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Abstract: Structural health monitoring (SHM) is a promising technique for in-service inspection of
technical structures in a broad field of applications in order to reduce maintenance efforts as well as
the overall structural weight. SHM is basically an inverse problem deriving physical properties such
as damages or material inhomogeneity (target features) from sensor data. Often models defining
the relationship between predictable features and sensors are required but not available. The main
objective of this work is the investigation of model-free distributed machine learning (DML) for
damage diagnostics under resource and failure constraints by using multi-instance ensemble and
model fusion strategies and featuring improved scaling and stability compared with centralised
single-instance approaches. The diagnostic system delivers two features: A binary damage clas-
sification (damaged or non-damaged) and an estimation of the spatial damage position in case of
a damaged structure. The proposed damage diagnostics architecture should be able to be used
in low-resource sensor networks with soft real-time capabilities. Two different machine learning
methodologies and architectures are evaluated and compared posing low- and high-resolution sensor
processing for low- and high-resolution damage diagnostics, i.e., a dedicated supervised trained
low-resource and an unsupervised trained high-resource deep learning approach, respectively. In
both architectures state-based recurrent artificial neural networks are used that process spatially and
time-resolved sensor data from experimental ultrasonic guided wave measurements of a hybrid
material (carbon fibre laminate) plate with pseudo defects. Finally, both architectures can be fused
to a hybrid architecture with improved damage detection accuracy and reliability. An extensive
evaluation of the damage prediction by both systems shows high reliability and accuracy of damage
detection and localisation, even by the distributed multi-instance architecture with a resolution in the
order of the sensor distance.

Keywords: structural health monitoring; distributed sensor networks; distributed machine learning;
model fusion; autoencoder learning

1. Introduction and Related Work

Structural health monitoring (SHM) based on Lamb waves, a type of ultrasonic
guided waves, is a promising technique for in-service inspection of aircraft structures. The
implementation of SHM systems into aircraft applications reduces maintenance efforts as
well as overall structural weight. Lamb waves are excited and received using a network of
actuators and sensors, which are permanently attached on the structure. Lamb waves are
very sensitive and exhibit different wave interaction mechanisms, with structural damages,
such as attenuation, reflection, scattering or mode conversion. By analysing the sensor
signals, different kinds of structural damages can be detected and located [1,2].
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Automatic and reliable damage diagnostics using SHM systems is still a challenge,
especially in the case of carbon fibre laminate due to their anisotropic material characteris-
tics. Depending on the underlying measuring technique used to retrieve suitable sensor
signals that show a sufficient correlation with damage or fatigue features, the recognition
of the damage features requires complex analysis with experts knowledge and interven-
tion [3]. Moreover, damage diagnostics can be an inherently distributed problem [4] using
spatially distributed sensors [5] still processed by a central instance leading to scaling
and efficiency issues. Scaling is limited with such centralised architectures. However,
distributed data processing in sensor networks, especially addressing material-applied
or material-integrated sensor networks, imposes strict resources constraints of the signal
processors both regarding memory and computational power of each unit.

Damage and structural health diagnostics is an inverse problem. A model M represents
a measurement that maps a spatial and time-dependent environmental context pe(x,t) with
a feature set f (e.g., damage class and location) of a device under test (DUT) on sensor
signal data s. The damage diagnostics system requires the inverse model M−1 that maps
the sensor data on the requested features to be monitored (related to another measuring
parameter set pm):

M(
→
x , t,

→
p e,
→
f ) : (

→
x ,
→
p ,
→
f )→ →

s

M−1(
→
s ,
→
p m) :

→
s →

→
f

(1)

Beside numerical methods (e.g., inverse numeric [6]), machine learning (ML) can be
utilised to derive the inverse model M−1 from training example data mapping s on f. Due
to the highly non-linear model function artificial neural networks (ANN) are often used to
implement a hypothesis of the required damage predictor function [7].

The task of structural health monitoring systems is to detect and locate different kind
of damages from sensor data which are produced by permanent applied sensors on the
structure. Related work can be classified in model-based [8] and model-free methods.
Damage diagnostics with homogeneous and isotropic materials, e.g., aluminium or steel,
can be handled with established methods. However, dealing with materials posing complex
physical relationship between damages and sensor signals, e.g., by anisotropic and non-
linear interaction behaviour, such as in composite laminates, deriving suitable models that
map sensor data on state information is a still challenge or still not possible.

The main objective of this work is the investigation of model-free distributed ma-
chine learning (DML) under resource and failure constraints (including sensor noise, drift,
and fatigue) by using spatial model decomposition and global model fusion strategies.
Distributed learning and feature inference gains attraction in recent years to overcome
scaling and reliability issues, originally applied in wireless structural health monitoring
networks [5]. Additionally, state-based ML should process time-resolved sensor data,
already successfully applied in the field of SHM with guided waves [9]. The damage
diagnostic system is operating in space and time dimension.

Commonly, low-resource and low-resolution approaches used in damage monitoring
that can be deployed on embedded computers typical for sensor networks pose only limited
and operational constrained damage diagnosis capabilities (with respect to classification
and localisation of damages), whereas high-resolution approaches require high computa-
tional time and storage requirements, often utilising deep learning and computer vision
(CV) [10]. Deep learning of artificial neural networks (ANN) are often used for SHM [11].
Base-line approaches either try to derive damage feature by analysing differences between
a non-damaged base-line experiment and a device under test or by using more advanced
approaches together with ML. Auto-encoders (AE) are candidates to detect anomalies in
sensor signals related to damage features that can be derived with deep Learning, basically
by modelling multiple levels of visual abstraction (from low-level features to higher-order
representations, i.e., features of features) from the sensor data [11]. In a first step an AE
approach encodes a signal. A second step reconstructs (decodes) the signal again. If the AE
is trained with ground truth data only it will not be able to reconstruct a signal containing
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differences due to anomalies (the feature to be detected), e.g., a damage that modifies a
sensor signal. Comparing the reconstructed signals with the original signal enables damage
detection without a supervised training with labelled data.

The proposed ML architecture should be suitable for processing on low-resource
embedded computers such as material-integrated sensor nodes of a sensor network [12].
Ideally, a node of the sensor network processes only local sensor data and performs local
damage diagnostics. The damage predictor functions have to be highly discriminative
with respect to noise and varying operational and measuring conditions [13]. There are
two levels of prediction, i.e., feature extraction from the sensor signals: 1. The classification
of damage and non-damage cases; and 2. The prediction of the spatial properties. In
principle, there is a third level that classifies the damage class and its cause. This level is
not addressed in this work.

Typically, the predictor functions are derived by supervised learning and sensor data
derived from experiments with a defined and fixed parameter set of specimen geometry,
actuator configuration and measurement setup, i.e., excitation frequencies, frequency
filters, sensor scan grid as well as damage type and position [13]. Operational variance
(e.g., temperature and humidity) have to be considered, too (contained in the parameter sets
pe and pm). One major challenge is training of the predictor functions with limited variance
of training data, concerning the variance of experiments of a single set-up to cover typical
measuring and specimen variations (i.e., repetitions of experiments under same conditions
with the same parameter set for the device under test, damage, and the measuring set-up)
and the variance of experiments and the respective features (i.e., different damage cases,
classes, positions, sensors, environmental conditions). This limited training data results
commonly in a lack of required generalisation of the prediction model that cannot be
transferred to a broader range of parameter sets and unknown specimen configurations.

Two different approaches are compared in this work, which are finally fused to a
hybrid system: A multi-instance low-resolution and a single-instance high-resolution
architecture differing in resource requirements and the training class (supervised versa
unsupervised learning, respectively). Common to both approaches is the deployment
of state-based recurrent ANN (RNN) processing time-resolved sensor signal data from a
spatially bounded context (i.e., local sensor data processing). The low-resolution approach
should be capable to be used in structural applied (material-integrated) sensor networks
(i.e., SHM at run-time), whereas the high-resolution approach can be primarily used for
laboratory diagnosis or at service-time. On one hand the high-resolution approach delivers
an assessment base for the low-resolution approach, on the other side the low-resolution
approach can be used as a fast approximating region-of-interest feature marker for the
high-resolution system.

Given recent advances in sensor technologies and micro-system integration this article
proposes that a robust, yet simpler, real-time capable and low-resource, distributed machine
learning approach is now available for accurately estimating damages in hybrid materials
compared to conventional sensor analysis and deep learning approaches.

SHM based on Lamb waves and ultrasonic measuring techniques enables the detection
of different kinds of structural damages and their localisation [1,2]. However, the presence
of at least two Lamb wave modes (symmetric modes, S0, S1, S2, . . . , and anti-symmetric
modes, A0, A1, A2, . . . ) at any given frequency, their dispersive characteristic and their
interference at structural discontinuities produce complex wave propagation fields. Due
to the complex wave fields, conventional algorithms are reaching their limits for robust
damage detection and localisation with the application.

In order to develop new damage detection algorithms based on machine learning
the experimental air-coupled ultrasonic technique is used. With this technique the Lamb
wave propagation field can be measured at any position of the structure. The measured
wave propagation at a given position is used as sensor data for damage detection. The
machine learning approaches require high amount of experimental data sets with different
damage types and locations. Therefore, different removable pseudo defects are developed
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which can be applied to different locations of the structure and generates comparable wave
interactions such as real structural damages.

In the next sections the basic requirements for signal data processing and ML are
presented, including a description of the origin of the sensor data and the physics of wave
propagation relevant to understand damage detection. Furthermore, the present paper
contains two main sections, one for each ML architecture and training approach. Finally,
both approaches are compared and fused to a hybrid architecture (although, more as an
outlook).

2. Machine Learning and Sensor Networks
2.1. Feature Selection and Extraction

Feature selection and extraction is the process to derive meaningful information related
to a target variable y from sensor data related to the observation variable x. Therefore, any
feature selection can be represented by a generalised function Ω(s): s→ f. There are input
data features and target variable features to be distinguished.

The process of input feature selection is typically related to sensor data pre-processing
that transforms and reduces the raw sensor data s to relevant information sf = x contained
in the signal s with respect to target variable y (defining the input vector x), e.g., using
time-frequency transformation to get selected frequencies from the signal, the variance of
the signal or other signal features.

In this work there are spatial and temporal relevant features that have to be selected
to perform the final feature extraction that delivers damage feature vector F = 〈D, P〉
(categorical damage classification D and estimation of the spatial position of the damage
P), related to the target variable y. The signal feature selection is performed in this work
primarily by a wavelet analysis of the time-resolved sensor signals, discussed in Section 5.2.

The target output feature extraction (damage classification and estimation of the spatial
position of the damage) is then performed by the model function M−1 introduced at the
beginning and derived by machine learning (using the pre-processed input data features).

2.2. Taxonomy of Architectures

It is assumed that there is a sensor network SN represented by a graph G = 〈S ,C〉 that
consists of numbered (i,j) and identifiable sensor nodes S(p)i,j ∈ S each at a different spatial
position p = (x,y) providing at least one time-resolved sensor signal s(t). The sensor nodes
can communicate with each other via a network structure (vertices of the SN graph) with
connections comij,kl ∈ C.

There are basically two main strategies of sensor data aggregation and sensor network
architectures for machine learning that can be deployed to derive a feature vector F of the
device under test (DUT) from the sensor data matrix D, i.e., the target variable y related to
the global state ST of the DUT:
Global Learning

Inference by and training of a single predictive model instance M using a spatially
collected data record series D(t) sampled at a certain time t (or averaged over a time
interval) that is processed by a central processing instance (one processing node). The
single instance directly delivers the global feature vector F related to the global state ST.

D(t) =

 d1,1 · · · dn,1
...

. . .
...

d1,m · · · dn,m

, M(D) : D → y (2)

Local Learning with Global Fusion
This is the inference by and training of n × m multiple predictive model instances µi,j

(distributed model ensemble) related to sensor nodes Si,j with local sensor data processing.
Time-resolved local sensor data series di,j(t) at a specific spatial position p(S) of node Si,j
is processed by each instance of the ensemble locally and independently. Each instance
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estimates a local state st and delivers a local feature vector f (p)i,j. All local states are finally
fused to a global state ST delivering a global feature vector F by a fusion function Φ(µ1,1,
µ1,2, . . . ,µn,m) with index n and m as the number of nodes in each dimension.

di,j(t) =
[
si,j(t0), . . . , si,j(t)

]
, µi,j(di,j) : di,j → yi,j, M = ∩

i,j
µi,j (3)

Both architectures are compared in Figure 1. Global fusion of a predictor function
estimating the global state from an ensemble of local prediction or classification models
related to a local state can be performed by probalistic methods, negotiation, majority
election, and in the simplest case by spatial averaging. The fusion strategies used in this
work are discussed in the Sections 4 and 5.
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These two learning architectures can be further classified in training and application
sub-architectures, leading to a classification scheme based on multi-instance (M) and single-
instance (S) training (T) and prediction/inference (P) classes (similar to Flynn’s computer
architecture taxonomy based on stream classification):
STSP

A single learning instance with global input data processing and global output state
prediction is used for training and prediction.
MTMP

Multiple learning instances with local input data processing and local output state
prediction are used for training and prediction. This is the first ML architecture class
considered in this work. The global state prediction is performed by fusion of the output of
the individual learning instances.



Computers 2021, 10, 34 6 of 31

STMP
A single learning instance with global input data processing but local output state

prediction is used for training and replicated multiple instances with local input data are
used for application. This is the second architecture considered in this work.
MTSP

Multiple learning instances with local input data processing and local output state
prediction finally fused to one global model instance.

Fusion can be classified in input data, model, and output data fusion. Input data
fusion is used typically on a global learning (STSP) level, model fusion is the transformation
and reduction of multiple trained models to one generalised global model (MTSP), and
output data fusion is the fusion of the multiple local state predictions to one global state
prediction (MTMP/STMP). Model fusion can be used to increase the prediction accuracy
and/or to combine local prediction models to one global prediction model.

There is no sensor interaction in terms of communication; the distributed sensor
signals are correlated by the wave propagation. A single sensor node processes only its
local sensor and passes the pre-processed data to its local learning instance only predicting
the local state (e.g., a damage nearby), discussed in the next sections.

2.3. Generalization

With respect to supervised learning, training data T = 〈D,Y〉 is used for learning
(sensor data with target variable association). Testing a trained model is performed by
statistical error analysis of:

1. The training data;
2. Test data not used for training; and
3. Training and test data combined sets.

Therefore, experimental and simulation data must be split in training and test sets.
The test has to evaluate:

• Accuracy of prediction;
• False-positive and false-negative error rates;
• “Offset” and distortion.

A major problem with machine learning is the tendency to a weak generalization of
the model, i.e., only a specialised model was derived:

• The learned model can accurately represent the training data, but not the test data
(special model)

• The learned model depends on geometric or temporal variables, such as the measuring
location or signal phase/time offset

• The prediction region, i.e., local vs. global models.

The cross-validation test can be used during the training phase to adapt training
parameters, to select a sub-set of model instances trained separately and with Monte Carlo
simulation in case of single-instance learning, and in the case of multi-instance learning to
select bad instances for progressive post-training.

2.4. Sensor Processing

The sensor data processing and data flow consists of the following processing stages,
shown in Figure 2, finally delivering the damage prediction results:

1. Recording of the experimental sensor data (laboratory) and uploading the raw data
to a file server;

2. Decoding of the raw data and storing the raw measurement data in a SQL database
(numeric format with hierarchical record tables);

3. Reduction of measurement data in time and spatial dimensions (Down sampling);
4. Sensor feature selection, i.e., mapping of raw sensor data on relevant feature variables

(e.g., by using FFT, discrete wavelet transformation, etc.);
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5. The generation of the input data for predictor model training and inference, i.e.,
scaling, filtering, transformation, and reduction;

6. Supervised learning: Training and test data are needed either from experiments
or simulation with sensor data associated to the appropriate target variable values
(process of labelling);

7. Unsupervised learning: Only test data consists of sensor data associated with the
appropriate target variable values (labelling) for model evaluation and optimization
of the learning process;

8. Damage feature extraction by inference using the learned predictor model functions.
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Figure 2. Sensor processing and data flow in the structural health monitoring (SHM) system in this
work. Central part is the computation of virtual sensors arranged in a spatially two-dimensional
sensor network. The dotted arrows show the relation of physical sensors and their sensor positions
with virtual sensor nodes (a set of physical sensors are mapped on a virtual sensor).

Central part is an advanced SQL data base server. The SQL data base stores all
experimental and computed data including ML models. The SQL data base can be accessed
by a SQLJSON remote procedure call interface. The SQLJSON-RPC provides request-reply
communication (e.g., SQL queries) via a JSON code and data format. SQLJSON-RPC
supports micro-code execution for complex operations send by the requesting client and
executed by the server. The SQLJSON-RPC APi is an overlay software layer on top of a
generic SQLITE data base API. Finally, the SQLJSON service provides a virtual file system
layer that maps files and directories containing data and meta data files on tables, which
can be requested such as any other SQL table. To support typical data set in numerical
matrix format, hierarchical data set tables were added (organising data sets similar to HDF5
structure with data types, data spaces, meta data, and automatic matrix type conversion).
There is a dedicated SQLDS API with support for packed arrays on top of SQLJSON to
support access of data sets (and mapping on generic SQL tables).

2.5. Computational Complexity and Resources

Dealing with large volumes of data is a challenge with respect to the spatial and
temporal dimension. Even in case of single guided wave measurements there is a significant
volume due to the time-resolved recording of the sensor signals. The spatial dimension of
sensor data determines primarily storage requirements, whereas the temporal dimension
determines the computational time. Computing time and storage requirements differ
significantly in the different stages and phases of data processing and predictor model
function training and inference:
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• Phase I. Acquisition and processing of sensor data: Computational time is dominated
by communication time, storage is mainly related to the original sensor data size and
the communication network;

• Phase II. Preprocessing of the data (feature selection): Computational time is medium
and closely related to the feature selection and transformation algorithms; storage
depends still on original data size;

• Phase III. Generating of predictive models and training (with partial testing of model
quality): Computational time and storage depends significantly on the used model
implementation and its structure (function, directed graph/tree, neuronal networks), and
computational time depends additionally on the training algorithms and the processing
of the training data instances (single vs. batch vs. monolithic instance processing);

• Phase IV. Test of the trained models: Computational time depends on the model
size/structure, its functional complexity, and on the number of data instances, but
there is no significant increase of storage;

• Phase V. Inference/application to unknown data (incorporates Phases I/II, too): the
same as Phase IV.

• Parellelisation of distributed multi-instance learning (MM or MS class) at process—or
node level (basically on control path) is possible:

• All local learning instances are independent posing high computational effort that can
be parallelised;

• Synchronisation and merging of local data is required only by global model fusion
that is a simple task with low computational effort;

• Parallelisation can be applied on one central computer as well as in the distributed
sensor network;

• Speed-up S ≤ 15 with a central computer (2 CPU Sym. NUMA, 8 cores/CPU, L3
Cache ≥ 15 MB);

• Speed-up S < N with N distributed sensor nodes (sensor data locally).

Parallelisation of single-instance learning is partially possible if there is a globally
trained and generalised model that can be applied locally bounded regions of data or single
sensors in the best case (SM class), i.e., a predictor functions that marks and amplifies
local features from the sensor signal (posing high computational effort). Global fusion by
object and pattern recognition (e.g., point density computations) or by negotiation and
consent algorithms can be classified in low and mid computational classes and can be
commonly neglected.

The resource and computational time requirements of both diagnosis architectures are
evaluated in the respective sections.

3. Sensor Data and Experiments
3.1. Overview

An experimental data base is used to evaluate both approaches. The experiments
were performed to get raw time-resolved sensor signal data D ∈ R3 featuring the following
physical key facts:

• Specimen under test:

# Material: CFRP (Carbon Fibre Reinforced Plastic);
# Shape: Plate;
# Phy. dimensions: 500 × 500 mm;

• Measurement method: Air-coupled contactless ultrasonic 2D scan with a grid spacing
of 2 mm;

• Sensor: different air-coupled ultrasonic probe;
• Measuring wave excitation by a surface bonded piezoelectric actuator;
• Excitation: Rectangular burst signal with 3 pulses at frequencies from 40 to 200 kHz;
• Defect type: Pseudo defects consisting of a round steel plate (diameter 20 mm) which is

attached to the plate and provides realistic wave interactions compared to real defects;
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• Defect variance: Pseudo defect boned with methyl methacrylate adhesive (MMA) or
stick with vacuum sealant tape (VST) to the surface of the plate;

• Defect position variance: Experimental variations with 9/11/14 different defect posi-
tions on the plate (regularly and irregularly spaced);

# Spatial measuring resolution (raw data): 250× 250 measuring points (2 mm spacing);
# Temporal measuring resolution: about 4000 sample points/record (amplitude).

The data was delivered in a proprietary data format and was decoded and stored in
a SQL data base with hierarchical data set tables providing a close binding of measuring
data and meta data (experimental parameter sets), described in Section 2.4.

3.2. Experimental Data Sets of Lamb Wave Propagation Fields

Air-coupled Ultrasonic Technique
In order to produce a high amount of experimental data sets which are required as

input for the machine learning approaches the air-coupled ultrasonic technique is used.
This technique is a well-established, contactless method for the measurement of Lamb
wave propagation fields. To excite Lamb waves a piezoceramic actuator is applied on a
plate structure. The actuator is made in form of the so-called piezocomposite technology
(DuraAct, PI Ceramics GmbH) and consists of a round piezoceramic (diameter: 10 mm,
thickness: 0.2 mm) to excite homogeneous, almost circular wave propagation fields. The
actuator is bonded on the plate structure by a two-component epoxy adhesive in a vacuum
process (Henkel AG, Loctite Hysol 9455). The transducer is driven with a rectangular
burst signal with 3 pulses. The plate structure is a quasi-isotropic CFRP (Carbon Fiber
Reinforced Plastic) laminate with 7 plies. The layup as well as the mechanical material
properties are described in [14]. The plate dimensions are 500 × 500 × 2 mm. The plate is
installed on spikes inside of a frame with mechanical stops, to reduce the wave interactions
with the mechanical mounting and to avoid deviation in positioning during assembly
and disassembly. On the sensor side different ultrasonic sensors, which measure the
out-of-plane displacement of the Lamb wave field, are used. In order to investigate the
wave interaction of different Lamb wave modes (A0 and S0 mode) with high amplitudes
(signal-to-noise ratio) the wave propagation field is measured at various frequencies (40, 80,
120, 200 kHz). At lower frequencies of 40 to 80 kHz the A0 mode exhibit high amplitudes
whereas the S0 mode shows high amplitudes at higher frequencies of 120 and 200 kHz.
The further analogue signal processing, data conversion and scanner controls are provided
by the ultrasonic system USPC 4000 AirTech (Hillger NDT GmbH).

In addition, the ultrasonic system controls a portal scanner that moves the scanning
sensor. The scanning sensor moves in form of a meander course over the plate and measure
the wave field in a 2 mm grid. This leads to a spatial measuring resolution of 250 × 250
measuring points over the whole plate. The following Figure 3 shows the experimental
set-up for the measurement of Lamb wave fields as well as the position of the actuator and
the pseudo damages.

The output of the measurements are data files which consist of an amplitude over time
signal for each measuring point within the 2D scanning grid. These so-called 3D volume
data sets build the input for the following damage detection approaches. In a first step of
the experimental data recording the wave propagation fields are measured at the different
frequencies without any pseudo damage applied to the plate. These measurements are
used as a reference for the damage detection.
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Removable Pseudo Damages
The machine learning approaches require a high amount of experimental data sets

with different damage types and locations. To reduce the amount of manufactured CFRP
plates removable pseudo damages are developed. The pseudo damages can be applied on
different locations of the damage-free plate and cause comparable wave interactions such
as real damages (e.g., delaminations). After each measurement set the pseudo damages
can be removed without any residues. It was defined to use round pseudo damages with
a diameter of 20 mm which is smaller than the required size of a damages (25 mm) to be
detected by nowadays SHM systems [15]. To produce realistic wave interactions, such
as absorption, reflection, scattering or mode conversion, two different types of pseudo
damages are developed. The first type of pseudo damage consists of a round steel plate
(thickness: 10 mm) and is applied with hand pressure to the CFRP plate using vacuum
sealant tape (GS-213, Airtech Europe SARL) which will be referred in the following as
VST. This pseudo damage can be removed by simply peeling it off. Due to the absorption
characteristics of the relative thick sealant tape (thickness: 3 mm) this pseudo damage only
absorbs the wave energy and reduces amplitudes on the sensor side.

The second type of pseudo damage consists of the same round steel plate and is
bonded to the plate using methyl methacrylate adhesive (MMA). The advantage of this
adhesive is that it cures within a short period of time (typical 20 min) which reduces the
time span of each measurement set. Furthermore, it produces a relative thin bonding layer
due to its low viscosity and exhibit high young’s modulus which results in a relative rigid
bonding layer and high stiffness change in the plate structure. The stiffness change causes
reflections, scattering and mode conversions within the Lamb wave propagation field. This
pseudo damage can be removed by a small lateral knock with a hammer. Due to the fact
that the CFRP plate has a smooth surface, no residues of the adhesive are remaining on the
plate. The following Figure 4 shows exemplary the Lamb wave interaction at 80 kHz with
the pseudo damage applied with vacuum sealant tape.

In general, the pseudo damage applied with vacuum sealant tape exhibit an attenua-
tion of the A0 mode at 40 to 120 kHz and a phase shift at 40 to 80 kHz. Wave interaction
of the S-mode with this pseudo damages are not observed in the investigated frequency
range. The following Figure 5 shows exemplary the Lamb wave interaction at 80 kHz with
the pseudo damage applied with methyl methacrylate adhesive.
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Figure 5. Intensity images of two-dimensional Lamb wave interaction with pseudo damage
methyl methacrylate adhesive (MMA) at a frequency of 80 kHz, wave propagation field at
230 µs (left) and at 326 µs (right) with highlighted regions showing mode conversion.

This pseudo damage produces mode conversion from S0 into A0 mode at frequencies
of 40 to 200 kHz. The A0 mode exhibit reflections and scattering at 40 to 80 kHz. Wave
interaction of the A0 mode at higher cannot be observed because the S0 mode dominates
the wave propagation field with its higher amplitudes. Furthermore, local phase shifts
and attenuation (behind the pseudo damage) of the S0 mode from 120 to 200 kHz and of
the A0 mode from 40 to 80 kHz can be detected. It can be summarised, that the pseudo
damage with methyl methacrylate adhesive produces more wave interactions compared
to the pseudo damage with vacuum sealant tape. Therefore, this pseudo damage can be
better detected by the damage detection algorithms.
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The various observed wave interactions with the pseudo damages show up in the
sensor signals in different ways. The mode conversion and reflection/scattering produce
new wave packets which appear in the sensor signals at specific time of flights. The time
of flight of the new wave packets depends on the distance between pseudo damage and
sensor. Therefore, the new wave packets can be interfered by the original excited wave
packets (S0 and A0 mode) if their time of flights matches. Or the new wave packets appear
clearly in the sensor signal if their time of flights differs from the original excited wave
packets. The other wave interaction, such as phase shift and attenuation, influence only
the original excited wave packets in form of phase shifts and amplitude reductions. In
summary, the feature selection of the machine learning algorithms should be able to identify
the different wave interactions by selecting specific time frames within the sensor signals.
Within the experimental data sets the two types of pseudo damages are applied one after
the other at 21 different positions, as shown in Figure 3. At each position and with each
pseudo defect the wave propagation field is recorded at the all defined frequencies (40, 80,
120, 200 kHz).

3.3. Signal Features and Damage-Wave Interaction

As outlined in the previous section, damages or more general material inhomogeneity
have an influence on the wave propagation with respect to:

• Amplitude modification, i.e., damping and inference;
• Reflection;
• Frequency and mode conversion.

Therefore, relevant features of the measured temporally and spatially resolved sensor
signals are related to amplitude, phase, and frequency properties. But the time-resolved
sensor signal at a specific measuring position will consist of different segments. Typically,
only the first segments contain damage-relevant features, whereas the later segments

There are basically three different approaches for extracting relevant signal features
(beside statistical properties):

• Time-frequency transformation (Fourier transform) of the entire signal record;
• Time-shifted window frequency transformation;
• Wavelet transform and decomposition of the signal record [16,17].

The frequency transformations are bound to the time-frequency uncertainty principle,
and a windowing approach increases the time resolution but decreases the frequency
resolution. The wavelet transform (among other wave decomposition methods not dis-
cussed here) can be considered as method preserving time and frequency properties of
the input signal [16].

The relevant damage features are contained in the sensor signal. Bit temporal position
and extend of the region of interest containing the relevant features depends on the wave
propagation, the wave interaction, and the relative positions of the sensor, damage, and
actuator (i.e., forming a spatial graph), shown in Figure 6b. The sensor signal is basically
divided into three segments of initially unknown length: The pre-, feature, and post-signal
segments, illustrated in Figure 6a. Even the comparison with a base-line (damage-free)
signal does not expose the relevant features without pre- and post-processing.
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4. Multi-Instance Learning with Multi-Instance Prediction (MTMP Class)

In this section the first low-resolution and low-resource approach using multi-instance
learning of a damage predictor function is introduced. In a first attempt, the raw sensor
data is processed by a virtual sensor network on a generic computer. The results can be
mapped directly on a real sensor network.

4.1. Concept

The damage diagnostics processing the raw sensor data uses the following key methods:

• Supervised multi-instance learning by a virtual sensor network (8× 8 nodes) processing
local time-resolved sensor data derived from the experimental measuring data;

• The output of the local supervised learning is a predictor function that have to detect
a damage in the near region around a sensor (continuous output in the range [0,1]
with binary threshold classification);

• The predictor function is implemented by a state-based recurrent ANN with LSTM
cells by using a JavaScript Ml framework integrating an improved Neataptic ANN [18],
the network configuration is [1,4,6], i.e., 4 input neurons, 6 LSTM cells, and one out-
put neuron;

• The global fusion of all local damage predictor function outputs approximates the
spatial damage position (if any) within the boundary of the sensor network supporting
position interpolation.

The principle experimental and data analysis set-up is shown in Figure 7. All compu-
tations were performed in JavaScript either by a WEB browser (SpiderMonkey VM) or by
using node.js (V8 VM).

4.2. Feature Selection and Network Architecture

1. Down sampling of the raw sensor signal (approx. 4000 Samples on the time axis) with
a 1:10 ratio (sampling every n-th sample)

2. Spatial data reduction at the location of a virtual sensor s(x,y) by using a 2 × 2 pixel
field that is reduced to one virtual sensor (spatial mean averaging)

3. Temporal down sampling of the reduced sensor signal 1:4 (temporal mean averaging)
4. Discrete wavelet transform (DWT with Debuchet-1 function) LP/HP filters (4 levels

with Up-Sampling) [16,17,19].
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The feature selection process and the basic ANN architecture is shown in Figure 8.
Typically, the levels 3–5 contain relevant signal features. Each level of the DWT consists of a
low- and high-pass filter providing the approximation and details of the signal, respectively,
providing a good time-frequency analysis [17]. The approximation is the input signal of
the following next level, the detail signal is the input for the ANN. Each level of the DWT
reduces the sampling frequency by two (down sampling), i.e., at the output of the DWT
filter a sampling expander (up sampling) is required for each level to equalise the sequence
length of each input signal.
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Figure 8. Feature selection with discrete wavelet transform (DWT) decomposition from time-resolved and discretised
sensor signal s(n) as the input for the damage predictor function implemented by a recurrent artificial neural networks
(ANN) using long-short term memory (LSTM) cells (LSTM cell drawing from [18]). HP: high-pass filter; LP: low-pass filter,
↓: down sampling; ↑: up sampling; ot: output fate, f t: forget gate; it: input gate; Ct: memory cell.

The recurrent state-based ANN structure consists of n input neurons with sigmoid
transfer function (one for each DWT decomposition level used), a hidden layer of Long-
short term memory cells (LSTM), and one output neuron with an output range of [0,1]
(also sigmoid transfer function). A value nearby 1 represents the detection of a damage in
the surrounding region around a sensor.

There are many different LSTM cell architecture around. We are using the LSTM
cell implementation from the Neataptic ML framework [18], shown on the right side of
Figure 8. Central part is a state cell (Ct) surrounded by different gates (input it and output
ot gates) controlling the forward and feedback paths of the cell and the memory history (by
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the forget gate f t). Depending on the particular configuration, the LSTM cells of one layer
can be interconnected (memory-to-memory connections).

The DWT for the i-th level can be generally defined by the detail and approximation
functions D and A related to the high- and low-pass filters, respectively:

Dn = 1√
N ∑

i=0,...,N−1
x(i)× ψj,k(i)

An = 1√
N ∑

i=0,...,N−1
x(i)× φj,k(i),

(4)

with N data points of the original time series x(i), i = 0, 1, . . . , N−1, j = 0, 1, . . . , J−1, k = 0,
1, . . . , 2J−1, J = log(N). The function ψ and ϕ are related to the mother wavelet function
and its mirror function, respectively.

Details regarding the DWT can be found in [17].

4.3. Target Variable Computation for Labelling

The individual sensor nodes should detect damage/defects within a local area. There
is a simplified assumption that damage detection is possible in a circular area around a
sensor, i.e., isotropic sensitivity (not true; rather elliptically shaped in direction of the axis
actuator-damage-sensor). A Euclidean distance damage-sensor is used as an indicator of
damage/non-damage classification, i.e., a specification for the expected prediction value of
the ML model.

yi,j =

{ √
(damx − px)

2 + (damy.py)
2) < R, 1

else, 0
, (5)

with p as the sensor position. The target variable estimation is only required for the first
supervised learning approach. The second unsupervised approach due not rely on labelling
for training, shown in Figure 9.
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Figure 9. Labelling of training data (assigning target output variable outcomes) by simple neighbour-
hood detection of damages in the range 2R around a sensor node centre position. Shown is a part of
the sensor network (red colour: damage within radius R, blue colour: no damage).

4.4. Global State Fusion and Damage Localisation

Each node delivers a probalistic damage estimation within a radius R around each
node. The local predictor function delivers an output value in the range [0,1]. Values
near one indicate strong damage detection. The output of all local predictor functions are
fused to a global state (binary damage classification and damage localisation relative to
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the DUT coordinates) by different algorithms described below. Typically clusters of nodes
are activated around the damage location. Beside true-positive predictions, there can be
false-positive predictions, too. The global fusion has to discriminate the false-positive
predictions and averages the local states.

Global fusion algorithms used for damage localisation:
Unweighted Centre of Mass.

This algorithm applies a threshold filter to all local prediction results with a binary
decision mapping (damage activation). All activated discrete node positions are added to a
point cloud. Finally, an unweighted centre of mass (COM) computation is applied to this
point cloud interpolating the damage position pd.

pd(SN) =

(
∑

s∈SN

{
1, so > t

0, else

})−1

∑
s∈SN

(
sx
sy

){
1, so > t

0, else

}
, (6)

where SN is the full set of sensor nodes of the network, so the output of the prediction func-
tion of the node at position sx,sy in the range [0,1], t is the threshold for binary classification.
Weighted Centre of Mass.

This algorithm applies a threshold filter to all local prediction results with a binary
decision mapping (damage activation). All activated discrete node positions are added to
a point cloud together with a weight derived from the predictor function output. Finally,
a weighted centre of mass computation is applied to this point cloud interpolating the
damage position.

pd(SN) =

(
∑

s∈SN

{
so, spred > t

0, else

})−1

∑
s∈SN

(
sx
sy

){
so, so > t

0, else

}
(7)

Fully weighted Center of Mass.
This algorithm creates a point cloud with all discrete node positions together with

the weight derived from the predictor function output. Finally, a weighted centre of mass
computation is applied to this point cloud interpolating the damage position.

pd(SN) =

(
∑

s∈SN
spred

)−1

∑
s∈SN

(
sx
sy

)
so (8)

Density-based Clustering and Center of Mass.
Prior a weighted centre of mass computation, a density-based clustering using the

DBSCAN algorithm [20] is applied to the point cloud consisting of node positions with a
predictor function output above a given threshold. The largest clustered group is select
for COM. This approach is proposed to be useful to discriminate clusters of true-positive
predictions from clusters of false-positive predictions, as evaluated and discussed in the
following results section. The DBSCAN algorithm uses a global density parameter. An
advanced approach can be used with a local density parameter uses for clustering [21].
Distributed Center of Mass (Cellular Automata).

The previous algorithms collect all node prediction results and perform the damage
localisation on a dedicated centralised node. To avoid any centralised instances for scalability
and robustness reasons a distributed COM algorithm is processed by the network nodes, i.e.,
an algorithm based on a cellular automata model with neighbourhood communication only.
The algorithm bases on the fully weighted COM approach and Cellular Automata (CA).

The basic concept of a distributed weighted COM (DCOM) is the propagation of
partials sums in rows and columns of the network, assuming more or less logical regular
grid communication architecture. The logical position of a node with respect to the sensor
network have to satisfy an ordering constraint, i.e., an East neighbour is physically located
on the right, a West neighbour is located on the left side, and so on.
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The first upper left node of the CA network initiate the propagation of the partial sum
calculation from left to right (horizontal axis) and downwards (only initiators of further
row propagations). Each node at the end of the row propagates the row accumulation
downward. The last lower right node finally computes the approximated centre position
of the damage. Each cell has a state, defined in Algorithm 1. Only the first node must be
marked (always position (1,1)). All other nodes derive their position from the neighbouring
nodes, i.e., a node has not to know its absolute position in the network, only the relative
neighbouring connectivity.

Assuming a regular mesh sensor network with N ×M nodes the DCOM approach
requires NM steps to compute the weighted damage position.

Algorithm 1. Data structure of CA cell

1: type cell = {
2: state : {
3: activation : number,
4: prediction : number,
5: // accumulator for horizontal axis propagation
6: right : comsum {}|null,
7: // accumulator for vertical axis propagation
8: down : comsum {}|null,
9: // accumulator for accumulated row results
10: row : comsum {}|null,
11: position : [x,y],
12: },
13: activity : function
14: }
15:type comsum = {
16: x: number, y:number,
17: accux: number, accuy:number,
18: mass: number,
19: }

The cell activity is shown in the Algorithm 2, and the principle right-down shift
propagation of the weighted COM is shown in Figure 10. There is a dedicated initiator and
collector node. Note that any edge node can be initiator or collector by rotation of the node
matrix. All four configurations can be processed overlapped increasing redundancy in a
technical network with node or communication failures.

Algorithm 2. CA cell COM accumulation algorithm

1: cell.activity = function (neighbors,x,y) {
2: if !neighbors.left and not neighbors.up) then
3: if !neighbors.right and not neighbors.down then
4: // Initiator
5: right := {mass:prediction,x:1,y:1,
6: accux:prediction,accuy:prediction}
7: down := {mass:prediction,x:1,y:1,
8: accux:prediction,accuy:prediction}
9: position := [1,1]
10: else
11: if neighbors.right and neighbors.left and neighbors.left.right then
12: right := copy(neighbors.left.right)
13: right.mass :=+ prediction
14: right.x :=+ 1
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Algorithm 2. CA cell COM accumulation algorithm

15: right.accux :=+ (prediction*right.x)
16: right.accuy :=+ (prediction*right.y)
17: position := [right.x,right.y]
18: if !neighbors.left and neighbors.up and neighbors.up.down then
19: // Next row initiator
20: right := {mass:prediction,x:1,y:neighbors.up.down.y+1,
21: accux:prediction,accuy:prediction}
22: position := [right.x,right.y]
23: if neighbors.down then
24: down := {mass:prediction,x:1,y:up.down.y+1,
25: accux:prediction,accuy:prediction}
26: if !neighbors.right and neighbors.left.right then
27: // horizontal end point
28: // Propagate
29: if !neighbors.up then
30: row := copy(neighbors.left.right)
31: row.x :=+ 1
32: elseif neighbors.up and neighbors.up.row then
33: // accumulate with previous row
34: row := copy(left.right)
35: row.x :=+ 1
36: row.mass :=+ prediction
37: row.accux :=+ (prediction*row.x)
38: row.accuy :=+ (prediction*row.y)
39: row.mass :=+ up.row.mass
40: row.accux :=+ up.row.accux
41: row.accuy :=+ up.row.accuy
42: position := [row.x,row.y]
43: if !neighbors.right and not neighbors.down then
44: // final edge computation
45: center := [row.accux/row.mass,row.accuy/row.mass]
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4.5. Training

The training of the RNN is rather simple. All model instances associated with virtual
sensor nodes are trained independently (although, on a central computer sequentially).
The feature transformed input signals activate each RNN sequentially. The first four DWT
decomposition levels are used. After the RNN is activated, the prediction error is computed.
It is just the difference of the target variable (binary damage label) at the last output value
of the RNN (linearised in the interval [0,1], 1: damage, 0: no damage)). The desired target
variable value (0/1) is passed to a gradient descent back propagation algorithm adapting
the weights of the network and the parameterisation of the LSTM cells (primarily internal
edge weights and gating parameters).

The basic training algorithm for one node is shown in Algorithm 3.

Algorithm 3. Basic training algorithm for one node and one training sample

1: function train(node,data) is
2: target=data.target
3: error=0
4: repeatn times
5: node.model.clear()
6: ∀ val ∈ data,signal do
7: out=node.model.activate(val)
8: node.model.propagate(rate,momentum,[target])
9: error := error+|out-target|
10: error := error/n
11: if error>0.2 then
12: if target>0.2 then error0 := 0, error1 := 1
13: else error0 := 1, error1 := 0
14: else error0 := error1 := 0
15: if target>0.2 then state := 1 else state := 0
16: return error,error0,error1,state
17:
18: function test(node,data) is
19: target := data.target
20: error := 0
21: node.model.clear()
22: ∀ val ∈ data,signal do
23: out := node.model.activate(val)
24: error :=+ |out-target|
25: if error>0.2 then
26: if target>0.2 then error0 := 0, error1 := 1
27: else error0 := 1, error1 := 0
28: else error0 := error1 := 0
29: if target>0.2 then state := 1 else state := 0
30: return error,error0,error1,state

The training is applied to all nodes with a randomly sequential selection of training
instances. After a spatially averaged mean error is below a threshold value, selected nodes
with false-positive and/or false-negative predictions are trained, shown in Algorithm 4.
The false-positive rate for the non-damage case must be zero, the local false-positive or
false-negative rates in damage experiments should be minimised.
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Algorithm 4. Iterative and adaptive training algorithm for all nodes and all samples

1: // Average Training
2: phase 1:
3: while errorT0 > thres0 and errorT1 > thres1 do
4: sample := random.select(trainingData);
5: ∀ node ∈ nodes do
6: {error,error0,error1,state} := train(node,sample)∪
7: errorT0 := 0.9*errorT0+0.1*error0;
8: errorT1 := 0.9*errorT1+0.1*error1;
9:
10: // Cross Validate
11: phase 2:
12: maybenodes=[[],badnodes=[[];
13: ∀ node ∈ nodes do
14: ∀ sample ∈ testData ∪ trainingData do
15: {error,error0,error1,state} := train(node,sample)
16: if error0 > 9.5 and node /∈ badnodes then
17: add node to badnodes
18: if node ∈maybenodes then
19: remove node from maybenodes
20: else if error > 0.5 and node /∈ badnodes ∪maybenodes then
21: add node to maybenodes
22: // Selected Training
23: phase 3:
24: while badnodes not empty do
25: ∀ node ∈ badnodes do
26: phase1 with nodes=[node]
27: phase2 wtih nodes=[node]

4.6. Results

In Figure 11, some results of the distributed sensor network activation and damage
prediction are shown for the training set consisting of 9 damage positions (MMA) and one
base-line experiment.
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The following Table 1 and the bar plot in Figure 12 shows the prediction accuracy
of the trained LSTM model using DWT features of the time-resolved sensor signal. The
positions errors of the weighted centre point calculation of a predicted damage (pseudo
defect) is in mm and must be evaluated with respect to the overall DUT plate dimension
of 500 × 500 mm and the sensor node spacing of 60 mm. The prediction accuracy is
averaged over all data sets. The first data set was used for the ANN training and for the
test evaluation. The mean position accuracy is about 60 mm averaged over all experiments
and data sets, i.e., in the order of the sensor node spacing distance (60 mm). The mean
position accuracy is about 20 mm for training data experiments only, i.e., 1/3 of the spatial
sensor node spacing distance.

Table 1. All US signal measurements with 80 kHz signal frequency, Monte Carlo Simulation (MCS) with 10% multiplicative Gaussian
noise augmentation and data augmentation (10 augmented measurements for each data instance), fully weighted centre of mass
computation used to estimate damage position.

Series Description Mean Position Error Min/Max Error Std. Deviation False Rates

1
Training and test set, pseudo
defect MMA mounting, nine
defect positions and base-line

23 mm 3/64 mm 14 mm 0/0 FP/FN

2 Test set, pseudo defect VST
mounting, nine defect positions 60 mm 5/129 mm 30 mm 0/0 FP/FN

3
Test set, mixed pseudo defect
mounting (VST/MMA),
21 positions and base-line

65 mm 18/158 mm 32 mm 0/0 FP/FN
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In Figure 12, five different global fusion algorithms are compared (see Section 4.4
for details). In most damage cases the fully weighted COM approach shows the best
average accuracy results. Some damage cases show still good average position accuracy
but with larger variance and in few cases with a large maximal error (e.g., D375-250),
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i.e., extending the error boundary, another important statistical feature of a SHM system.
This shows the dependence of the damage position estimation from the spatial sensor-
actuator-damage triangle and their positions relative to each other and relative to the edges
and sides of the plate. At the edges there are significant wave distortion effects, such as
edge reflections, with a significant impact on the damage prediction. Fortunately, due to
the spatial specialisation of the trained predictor functions of the sensor nodes near the
edges and sides of the plate they are able to discriminate these wave distortions sufficiently.

In Figure 13 some typical network activation patterns with local false-positive activa-
tion clusters are shown. The density-based clustering approach can lower the average of
the damage localisation error, but increases the maximal error boundary. This increase of
the maximal error is a result of (1) Wrong cluster discrimination (selecting the cluster with
the highest number of points), and (2) the false-positive prediction compensate a position
estimation by a geometrical distorted (non-separable) true-positive cluster. The binary
unweighted COM approach using a threshold discrimination produces only in some cases
lower localisation errors. The fully weighted COM approach shows mostly the best results.
The distributed approach with a CA model shows comparable results and is fully suitable
to approximate the damage position.
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5. Single-Instance Learning of an Auto-Encoder with Multi-Instance Prediction
(STMP Class)

In this section, the second high-resolution approach using unsupervised generalised
single-instance learning of a signal auto-encoder is introduced. The output of the trained
auto-encoder is used to predict the damage position (pseudo defect) by using weighted
point density (WPD) analysis.

5.1. Concept

In contrast of the concept of the MTMP approach directly predicting damage features,
the second STMP approach consists of two stages:

1. A anomaly feature marking by a RNN detecting difference of the sensor data to a
non-damage base-line experiment;

2. A damage feature extraction using the output from 1.

A predictor function is trained using data only from a damage-free baseline exper-
iment. Any non-conformity to the base-line data (features) is detected by the predictor
function with a “damage” classification. The challenge is to derive a generalised predictor
function (independence from spatial location of sensor, actuator, and damage) which dis-
criminates damages from other signal non-conformity, i.e., noise, variance in the measuring
configuration, reflection of waves at edges, and many more non-damage related artifacts. It
can be assumed that there are commonly sufficient training data sets with varying damage-
free sample instances, i.e., with a variance in operational and measuring conditions.

One unsupervised method to detect differences to a base-line signal is using an
auto-encoder and decoder to code and reconstruct (decode) the sensor signal. If the auto-
encoder function is trained only with damage-free sensor signals it is not able to reconstruct
a signal resulting from wave interactions nearby a damage. Comparing the reconstructed
signal with the actually measured signal gives a binary damage classificator by applying a
threshold function to the mean average error of the reconstructed signal and the originally
measured signal. The basic signal processing architecture is shown in Figure 14.
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The auto-encoder and decoder was implemented with a state-based recurrent ANN
and LSTM cells using the Tensorflow ML framework [22]. Computation (training and
inference) was primarily performed on a GPU. The network configuration is [64,32,32,64,2],
i.e., an input layer of 64 LSTM cells, a hidden layer of 32 LSTM cells (encoder) and a hidden
layer of 64 and 32 LSTM cells implementing the decoder, and two output neurons.

5.2. Feature Selection and Training

Similar to the MTMP class with supervised training, the single model instance is
trained unsupervised with features selected from the sensor signal, processing the sensor
signal in the following order:

1. Temporal down sampling 1:10 going from 4000 samples down to 400;
2. Transform the data by scaling the input between −1 and 1;
3. Discrete Wavelet Transformation (Debuchet-4 function) with 4 levels of decomposition;
4. Third and fourth down sampled level coefficients serve as the input features for

the network.

Note that there is no data labelling performed. The single model instance is trained
with all spatial data points (250 × 250) sequentially from the original scanned ultrasonic
measurements. The training is performed again with a network activation of the down-
sampled and DWT feature transformed input data sequence, with a following back propa-
gation of the prediction error. In this case the error is defined by the difference between the
input signal and the reconstructed output signal by the auto-encoder and decoder. Details
of the network architecture can be found in the next section.

5.3. Network Architecture

The network is based on LSTM-cells arranged in an encoder-decoder setting, shown
in Figure 15. Both the encoder and the decoder consist of 2 layers of LSTM-cells with a
decreasing/increasing amount of units respectively. This arrangement serves as a bot-
tleneck where only the most essential information from the input features are kept. The
compressed information is then used to decode it back to its original form. The network
therefore is an LSTM-based auto-encoder. This also means that prior labelling becomes
unnecessary as it is an unsupervised learning technique. By training the network with
global data of undamaged CFK-plates, it learns to accurately compress and decompress
its undamaged input data on any local position individually. However, supplying the
network with signal data that includes damage information, e.g., wave reflections, results
in a much greater error, because the network intentionally never saw damage information
during training. The reconstruction error of the network is therefore an indication of a
possible defect.

5.4. Post Processing

The mean averaged error derived from the decoder output is then classified into
damage or no damage features using a simple threshold function. Because of the globally
trained network this procedure can then be repeated for sensors with different locations on
the CFK-plate, which, applied iteratively, results in a binary image of spatially resolved
damage/no damage feature classifications of any resolution. This image can then be
used as the input for a weighted point density analysis using DBSCAN to estimate the
damage location.

Typical examples of the post-processed images are shown in Figure 16. The depen-
dency of the position accuracy with respect to the sensor-actuator-damage configuration
is shown in Figure 17. Damages near by the actuator (nearly in the plate centre) cannot
be detected accurately. There are feature activations near by the edges and corners of
the plate due to wave reflections, interferences and mode conversions (conversion of one
Lamb wave mode into another mode). These artifacts disturb the damage prediction and
localisation. Moreover, in this work a specimen structure consisting of only one composite
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material is considered. Hybrid structures in terms of combined section regions of different
materials, e.g., with intermediate stringers, will pose similar artifacts.
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colour indicates a detected anomaly); x- and y-axis in pixel coordinates, defect index is numerated
from left to right and top to bottom (totally 9 defect positions).
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5.5. Results

Results of the base-line approach using the auto-encoder output and density clustering
feature extraction are shown in Figure 18. The accuracy measures are derived from all three
data sets by Monte Carlo simulation adding Gaussian noise to the originally measures data
sets. Some samples show false-negative predictions (indicated by black bars in the plot,
typically 10–20% of the samples of one experiment). The training was only performed with
the sensor data from the defect-less experiment. In contrast to the first local multi-instance
learning, the global single-instance learning shows some false-negative predictions, i.e., no
defect (position) was detected in case of an existing defect, indicated by black bars. The
maximal prediction error occurs by a defect placed in the centre of the plate near by the
actuator. The mean position error averaged over all sets and neglecting the three high error
cases (D125-250, D250.250, and D250-375) is about 18 mm. The high position errors of
the three aforementioned cases are a result of a low-contrast feature marking with fuzzy
boundaries of the point clouds and high noise areas at the edges and corners of the plate
due to wave interaction artifacts).

The following two box plots in Figure 19 show the dependency of the position accuracy
on sensor noise (additive Gaussian noise added to the raw sensor signal) obtained by MCS.
In both plots, the data are divided according to the individual noise levels. The first of the
accumulated box plots summarises all experiments on all data sets. It can be seen that the
median of all noise levels is slightly above an error of 20 mm, whereby with an SNR of
0 dB (same noise as signal strength) slightly higher errors occur. In the second grouped
box plot the data was divided by noise levels, but also by the data sets. It can be seen that
the largest error occurs in the second data set with VST defect mounting due to a weaker
damage-wave interaction. Both plots also show outliers that differ significantly from the
other points.
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By inserting noise, many previous unrecognised cases now result in quite large po-
sition errors, since noise is now recognised as a damage feature, which can be observed
clearly with the second data set. With the other data sets, this is reflected in the outliers.

6. Comparison and Hybrid Architecture
6.1. Comparison of Both Methods

The damage diagnostics of both approaches presented in this work consists of the
binary damage classification (i.e., there is a damage in a specimen or not) and the spatial
damage localisation. The distributed multi-instance approach with global centre-of-mass
fusion poses a high reliability with a true-positive and true-negative rate of 100%. The
AE-based single-instance approach is affected by feature selection artifacts that result in
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a false-positive rate of about 20% in some damage-cases (depending on the geometrical
triangle sensor-actuator-damage with respect to the specimen boundaries). The averaged
position accuracy is about 60 mm in the multi-instance and 20 mm in the single-instance
approach, summarised in Table 2.

Table 2. Comparison of both damage diagnostics methodologies presented in this work. Annotations: 1. CPU Intel E5
2.9GHz 15MB L3, 2. RP3B, 1.2 GHz C4 ARM Cortex-A53 processor 512 KB L2, 3. GPU, 4. JSON data format, 5. nodejs 5.9
V8, 6. Binary data.

Roperty MTMP STMP

Training Time 1 min/node 1,5 1 h full image 3

Inference Time 10 ms/node 1,5, 70 ms/node 2,5 19 ms/pixel, 20 min/full image 3

Model Size 16 kB/node 4 272 kB 6/full model
Damage Classification 100% correct 80% correct (20% false-neg.)
Damage Localisation Avg. 60 mm Avg. 20 mm

The computational performance of both architectures is compared in Table 2 the
computational performance is relevant for the deployment in distributed and embedded
sensor networks as well as for real-time capability. The real-time capability is defined by
the overall measuring time (e.g., 1 s) and the deadline for a result (that can be ranging from
seconds to minutes).

The distributed multi-instance approach scales nearly linearly with the number of
sensor nodes, and hence only one node is considered here. The single-instance approach
was processed primarily on a GPU system. Even on an embedded computer such as
the RaspBerry 3 with an ARM Cortex CPU the inference time is below 100 ms for one
measurement and is suitable for real-time analysis. The multi-instance approach shows a
comparable computational time on an embedded computer and by using a VM compared
with the native code GPU-based algorithms per sensor. But the single-instance approach
requires a higher sensor density for damage recognition and position estimation (at least
50 × 50 sensors).

Damage interaction with a MMA pseudo defect (at 80 kHz wave frequency) bases
mainly on:

• Mode conversion S0 to A0 with minor amplitude
• Phase shift of A0 mode with minor changes
• Amplitude reduction of A0 mode (major change of first arrival)
• Scattering of A0 mode
• Damage interaction with sealant pseudo defect at 80 kHz bases mainly on:
• Phase shift of A0 mode
• Amplitude reduction of A0 mode (major change of first arrival)
• Scattering of A0 mode with minor amplitudes

Therefore, the ML algorithms detect mainly amplitude reduction (STMP) behind the
defect, scattering (MTMP) and phase shift (STMP) of first arrival of the wave propagating
from the actuator to the sensor. This is shown in Figure 20.

6.2. Hybrid Architecture

The unsupervised trained auto-encoder-based spatially generalised method poses on
one hand a high accuracy, on the other hand an increased false-negative rates and in some
damage cases a low accuracy. The supervised trained distributed multi-instance approach
shows lower but reasonable accuracy with a zero false-negative and false-positive rate.
Both methods can be fused to a hybrid architecture with improved performance:

• The MTMP instance approach is used for a first approximation of the damage location
(region-of-interest marking, ROI) and a proper damage/no-damage classification
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• The STMP instance approach uses the ROI and damage classification from the MTMP
to discriminate inaccurate and wrong damage predictions (selective inference and
feature extraction)
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7. Conclusions

Two different ML architectures were introduced that predict damages of a carbon
fibre laminate plate with a high accuracy and reliability. Both approaches deliver a binary
damage classification and an estimation of the damage location relative to the plate bound-
aries. The first is a low-, the second a high-resolution method with respect to sensor density
and accuracy.

The first approach is a distributed multi-instance architecture with supervised training
and suitable for the deployment in sensor networks. The sensor density is sparse (here
8 × 8 sensors). Each trained model instance is capable of predicting a damage in the
neighbouring region around the sensor node. Global fusion finally approximates the
spatial position of the damage achieving an average accuracy in the order of the sensor
node distance (60 mm). The distributed approach showed 100% true-positive and 0%
false-positive/negative damage classifications in all test data instances. The spatial graph
of sensor, actuator, and damage and its position relative to the plate boundaries has an
impact on the location prediction accuracy. The multi-instance models are bound to their
spatial region where they are trained, thus they pose no spatial generalisation.

The second approach is a spatially generalised single-instance architecture with un-
supervised training based on a base-line anomaly prediction using an auto-encoder. The
single model instance can be replicated supporting multi-instance prediction. The sensor
density is high (here 250 × 250 sensors). This approach showed an improved averaged
accuracy in the order of tenth times of sensor distance (20 mm). This approach is not
suitable for processing on embedded nodes of a sensor network due to high computational
time and resource requirements (e.g., one GPU) and is considered as a laboratory diag-
nostics system and a reference analysis method. The main advantage of this approach is
the unsupervised training method compared to the supervised first approach, avoiding
labelling difficulties and a higher degree of generalisation (with respect to spatial, temporal,
and environmental parameters).

Common to both architectures is a state-based recurrent ANN using a Long-short
term memory cell processing feature transformed time-series data. Discrete wavelet de-
composition is used as the primary feature transformation (the distributed multi-instance
approach uses the first to fourth level, the auto-encoder approach uses the third and fourth
decomposition level). The high-resolution approach delivered about 5% false-negative and
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0% false-positive predictions. The false-negative rate can be dropped to zero by fusing and
coupling both architectures. The binary damage classification is taken from the first system,
the high-resolution position estimation by the second or by the first if the second system
cannot find a damage.

There are still a lot of questions and evaluations to be done:

• Measurement and processing of more reference data with a broader range of different
damage locations, mounting technologies, and environmental variations;

• Considering experiments with more than one damage (training and inference);
• Enhancing data augmentation beyond Monte Carlo simulation;
• Applying the methods to carbon fibre laminate plates with real impact damages;
• More rigorous investigation of the influence of sensor density, sensor failure, and

sensor variations on prediction results;
• Implementing the distributed MTMP approach on a real sensor network with embed-

ded low-resource computers.
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