ n points for which inter-distances were
measured, so that:

∀2 ≤ m ≤ n and ∀i, j ∈ d̃m, d̃ij > 0 (24)
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Such formula fixes the position of xi above the u-axis (because vxi is always positive).
This may be xi’s correct position in the sensor constellation in some cases, but can also
result in an incorrect representation as soon as the next point xj is introduced in the graph.
A simple determination of the respective positions of xi and xj can be made by evaluating
their distances, as in the wall remover method. In short, if dxixj > vxi , then xi and xj are on
opposite sides of the u-axis and vcj becomes −vcj .

As the process completes within the first matrix, the position of m points are deter-
mined using the first pair of points x1 and x2 as the reference. In the next iteration, x1 is kept
but x2 changes from i2 to i3. Algebraically, the first iteration determines the positions based
on the pairwise distances expressed in the first 2 columns of the distance matrix, while
the second iteration determines the positions based on the pairwise distances expressed in
the first and third columns. Both results overlap for the first 3 points x1, x2 and x3, but not
for the subsequent points. This can be easily understood with an example. Recall that for
any pair of points i and j, dij = dji. Using dij as a representation of both dij and dji, and the
following small matrix of 5 points as an example:

D̃5 =



0 d̃12 d̃13 d̃14 d̃15

d̃12 0 d̃23 d̃24 d̃25

d̃13 d̃23 0 d̃34 d̃35

d̃14 d̃24 d̃34 0 d̃45

d̃15 d̃25 d̃35 d̃45 0


(25)

The first iteration ignores d̃34 and d̃35 that are represented in the second iteration (but
the second iteration does not represent d̃24 or d̃25).

As in the second iteration i3 is used as a reference point for the x axis, the geometrical
representations of the first and the second iterations are misaligned. However, x1 is at
the origin in both cases, and x2 is represented in both graphs (we note them x2 and x′2).
Using Equation (22), finding the angle (α) formed by the points x2x1x′2 is straightforward,
and projecting the second matrix into the same coordinate reference as the first matrix is a
simple rotation of the second matrix, defined by T as:

In the subsequent iterations, x1 ceases to be at the origin. Depending on the sub-matrix
and the iteration, x1 may or may not be in the new matrix. However, 2 points i = (ui, vi)
and j = (uj, vj) can always be found that are common to both the previous matrix d̃p and
the next matrix d̃n. Projecting d̃n into the same coordinate reference as d̃p is here again
trivial, by first moving the coordinates of each point found from d̃n by proj(ui) = uipn − uipp

and proj(vi) = vipn − vipp then perform a rotation using Equation (22). These operations
are conducted iteratively. As measured distances are noisy, for each point represented in D̃,
different coordinates appear at the end of each iteration, thus surfacing for each point a
cluster of computed coordinates. Figure 6 represents this outcome after 4 iterations over a
5-point matrix and x1(0, 0) fixed about the first point.

Figure 6. Graphing points in a 5 × 5 matrix using the geometric approach.
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The effect of projection and rotation makes that the red and green points are overlap-
ping in x4, and the green and orange point are overlapping in x5. The choice to determine
which points should be used to project d̃n onto d̃p is sequentially obvious, but arbitrary
otherwise. In the example displayed in Figure 6, x6 instead of x2 could have been chosen
to project iteration green onto iteration red etc. A reasonable approach could be to com-
pute iteratively, another one to compute all possible combinations, a third approach is to
compute the mean of the positions determined for a point as the best representation of
the likely position of a given point for a given iteration. The second method is obviously
more computationally intensive, but provides a higher precision in the final outcome. As
a cluster of positions appears for each point, representing the computed position of each
sensor, asymmetries and anomalies can here as well be surfaced. All points associated
with a sensor form a cluster, which center can be determined by a simple mean calculation,
where for each cluster center µi = (xµi ,yµi ) and m associated points:

uµi =
∑m

j=1 uj

m
(26)

And

vµi =
∑m

j=1 vj

m
(27)

T =

[
cosα sinα
−sinα cosα

][
u
v

]
(28)

Projections that are congruent will display points that are close to one another for a
given cluster. However, the graph will also display some representations that display a
large deviation. This deviation can be asymmetric. It is then caused by a dilation factor k
different for a sensor pair than for the others. In most cases, strong obstacles or reflection
sources may increase the dilation factor. The geometric wall remover method exposed
in the previous section of this work is intended to reduce such effect. As the algorithm
acts on the angles of adjacent triangles, it is more precise than this section of our proposed
method. However, it may happen that the dilation occurs among pairs than the geometric
wall remover cannot identify (for example because the pair is formed with sensors at the
edge of the constellation).

The deviation also surfaces matrices coherence. A coherent matrix contains a set of
distances displaying a similar dilation factor k. An incoherent matrix contains one or more
distance displaying a k factor largely above or below the others. For example, several
sensors may be separated from each other by walls, but be in LoS of a common sensor,
which will display a k factor smaller than the others. Such sensor is an efficient anchor, i.e.,
an interesting point x1(0, 0) or x2(d̃x1x2 , 0) for the next iteration. On the other hand, some
sensors may be positioned in a challenging location and display large inconsistencies when
ranging against multiple other sensors. The position of these sensors needs to be estimated,
but they are poor anchors for any iteration.

An additional step is therefore to identify good, medium and poor anchors and
discard all distances that were computed using poor anchors. The same step can identify
and remove outliers pairwise computed positions that deviate too widely from the other
computed positions for the same points), and thus accelerate convergence. For each cluster
i of m points for a given sensor, each at an Euclidian distance xiµi from the cluster center
µi, a mean distance to the cluster center can be expressed as:

ri =
∑m

j=1 |xj − µi|
m

(29)

where ri thus expresses the mean radius of the cluster. By comparing radii between clusters,
points displaying large ri values are surfaced. Different comparison techniques can be
used for such comparison. We found efficient the straightforward method of using the
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2σ rule, where a cluster which radius is more than 2 standard deviations larger than all
clusters mean radii is highlighted as an outlier. The associated sensor therefore displays
unusually large noise in its distance measurement to the other sensors, and is therefore
a poor anchor. Matrices using this sensor as an anchor are removed from the batch and
clusters are recomputed without these sensors’ contribution as anchors. As the computation
completes, each cluster center is used as the best estimate of the associated sensor position.
By reducing the variance of the dilation factor k, by removing sub-matrices and sensor pairs
that bring poor accuracy contribution, this method outperforms standard EDM completion
methods whenRn is known, because it reduces asymmetries before computing positions,
but also because the geometric method tends to rotate the asymmetries as multiple small
3× 3 matrices are evaluated, thus centering the asymmetries around the sensor most likely
position.

6. Results
6.1. Experiment Methodology

We tested this method in five different buildings already equipped with Wi-Fi APs
providing active coverage. As the active APs do not support FTM, we position FTM devices
near each active AP (typically 15 cm, of half a foot, from each active AP position). Building
1 is a three-storey office building with cubicle areas alternating with blocks of small offices.
Our testbed is installed on the second floor. Building 1 is interesting, because the wall
structure is irregular, causing different reflection and absorption patterns for each AP pair.
The test floor is already equipped with 13 access points positioned at ceiling level. We
therefore positioned 13 FTM stations at ceiling level, one near each AP, as represented in
Figure 7.

Figure 7. Building 1 experimental setup.
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Building 2 is also an office building with 30 APs, with denser sitting density than
building 1 and where zones of open space alternate with strong obstacles. Similarly to
building 1, one FTM device is positioned 15 cm (1/2 foot) away from each existing AP, as
represented in Figure 8.

Figure 8. Building 2 experimental setup.

Building 3 is a large open space building with partial high ceilings, used as an enter-
prise restaurant. It presents high peaks of user and Wi-Fi traffic alternating with no activity.
This traffic pattern allows us to evaluate the effect of traffic (or lack thereof) on ranging
accuracy. Additionally, the building structure makes that AP height is not consistent
throughout the floor, thus presenting an interesting geometry. Building 3 is represented in
Figure 9. High-ceiling APs are represented by upside down icons. In this setting, all APs
are the same model and use omnidirectional antennas. Thus, the only difference between
APs is their height, 3.2 meters for standard ceiling heights, and 7.3 meters for high ceiling
APs. Our FTM devices are positioned near each AP as in the previous buildings.

Building 4 is a warehouse, with metallic racks, high ceilings and some APs mounted
with directional antennas. An office space is present in the upper right corner of the
building. High ceiling APs use omnidirectional antennas and are positioned on poles
hanging from the ceiling, between 6.4 and 8.1 meters above the ground. On the side of the
aisles, some APs are mounted at 3.4 meters height and equipped with directional patch
antennas, as represented in Figure 10. For our experiments, we use these antennas to
evaluate the effect of directionality.
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Figure 9. Building 3 experimental setup.

Figure 10. Building 4 experimental setup.

Building 5 is a training center with small to medium-sized classrooms. It presents
an interesting denser wall structure (as walls separate the classrooms). As represented in
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Figure 11, each classroom has its own AP in the center. The dense (hashed) non-accessible
technical area at the center makes that APs on one side do not detect APs on the other side.

Figure 11. Building 5 experimental setup.

For the main presentation of this section, we will focus on building 1 as the main
example, and will highlight the other buildings when they present interesting variations.
In all cases, our FTM devices are Linux systems equipped with Intel 8260 cards enabled
for FTM. In the rest of this section, we will refer to AP-to-AP distances and measurements,
although it should be clear that the FTM device associated to each AP was used to oper-
ate the measurement. Ground truth distances are known and confirmed with floorplan
blueprint and onsite laser ranging. The FTM devices can be configured to act as ISTAs or
RSTAs. The system is left active for two days (with the exception of the warehouse, where
the system is left active for 6 hours, so as to minimize the disruptions to the warehouse
operations). Every hour, the system wakes up, and each station is randomly affected the
role of ISTA or RSTA. Each ISTA ranges against the detected RSTAs on various channels
for 10 minutes and logs the result. At the end of the collection phase, the logs of all stations
are collected and injected into the learning machine.

This duration was chosen to ensure that collection would happen both at quiet times
(at night, with no user is in the building) as well as during busy day times. Although
daytime measurements do show larger collision and retry counts, no significant difference
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could be observed in ranging accuracy. It is therefore likely that the system could only
be left active for a shorter duration and yet obtain convergence. Mobile stations are also
walked around the building, to determine locations where ranging to indoor APs would
be possible. From left entrance and stairs, APs 01, 08 and 11 are reachable. From the main
entrance (bottom), APs 11, 09, 10 12 and 13 are reachable. From the right entrance and
stairs, APs 13, 07 and 04 are reachable as can be seen in Figure 12.

Figure 12. Detectability of RSTAs from outside the building.

The purpose of the outdoor mobile stations is to serve as a seed for an initial GPS
position communicated to the APs in range of the station. One key determinator is the
accuracy of the GPS value seeded by the mobile station. GPS accuracy utilities are installed
on different phones. As GPS position is computed, the operator clicks the real location,
based on high resolution aerial maps, and the system outputs the error of the computed
GPS estimation. As displayed in Figure 13, the error is commonly within half a meter.
Inside the building, accuracy collapses (not represented here).

Figure 13. GPS measurement accuracy near the experimental building.

An examination of the distance matrix for all APs (measured through their associated
FTM devices) shows high noise. Table 1 displays the ground truth (real distances) and
Table 2 the distances obtained via FTM measurements, after applying the dij = dji =
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min{dij, dji} simplification. The ground truth 13 ∗ 13 matrix surfaces 9 positive eigenvalues,
because measurements suffered from natural scale and rounding inaccuracies. However,
only 2 of these eigenvalues are large, indicating a 2-dimensional geometrical object. The
measured FTM matrix, on the other hand, surfaces ‘only’ 7 positive eigenvalues, but all
of them are large. The first two eigenvalues are larger by a factor of 10 compared to the
others, but this factor is not sufficient to discount the other 5 large positive eigenvalues.

Table 2. Building 1—Distance matrix of FTM distances and related eigenvalues.

Device 1 2 3 4 5 6 7 8 9 10 11 12 13 Eigenvalues

1 0 2409 4363 6108 1454 4022 5501 2847 3936 4870 3471 6411 7610 8.4768× 107

2 2409 0 2266 3713 1894 2387 3959 4800 2971 3809 4732 4848 5734 4.1676× 107

3 4363 2266 0 1896 3624 1535 1969 7619 3520 2739 6702 3376 4514 4.3061× 106

4 6308 3713 1896 0 5273 3114 1582 9680 4880 4101 8321 3672 3557 3.969× 106

5 1454 1894 3624 5273 0 2712 4211 2813 2786 3467 2596 5166 6476 2.8132× 106

6 4022 2387 1535 3114 2712 0 1775 4796 2582 1620 4636 2734 3587 5.3881× 105

7 5501 3959 1969 1582 4211 1775 0 7472 4030 2717 6293 2241 2390 −2.037× 10−8

8 2847 4800 7619 9680 2813 4796 7472 0 2787 4218 1745 5481 6283 −28,396

9 3936 2971 3520 4880 2786 2582 4030 2787 0 2007 1880 2940 4246 −1.642× 105

10 4870 3809 2739 4101 3467 1620 2717 4218 2007 0 3345 1277 2649 −1.1989× 106

11 3471 4732 6702 8321 2596 4636 6293 1745 1880 3345 0 3842 5296 2.3985× 106

12 6411 4848 3376 3672 5166 2734 2241 5481 2940 1277 3842 0 1464 −3.4372× 106

13 7610 5734 4514 3557 6476 3587 2390 6283 4246 2649 5296 1464 0 −2.1794× 107

The measured FTM matrix generated from the other buildings present the same type
of difficulty. Building 2 (also office building, but with 30 APs), the matrix surfaces 9
large eigenvalues. In building 3 (restaurant with partial high ceiling), 6 large positive
eigenvalues are seen, obfuscating the fact that the deployment is three-dimensional. In
building 4 (partial high ceiling warehouse), 11 large engeinvalues are seen. In building 5, 3
large eigenvalues are seen (while all the APs are on the same plane). This last observation
may be caused by the strong obstacle in the center of the building, which reduces the
number of measurable distances (although 14 APs are deployed, no AP/ FTM device
has measurable distance to more than 8 other APs (FTM devices); i.e., throughout the
matrix each AP has no measured distance to 8 to 11 APs). As such, it is clear that the
distance matrix alone is not sufficient to assert the dimensionality of the space. However,
complementing with RSSI evaluation easily solves the issue. In building 1, another AP
(AP15) is positioned on the upper floor, above AP05, and another (AP16) above AP06. As
the ISTAs and RSTAs exchange at constant power (20 dBm), and although the RSSI is an
inaccurate representation of the received power, a simple linearization and comparison
between the distance computed by FTM and the expcted signal (in free path) at that
distance shows that AP15 signal to any AP systematically appears 12 to 28 dB below the
pairwise signal between these APs at equivalent distance. By contrast, AP16 to AP15 signal
appears 10 to 25 dB above the signal from AP16 to AP01 or AP07. This result immediately
indicates that AP15 and AP16 are on different floor from the others (and that both AP15
and AP16 are on the same floor). The same logic is applicable to the other buildings.

6.2. Geometric Wall Remover Phase

Table 3 displays the ratio between the mean of the measured distance and the ground
truth in building 1. Highlighted in yellow, orange and red the distances that the geometric
wall remover engine identifies as deviating from the others (small, medium or large
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identified deviation, respectively). Some devices are out of range from one another (e.g.,
device 1 against sensor 13) and are not addressed in this phase.

Table 3. Measured distances to ground truth ratios, and pairs identified by the geometric wall
remover method as “abnormal” in building 1.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.00 1.15 1.04 1.08 1.02 1.10 1.05 1.16 1.20 1.11 1.05 NaN NaN
2 1.15 0.00 1.06 1.04 1.11 1.19 1.16 1.29 1.03 1.20 1.27 1.14 1.11
3 1.04 1.06 0.00 1.29 1.08 1.17 1.26 NaN 1.03 1.06 NaN 1.08 1.26
4 1.08 1.04 1.29 0.00 1.10 1.26 1.10 Nan 1.07 1.24 NaN 1.10 1.10
5 1.02 1.11 1.08 1.10 0.00 1.08 1.02 1.38 1.49 1.15 1.18 NaN NaN
6 1.10 1.19 1.17 1.26 1.08 0.00 1.09 1.19 1.22 1.15 1.35 1.20 1.14
7 1.05 1.16 1.26 1.10 1.02 1.09 0.00 NaN 1.18 1.37 NaN 1.17 1.18
8 1.16 1.29 NaN NaN 1.38 1.19 NaN 0.00 1.11 1.02 1.14 1.06 1.00
9 1.20 1.03 1.03 1.07 1.49 1.22 1.18 1.11 0.00 1.25 1.40 1.10 1.06
10 1.11 1.20 1.06 1.24 1.15 1.15 1.37 1.02 1.25 0.00 1.16 1.09 1.10
11 1.05 1.27 NaN NaN 1.18 1.35 NaN 1.14 1.40 1.16 0.00 1.00 1.03
12 NaN 1.14 1.08 1.10 NaN 1.20 1.17 1.06 1.10 1.09 1.00 0.00 1.11
13 NaN 1.11 1.26 1.10 NaN 1.14 1.18 1.00 1.06 1.10 1.03 1.11 0.00

As can be seen, the geometric wall remover engine correctly identifies most incorrect
distances, except those affecting devices positioned at the edge of the floor. A geometric
illustration of this detection is represented in Figure 14, where stretches on AP6 position
are detected through measuring its distance to APs 1, 4 and 10.

Figure 14. Stretches detected for AP6 position.

At the scale of the entire floor, the method initially identified pairs highlighted in red
and orange in Table 3. A contraction factor ζ was applied to each of these outliers (the step
value of ζ was chosen to be static and small, set to 0.98). As more iterations were run, each
with an additional ζ applied to identified distance dilations, the yellow pairs surfaced as
abnormal. On the last iteration, the engine did not surface any more outlier, and the largest
deviation from the ground truth (for the flagged pairs) was brought down to 1.13. This
validation indicates that the geometric wall remover can correctly identify inner outliers
and reduce the associated error, without distorting the graph (over or under reduction).

Comparable display is visible in the other buildings. FTM devices near APs on
high ceiling display large distance stretches when ranging against devices near APs on
lower ceilings, but devices at the edge of both domains display LoS distances and link
both domains. The Geometric Wall Remover correctly identifies the high ceiling / low
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ceiling distant pairs as stretched, which a subset is illustrated in Figure 15. Here as well,
highlighted in yellow, orange and red the distances that the geometric wall remover
engine identifies as deviating from the others (small, medium or large identified deviation,
respectively). High ceiling APs are 1 to 4, APs in low ceiling are 11 to 15, in italic.

Figure 15. Measured distances to ground truth ratios, and pairs identified by the geometric wall
remover method as ‘abnormal’ in building 3, lower half.

6.3. Iterative Algebro-Geometric Phase

In this phase, we start with the largest possible matrix. Building 1 has 13 APs and
FTM devices, and with missing distance pairs (out-of-range APs), the system iteratively
finds that a matrix of size 9 starts allowing for multiple usable solutions to appear with
different individual pivots, as displayed in Figure 16 (left).

Figure 16. size 9 matrix positions (left), and size 8 matrix positions (right), before outlier filtering, in building 1.

Some points are used as pivots for all combinations in this iteration (and thus display
a single position). As the matrix size decreases, more combinations appear. As the pivots
change, noise also appears, as is visible in Figure 16 right, displaying the output of a matrix
of size 8.

The process repeats iteratively. With smaller matrices and more combinations, clusters
start to appear for each sensor, with various densities. In buildings 3 and 4, APs and
devices in individual zones (low ceiling or high ceiling) are in LoS condition to each other.
This is visible in Figure 17 (left), where a subset of building 3 is displayed (APs in the
upper left part of the building). Green circles represent LoS (same height) matrices, while
red crosses represent matrices with cross-height distances. The same density difference
can be seen in building 5 (Figure 17 right), where APs/devices on the same side of the
central block display close measurements (narrow clusters) while measurements through
the block, when they succeed, display large variations (larger clusters).
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Figure 17. Bldg. 3 (left, partial) and Bldg 5: position graph resulting from matrices built with APs in LoS (green circles) or
nLoS (red crosses).

Therefore, for any cumulated graph, cluster centers can be defined and the mean
cluster radius ri compared between clusters. Then, outliers (points more than 2σ away
from the cluster center) can be removed from each cluster, not only within each cluster
individually, but also for individual pairs, where deviation from the mean pair distance can
be used to identify matrix combinations that surface large individual error. As a matrix of
size m is used to compute positions, the position for each device is compared through each
iteration, and the difference between the coordinates found at each iteration can be graphed,
as shown in Figure 18 for building 1. As the matrix size gets smaller, the noise increases,
and so do deviations between computed positions, as can be seen on the right side of
Figure 18. We found that starting from matrices as large as possible was computationally
more efficient (as there are less large matrix combinations than small matrix combinations),
and that accurate location was found with matrix of 6 or more for building 1. Smaller
matrices only marginally improved the results, and the computation cost increased. The
same logic was observed for the other buildings, where matrices containing at least half
the floor devices (or more) produced better results.

Figure 18. device 9 position deviations with matrix of 6 (left) and matrix of 5 (right).
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After removing the outliers, each cluster center is re-computed. The final cluster
centers are displayed in Figure 19. Ground truth positions are green circles, the computed
cluster position for each device is represented as a red star. The maximum error is observed
at 1.1143 meter in building 1, 1.2194 meter in building 2, and 0.9621 meter in building 5. In
building 3 and 4, error is small in areas at the same height (0.7304 meter and 0.6812 meters
respectively). When treating the APs / devices at different height as different floor levels,
this result can be sufficient to move on to the next phase.

Figure 19. cluster center position computation (red star) vs ground truth position (green circles) in
Building 1.

At this stage, the relative device positions are estimated, but their orientation is not
known. However, using the ranging information from one or more mobile phones, walking
outside the building, to two or more FTM devices, and sending to the device the GPS
location of the mobile phone as seed, the graph can be rotated to its correct orientation and
the phone GPS location can be used to populate the LCI values of all devices on the graph
(and therefore all APs).

6.4. Comparison with Other Methods

Noisy EDM completion is a complex problem that has been explored in multiple
contexts. We will limit our comparison to the main methods listed in [21]. Naturally,
using classic MDS boils down to performing an eigenvalue decomposition and geometric
centering. As the matrix is noisy, the error is large. Additionally, the algorithm interprets
missing distances as 0 values, which introduces irreconcilable inconsistencies in the matrix
in all dimensions. The effect is worsened when the projection is constrained into R2.
This affect can be attenuated by constructing and overlapping partial matrices for which
distances are known [22]. Even in this case, the effect of asymmetry can be dire.

Many optimizations methods aim at finding missing elements from a matrix, but
that is assumed to be noiseless. This assumption is necessary to maintain convexity, with
the consequence of being unusable in our scenario. For incomplete and noisy matrices, a
classical solution is to use semidefinite relaxation. This technique has multiple variants
to adapt to different matrix sizes or sparsity scenarios, and both [22] and [23] are typical
illustration of the associated reasoning. In all cases, the goal is to bound the rank of the
Gram matrix to the target dimension space, thus constraining the number of positive and



Computers 2021, 10, 33 29 of 30

non-null eigenvalues. The process is efficient, especially for large matrices. As it proceeds
iteratively, it also has the virtue of minimizing the error. In buildings where measurements
errors are averaged over a large number of APs/FTM devices, the error may also be
simplified to Gaussian. However, FTM works with a limited number of devices, making
the limitation obvious. When the stretch is asymmetric, the error reaches a point where the
method is not usable anymore. Building 5 is a typical example, where a strong obstacle is
in the middle of the block, while light walls do not prevent the signal from reaching the
neighboring classes. The result of classical MDS projection for this building is visible in
Figure 20.

Figure 20. classical MDS projection (after rotation) in building 5.

7. Conclusions

We presented a method to solve noisy Euclidian distance matrices (EDM). We showed
that in the case of sensor time-of-flight measurements, measured distances are dilations of
ground truth distance, but that the dilations are asymmetric, thus rendering classical EDM
methods generally inaccurate, as they tend to assume noisy symmetry and therefore tend to
center the error. We propose a machine learning method for identifying and reducing noise
asymmetry based on evaluation of angles within overlapping triangles. We then propose a
second machine learning method, aimed at graphing the positions of sensors derived from
distance sub-matrices, and at identifying and removing combinations that surface excessive
distances, thus progressively removing edge asymmetries and reducing the distance errors.
We show that this method outperforms standard EDM resolution methods.
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