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Abstract: Recently, feature extraction from user reviews has been used for requirements reuse to
improve the software development process. However, research has yet to use sentiment analysis
in the extraction for it to be well understood. The aim of this study is to improve software feature
extraction results by using sentiment analysis. Our study’s novelty focuses on the correlation
between feature extraction from user reviews and results of sentiment analysis for requirement reuse.
This study can inform system analysis in the requirements elicitation process. Our proposal uses
user reviews for the software feature extraction and incorporates sentiment analysis and similarity
measures in the process. Experimental results show that the extracted features used to expand
existing requirements may come from positive and negative sentiments. However, extracted features
with positive sentiment overall have better values than negative sentiments, namely 90% compared
to 63% for the relevance value, 74–47% for prompting new features, and 55–26% for verbatim reuse
as new requirements.

Keywords: software feature extraction; sentiment analysis; requirements reuse; requirements elicita-
tion; user reviews

1. Introduction

Requirement elicitation is the process of searching and acquiring stakeholders’ inter-
ests in a software development [1–3]. This aims to help produce new requirements from
relevant stakeholders [4], which can be taken from various sources and are available in
a range of formats. Sources of requirements can be from any relevant parties, experts,
current systems, and competitor systems [1]. Stakeholders may comprise system end-users,
top management, or external interested parties, such as regulators [5]. Techniques that
are commonly used in requirement elicitation are open/closed interviews, scenarios, use
cases, observations, questionnaires, brainstorming, prototyping, focus group discussions,
and joint application development (JAD) workshops [6]. It is widely recognized among
researchers and industry practitioners that software projects are very prone to failure
when the requirements elicitation process is not carried out properly [7,8]. In the soft-
ware development life cycle (SDLC), this undertaking is challenging because it involves
socio-technical characteristics and changing requirements [9,10], and because there may
be problems of ambiguity and tacit knowledge transfer [11,12]. Such problems, if found
too late, can lead to high rework costs because they necessitate modifications in other
processes [4,13].

Different software products in the same area often have similar requirements. The
reuse of these requirements can reduce costs in the elicitation process [14]. Requirements
reuse could be from formal [15] or informal sources [16], product description sources [17],
user reviews [18–20], expert reviews [18], social media [21,22], and online news [5,23].
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Aside from developing the mobile application ecosystem, user reviews on Google Play
are becoming increasingly popular to gather requirement reuse [18,24], requests for im-
provements [25], and feedback on specific features [26]. App users continually post a large
number of reviews per day, addressed to both developers and user communities. When
addressed to developers, reviews could be either appreciations, complaints, bug reports,
or new feature requests [27]. User reviews are written in natural language and so natural
language preprocessing (NLP) is used to extract software features from user reviews [28].

Although extensive research has been carried out to analyze user reviews, only lim-
ited studies use sentiment analysis in the software feature extraction. Sentiment anal-
ysis can understand the interests and emotional responses from product users [29,30].
Zang et al. [31] used sentiment analysis in analyzing reviews of mobile users, whereas
Panichella et al. [32] classified application reviews relevant to software maintenance and
evolution. Chen et al. [33] mined mobile app reviews to extract the most informative infor-
mation from users. Guzman and Maalej [26] assisted developers in assessing user reviews
about application features in order to identify new requirements or plan for future releases.

However, none of the research above looked into the use of sentiment analysis in
examining the extracted features’ relevance and its influence on the decision-making
of new requirements. System analysts’ domain knowledge vary in levels and this may
jeopardize the requirements’ completeness. This information is vital for system analysts in
the requirements elicitation process as they can use the results to verify the requirements
and improve the completeness.

Using user reviews data, this study aims to use sentiment analysis to obtain a com-
prehensive point of view of requirement reuse. The research questions are as follows
RQ1: What is the correlation between feature extraction and sentiment analysis in terms of
acquiring relevant requirements? RQ2: What is the correlation between feature extraction
and sentiment analysis in informing system analysts in the decision-making of new require-
ments? RQ3: What is the correlation between feature extraction and sentiment analysis
pertaining to verbatim reuse of extracted features as new requirements?

2. Materials and Methods

This study aims to provide a comprehensive requirement report by using sentiment
analysis based on user reviews on Google Play. We use the initial requirements made by
the system analyst as the system input. The requirements are then optimized by using the
outcomes of feature extraction from user reviews available on Google Play.

2.1. Research Framework

The research procedure is shown in Figure 1. The pre-processing steps for handling the
initial requirements are carried out by tokenizing, case folding, and removing stop words.
The pre-processing stage for preparing user review data includes data cleaning, spelling
normalization, sentence tokenization, and part-of-speech (POS) tagging. Software feature
extraction with POS chunking is carried out based on the POS tag pattern. Subsequent to
this, the data were treated with case folding, lemmatization, and stop words elimination.
Sentiment analysis is conducted on the data by calculating the polarization and subjectivity.
The similarities between features from the initial requirements list and user reviews are
then calculated to produce the requirements report. This report provides a general outline
of the new relevant features and their sentiment analysis. The system analysts could then
use this report as a basis for the decision-making.

2.2. Data

The data required in this study consisted of the initial requirements created by the
system analysts and the extracted features from user reviews on the Google Play. We used
the earthquake and the e-marketplace apps as case studies. Data were collected from the
requirements document and user reviews.
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Figure 1. The research framework.

2.2.1. Software Requirements Documents

A list of requirements was used as an initial input to the system. Ten system analysts
composed the requirements document using specific cases, which resulted in a list of
functional requirements. The information used to make this document was obtained from
several sources. Table 1 shows an example of a list of requirements in the requirements
document.

Table 1. List of requirements.

# Software Feature for Earthquake App Software Feature for E-Marketplace App

1 Notification when the earthquake happened. Users can sign up for a new account.
2 Notification of the aftershocks Users can filter search results.
3 Information for disaster relief. Users can sort search results.
4 Information about the earthquake location. Users can add a product to the shopping cart.
5 Information of the earthquake magnitude. Users can see the total amount to pay before checkout.
6 Display the time of the earthquake. Users can track delivery status.
7 Educational about actions to be taken when an earthquake occurs. Users can interact with the seller using the chat room.
8 Display data of the previous earthquakes. Users can see purchase history.
9 Information about first aid. Users can give a product review.
10 Information on how to deal with post-earthquake trauma. Users can report frauds or scams.
11 Latest news related to the earthquake.
12 Display the gathering point/safe zone in the user’s area.
13 Shows victim data (lost and found).
14 Displays emergency numbers.
15 Fundraising and donation information.
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2.2.2. User Reviews on Google Play

User reviews were sourced from similar applications relevant to the case study. Key-
words for the query were ‘earthquake’ and ‘e-marketplace’, entered into the search feature
on the Google Play. From the list of applications that were most relevant to these keywords,
the top 10–15 applications for each case study were selected. This search was conducted on
8 July 2020 for the earthquake app, and 18 November 2020 for the e-marketplace app. The
list of applications that were used in this study is shown in Table 2.

Table 2. List of Apps.

# List of Application Related to Earthquake List of Application Related to the E-Marketplace

1 My Earthquake Alerts—US & Worldwide Earthquakes by
jRustonApps B.V.

Amazon Shopping—Search, Find, Ship, and Save by
Amazon Mobile LLC

2 Earthquake Tracker—Latest quakes, Alerts & Map by
trinitytech.com.tr

eBay—Buy, sell, and save money on your shopping by
eBay Mobile

3 LastQuake by EMSC-CSEM Shopee by Shopee

4 Info BMKG by Badan Meteorologi, Klimatologi, dan Geofisika Lazada—Online Shopping App by Lazada Mobile

5 Earthquake Alert! by Josh Clemm AliExpress by Alibaba Mobile

6 Volcanoes & Earthquakes by VolcanoDiscovery ZALORA—Fashion shopping by
Zalora South East Asia Pte Ltd.

7 Earthquakes Tracker by DoubleR Software Tokopedia—Bebas Ongkir by Tokopedia

8 Earthquakes by KB@ Wish—Shopping Made Fun by Wish Inc.

9 Earthquake Network—Realtime alerts by Francesco Finazzi Carousell: Snap-Sell, Chat-Buy by Carousell

10 EarthQuake—Map & Alerts by Francesk Xhaferri Bukalapak—Online Marketplace by PT Bukalapak.com

11 PH Weather And Earthquakes by droidgox

12 Earthquake Network Pro—Realtime alerts by
Francesco Finazzi

13 Earthquake Plus—Map, Info, Alerts & News by
Slava Barouline

14 EQInfo—Global Earthquakes by gempa GmbH
15 Earthquake by Appendroid

User reviews from 15 applications on Google Play were collected using the Python li-
brary google-play-scraper 0.1.1 (https://pypi.org/project/google-play-scraper/, (accessed
on 1 March 2021)). Data extracted from user reviews in each application was stored in
plain text format. From the 15 earthquake-related applications extracted, and 17,133 user
reviews were gathered.

2.3. Pre-Processing

The data collected were raw data that need processing. Since the requirements docu-
ment and user reviews had different data characteristics, it was necessary to carry out the
data pre-processing separately.

2.3.1. The Requirement Document

The pre-processing for the requirement document involved sentence tokenizing, case
folding, and stop word eliminating. A sentence tokenizer was used to separate functional
requirements written in the requirement document. Case folding was used to change
all letters in the requirement list data into lowercase. Stop words are the most common
words in languages, such as ‘the’, ‘a’, ‘on’, ‘is’, and ‘all’. These words do not have any
significance and are removed from the text. We used the stop word list provided by the

https://pypi.org/project/google-play-scraper/
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Natural Language Toolkit (NLTK) library [34]. Examples of the pre-processing for the
requirement document are shown in Table 3.

Table 3. Examples of implementing pre-processing in the requirements document.

# Requirements Case Folding The Stop Words Removal

1. Notification when earthquake happened. Notification when earthquake happened. Notification earthquake happened
2. Notification of the aftershocks Notification of the aftershocks Notification aftershocks
3. Information of disaster relief. Information of disaster relief. Information disaster relief
4. Information of the earthquake location. Information of the earthquake location. Display map earthquake location.
5. Information of the earthquake magnitude. Information of the earthquake magnitude. Information earthquake magnitude

2.3.2. User Reviews

The pre-processing of user reviews data was performed through data cleaning,
spelling normalization, tokenization, POS tagging, and stop word removal. Data clean-
ing was performed to remove unnecessary characters to reduce noise, such as hashtags
(#), URLs, numbers, certain punctuation marks, and other symbols. Data cleaning was
performed because many user reviews contain irrelevant characters, such as emojis or
excessive dots. This was done by using the string encoding function with the parameters
‘ignore’ and ‘ascii’ so that characters outside of ASCII were eliminated from the text. Table 4
shows an example of the data cleaning implementation.

Table 4. Example of data cleaning.

No Original Sentences After Data Cleaning

1. Love this app
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Good for visual people like me gives you a good idea of
energy movement.

Spelling normalization is the process of correcting words that are nonetheless in-
correctly written or abbreviated. For example, the words ‘notification’ and ‘notif’ have
the same meaning. However, because ‘notif’ is an abbreviation that is not recorded in
dictionaries, the word ‘notif’ is considered non-valuable. Therefore, the word ‘notif’ needs
to be rewritten as ‘notification.’ Abbreviations such as ‘aren’t’ also need to be normalized
into ‘are not.’ Spelling normalization is done using the spell function in the NLTK library.
The example of spelling normalization is shown in Table 5.

In this study, the sentiment value was calculated in each sentence. The sentence
tokenization divided user reviews into several sentences using the sent_tokenize function
from the NLTK library, which splits texts into sentences. Meanwhile, POS tagging functions
in NLP automatically labeled words into their parts of speech. For example, in the sentence
“I build applications”, there is a label PP = pronoun, VV = verb, and NN = noun. The
system receives the input in the form of a sentence, and the output is be “I/PP build/VV
applications/NN.” POS tagging was performed using the pos_tag function in the NLTK
library. Table 6 shows an example of POS tagging process in the sentences.
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Table 5. Example of spelling normalization.

No Original Sentences After Spelling Normalization

1. Nice application it have good info for earthquake and
tsunami and updates regulrly.

Nice application it have good info for earthquake and
tsunami and updates regularly.

2. Great notiification on my alert sound Has good data on
earthquakes!

Great notification on my alert sound Has good data on
earthquakes!

3. I check my earthquake alerts constanly. I check my earthquake alerts constantly.

4. Helpfull for Disaster Management. Helpful for Disaster Management.

Table 6. POS Tagging in sentences

No Sentence POS Tag Description

1. Good for basic notifications only. [(‘Good’, ‘JJ’), (‘basic’, ‘JJ’),
(‘notifications’, ‘NNS’), (‘.’, ‘.’)]

JJ: Adjective

NNS: Noun, plural

2.
Needs to have ability to set
multiple alarms.

[(‘Needs’, ‘NNP’), (‘ability’, ‘NN’),
(‘set’, ‘VBN’), (‘multiple’, ‘JJ’),
(‘alarms’, ‘NNS’), (‘.’, ‘.’)]

NNP: Proper noun, singular

NN: Noun, singular or mass

VBN: Verb, past participle

JJ: Adjective

NNS: Noun, plural

3.
I want to be notified of lesser
magnitude quakes in my area and
greater worldwide.

[(‘I’, ‘PRP’), (‘want’, ‘VBP’), (‘notified’,
‘VBN’), (‘lesser’, ‘JJR’), (‘magnitude’,
‘NN’), (‘quakes’, ‘NNS’), (‘area’, ‘NN’),
(‘greater’, ‘JJR’), (‘worldwide’, ‘NN’),
(‘.’, ‘.’)]

PRP: Personal pronoun

VBP: Verb, non-3rd person singular present

VBN: Verb, past participle

JJR: Adjective, comparative

NN: Noun, singular or mass

NNS: Noun, plural

4. Also a setting for specific radius
for near me

[(‘Also’, ‘RB’), (‘setting’, ‘VBG’),
(‘specific’, ‘JJ’), (‘radius’, ‘NN’),
(‘near’, ‘IN’), (‘.’, ‘.’)]

RB: Adverb

VBG: Verb, gerund or present participle

JJ: Adjective

NN: Noun, singular or mass

IN: Preposition or subordinating conjunction.

2.4. Sentiment Analysis

Sentiment analysis gives the quantitative values (positive, negative, and neutral) to
a text representing the authors’ emotions. User reviews are calculated for polarity and
subjectivity using the sentiment feature. We employed the TextBlob library in the analysis
sentiment to determine the value. The polarity value lies in the range of [−1, 1], where
1 means a positive sentiment and −1 means a negative sentiment. Meanwhile, the value
of subjectivity lies in the range of [0, 1], where 1 means an absolute subjective statement
or in the form of opinion, and 0 means an absolute objective statement or in the form of
facts [35]. An example of value assignment can be seen in Table 7.

2.5. Software Feature Extraction

Software feature extraction was performed to obtain the requirements/features from
user reviews. This was done by performing POS chunking. The results were then processed
again by case folding, lemmatization, and stop word elimination.
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Table 7. Example of sentiment analysis results on user reviews.

No User Reviews Polarity/Sentiment Subjectivity

1. Great notifications on my alert sound Has good data on
earthquakes!

0.692 0.583

Positive Subjective

2. Nice application it has good info for earthquake and tsunami
and updates regularly.

0.65 0.8

Positive Subjective

3. That is not good for immediate reporting, you can turn off that
function, but would allow people to get info for recent quakes.

−0.175 0.425

Negative Objective

4. My only problem with this application is the type of font used
is difficult to read on my android phone.

−0.25 1

Negative Subjective

2.5.1. POS Chunking

POS chunking is a phrase in a sentence extracted using the POS tag pattern with a
regular expression. The POS tag pattern containing nouns, verbs, and adjectives is extracted
into a phrase to bring out the features. For example, the terms ‘voice alerts’ and ‘satellite
maps’ represent a software feature. In this study, the POS tag pattern used to extract the
software features (SFs) are shown in Figure 2. After SFs were extracted, we also needed to
define VERB (a group of verbs), NC (noun phrases), and NP (a group of NC). Explanation
of the POS tag set, and regular expression code used in this study is shown in Table 8. Penn
Treebank POS [36] was used in this study.
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Figure 2. POS chunking pattern.

An example of a parse tree from POS chunking results can be seen in Figure 3. We
considered all phases with SF tags. In the example, there are two phrases with SF tags,
namely ‘have the ability’ and ‘set multiple alarms’. The examples of software feature
extraction are shown in Table 9.
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Table 8. Regular expression and part-of-speech tags syntax.

POS Tag/Expression Abbreviation

* Zero or more occurrences
? Zero or one occurrences
+ One or more occurrences
| Or
< > Word boundaries
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
DT Determiner
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
CC Coordinating conjunction
IN Preposition or subordinating conjunction
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural

Table 9. Examples of software feature extraction.

No Original Sentences Software Features

1. Needs to have ability to set multiple alarms.
Have ability

Set multiple alarms

2. I want to be notified of lesser magnitude
quakes in my area and greater worldwide. Be notified of lesser magnitude quakes

3. Good for basic notifications only. Good for basic notifications only.

4.
This application helps us identify the ferocity
of these quakes and puts us at ease knowing
the aftershocks are lower than the initial quake.

Identify the ferocity of these quakes

At ease knowing the aftershocks are
lower than the initial quake

2.5.2. Case Folding, Lemmatization, and Stop Words

The feature extraction results from the POS chunking process were then processed by
case folding, lemmatization, and stop word elimination. Case folding aims to change all
letters in software feature data to lowercase, by calling the lower() function. Lemmatization
aims to group words with different forms into one item. In this process, word affixes are
removed to convert words into the basic word forms. For example, the words ‘mapping’,
‘maps’, and ‘mapped’ are changed to their root form ‘map’. This process uses the lemmatize
function in the WordNet Lemmatizer from the NLTK library. Examples of the application
of case folding, lemmatization, and stop word elimination are shown in Table 10. The
frequency of software features is recorded to know how many times a feature appears. This
determines the importance of a software feature.

2.6. Software Feature Similarity

Similarity calculation aims to determine which software features extracted from user
reviews are related to the features in the requirement document. The similarity has a value
range of 0–1, indicating the similarity or closeness of two words, phrases, or sentences. The
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similarity was assessed using the similarity function from the spaCy library [37]. SpaCy
uses the word2vec approach to calculate the semantic similarity of words [38]. This process
is done by finding the similarity between word vectors in the vector space. The ‘en-core-
web-md’ vector model from the spaCy library was used in this process. If the similarity
value reaches the threshold of 0.5, then the extracted software feature is considered related
to the existing feature. Please note that this threshold may need to be adjusted based on
the data characteristics and the real-world conditions.

Table 10. POS Tagging in Sentences.

No SF Case Folding Lemmatization Stopwords

1. have ability have ability have ability ability

2. set multiple alarms set multiple alarms set multiple alarm set multiple alarm

3. be notified of lesser
magnitude quakes

be notified of lesser
magnitude quakes

be notified of lesser
magnitude quake

notified lesser
magnitude quake

4. Good for basic
notifications only.

good for basic
notifications only

good for basic
notification only good basic notification

5. identify the ferocity of
these quakes

identify the ferocity of
these quakes

identify the ferocity of
these quake identify ferocity quake

6.
at ease knowing the
aftershocks are lower than
the initial quake

at ease knowing the
aftershocks are lower than
the initial quake

at ease knowing the after
shock are lower than the
initial quake

ease knowing after shock
lower initial quake

2.7. Requirement Report

Requirement report displays the results of the extraction in a structured format,
generated using a data frame from the Pandas library. The requirement report shows the
software features, the polarity values, the subjectivity values, the similarity values, and
the software feature frequencies. Polarity and subjectivity values were further divided
into minimum, maximum, and average. The collected software features may come from
different user review texts and may have different sentiment values. The sentiment scores
were distributed by groups by function on the data frame. The argument’s minimum,
maximum, average values are displayed in the polarity and subjectivity columns. An
example of a requirement report can be seen in Table 11.

2.8. Evaluation

The evaluation seeks to analyze the extracted software features’ characteristics based
on the polarity and subjectivity values. We also assessed the similarity value as a compari-
son to extend the analysis results. The focus of evaluation in this study is to quantify:

RQ1: The correlation between feature extraction and sentiment analysis in terms of acquiring
relevant requirements.

RQ2: The correlation between feature extraction and sentiment analysis in informing system
analysts in the decision-making of new requirements.

RQ3: The correlation between feature extraction and sentiment analysis pertaining to verbatim
reuse of extracted features as new requirements.

To compare the data, a questionnaire was used. Systems analysts were asked to
evaluate whether or not the system’s software features are relevant to the requirement
documents, whether the extraction results prompt to new features addition, and whether
the features are to be use verbatim as new requirements. We employed ten system analysts
who previously composed the requirements document. The questionnaire was prepared
based on the requirements report. This questionnaire consists of extracted software feature
with positive and negative sentiments. The sentiments with high similarity values were
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also included in the comparison. The questionnaire displays the results of extraction—ten
positive phrases, ten negative phrases, and ten phrases with the best similarity values.
We generate a questionnaire according to the software feature that the application has
(15 questionnaires for the earthquake app and ten questionnaires for the e-marketplace
app). We ask three system analysts to evaluate each software feature based on research
questions (RQ1–RQ3). The consensus was reached based on a majority assessment results.
The data were then be further analyzed to see the sentiment correlation (polarity and
subjectivity), the relevance, the decision to change the requirements, and the list of new
features to be added.

Table 11. An example of a requirements report.

Initial Requirement: Notification When Earthquake Happened

No Software Feature Count Similarity Polarity Subjectivity

Min Max Mean Min Max Mean

High Similarity

1. immediate notification quake 1 0.83 0.00 0.00 0.00 0.00 0.00 0.00

2. tsunami alert 3 0.81 −0.35 0.47 0.04 0.00 0.67 0.42

3. earthquake trigger tsunami 2 0.80 0.00 0.00 0.00 0.90 0.90 0.90

4. set earthquake magnitude alert 2 0.79 0.00 0.00 0.00 1.00 1.00 1.00

5. see earthquake
happened nearby 1 0.77 0.00 0.00 0.00 0.00 0.00 0.00

Positive Sentiment

1. tsunami warning added 1 0.74 1.00 1.00 1.00 1.00 1.00 1.00

2. seismic report 1 0.72 1.00 1.00 1.00 1.00 1.00 1.00

3. geographical earthquake 2 0.69 0.80 0.80 0.80 0.75 0.75 0.75

4. monitoring seismic
activity worldwide 2 0.60 0.78 0.78 0.78 1.00 1.00 1.00

5. providing magnitude 1 0.57 1.00 1.00 1.00 1.00 1.00 1.00

Negative Sentiment

1. fake earthquake alarm 1 0.76 −0.50 −0.50 −0.50 1.00 1.00 1.00

2. magnitude earthquake 2 0.74 −0.80 0.00 −0.40 0.00 0.90 0.45

3. earthquake alarm bit annoying 1 0.68 −0.80 −0.80 −0.80 0.90 0.90 0.90

4. felt huge earthquake application
show nothing 1 0.63 −1.00 −1.00 −1.00 1.00 1.00 1.00

5. slow detect earthquake 2 0.62 −0.30 −0.30 −0.30 0.40 0.40 0.40

3. Results
3.1. Software Feature Extraction Methods

We compared the approaches used to decide which one was the best for the software
feature extraction. The approaches were POS chunking, Textblob, and Spacy (see Table 12).
We applied the POS tag pattern; the noun phrases function provided by the Textblob and
SpaCy libraries; and syntactic dependency attributes, such as dobj and pobj in SpaCy.
We compared the results from these with the results from manual tagging. We asked
two experts to tag software features from sample user reviews. The comparison results
show that the software feature produced by POS chunking has the best F-measure value
compared to other approaches, which indicates the effectiveness of the POS tag pattern
(See Figure 2). As such, we used POS chunking as the software feature extraction method
in this study.
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Table 12. Comparisons of software feature extraction methods.

Precision Recall F-Measure

TextBlob nounphrases 0.295 0.375 0.330
POS-chunking 0.303 0.785 0.437
Spacy dobj-pobj 0.133 0.321 0.188
Spacy pobj 0.125 0.178 0.147
Spacy dobj 0.133 0.142 0.137
Guzman and Maalej [26] 0.601 0.506 0.549
SAFE [17] 0.239 0.709 0.358

We also attempted to corroborate the comparisons by using other approaches. How-
ever, it should be noted that the data used for comparisons are those reported by the study,
so this data cannot be used as an apple-to-apple comparison. We used these comparisons
to check whether our approach has delivered similar results compared to other approaches.
The results show that the POS chunking is suitable for software feature extraction. An-
other important point to note is that we encountered the same problem as the previous
study [17,26], namely the low value of precision. The user review data has a non-standard
language format and does not always refer to software features.

3.2. Questionnaire Results

The software features results were separated based on their polarity (positive sen-
timent and negative sentiment). We added features with high similarity value as the
benchmarks as per standard of requirement reuse. The questionnaire required the respon-
dents to assess whether the feature extraction results are relevant, prompt the addition
of new requirements, and verbatim reuse of extracted features as new requirements. We
assume that the extracted features have some degree of relevancy to the initial requirements
and to new features addition. Figure 4 shows the questionnaire results.

From the highest relevance results, the features with high similarity have an average
of 95%, followed by positive sentiment at 90%. Negative sentiment scores are lower at 63%.
Whether or not the results prompt system analysts to update the existing requirements
list, the high similarity and the positive sentiment score an average value of 78% and 74%,
respectively. Meanwhile, the negative sentiment scores only 47%. In terms of adding new
requirements, the high similarity has the highest value at 82%, whereas the positive and
negative sentiment values score significantly lower at 55% and 22%, respectively.

The results of the questionnaire can be seen in Table 13, which maps the results of
feature extraction with positive, negative, and high similarity sentiment categories along
with the actual values of polarity, subjectivity, and similarity. We compared the value of
feature extraction that was rated ‘yes’ or ‘no’ by respondents to show their assessment on
the relevance value, the influence in the decision-making of adding new features, and the
verbatim addition of the outcomes as new features. In Figure 5, we compared the polarity,
subjectivity, and similarity values of the relevant features, prompt new requirements, and
verbatim reuse of new requirements. Based on Table 13 and Figure 5, an analysis of the
feature extraction sentiment analysis was carried out. The ‘yes’ response tends to have
a higher polarity value for features extracted compared to the ‘no’ responses in all three
categories. However, this does not apply in the high similarity category. High similarity
features tend to have a polarity value of 0.06–0.187 (having a positive sentiment value
but close to a neutral value). Additionally, there was a slight shift in the polarity value
towards a more neutral value for the positive sentiment, negative sentiment, and high
similarity when viewed regarding the relevance, the prompting of new requirements, and
the addition of features as new requirements. For example, in the positive sentiment group,
the polarity value for the relevance was 0.731, and this was lower at 0.715 in the prompting
new requirement category.
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Table 13. Results of the questionnaire.

Positive Sentiment Negative Sentiment High Similarity

Polarity

Relevance
Yes 0.731 −0.500 0.141

No 0.672 −0.547 0.060

Inspire new features
Yes 0.715 −0.488 0.132

No 0.680 −0.590 0.187

Add as a feature
Yes 0.721 −0.433 0.129

No 0.717 −0.575 0.181

Subjectivity

Relevance
Yes 0.685 0.658 0.381

No 0.599 0.659 0.455

Inspire new features
Yes 0.677 0.637 0.399

No 0.638 0.687 0.305

Add as a feature
Yes 0.698 0.566 0.412

No 0.651 0.712 0.354

Similarity

Relevance
Yes 0.664 0.638 0.769

No 0.623 0.630 0.802

Inspire new features
Yes 0.657 0.640 0.766

No 0.666 0.635 0.793

Add as a feature
Yes 0.658 0.647 0.772

No 0.668 0.633 0.782
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There was no clear pattern found in terms of relationship between relevance, prompt-
ing new requirements, and adding features verbatim as new requirements in the subjectivity
value. However, the high similarity group’s value had a higher objectivity value than the
positive and negative sentiment groups.

Meanwhile, the comparison of similarity values does not have a significant difference.
For example, the relevance value of high similarity was 0.769, while the similarity value for
the positive and negative sentiment group was 0.664 and 0.638, respectively. This can be
used as a basis to determine a similarity threshold value for the requirement reuse from
positive and negative sentiments.
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analysis pertaining to verbatim reuse of extracted features as new requirements.

4. Discussion
4.1. Findings Related to the Research Question

The following are the answers to the research questions.
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4.1.1. RQ1: What Is the Correlation between Feature Extraction and Sentiment Analysis in
Terms of Acquiring Relevant Requirements?

The features with positive sentiments, negative sentiments, and high similarity have
a high relevance level based on the questionnaire results; this means that all extracted
features are relevant to the initial requirements. This is because all extracted features have
been filtered by applying a specific similarity threshold. The average similarity value for
all extracted features is above 0.5. The average subjectivity value between features with
positive and negative sentiment is at least above 0.5. Meanwhile, the subjectivity value of
features with high similarity is consistently below 0.5. This means that the high similarity
feature has better objectivity than the features with positive and negative sentiments.

4.1.2. RQ2: What Is the Correlation between Feature Extraction and Sentiment Analysis in
Informing System Analysts in the Decision-Making of New Requirements?

This research question means whether the extracted features can inspire new ideas
for app features. As expected, the value is lower in comparison with the relevance value.
Features with positive sentiment and high similarity experienced an expected decline, but
negative sentiment features experienced a drastic decline. The average value of similarity
did not change significantly compared to RQ1. Meanwhile, the average subjectivity value
has a broader range than RQ1, which indicates a higher value of subjectivity, especially for
the positive and negative sentiment category.

4.1.3. RQ3: What Is the Correlation between Feature Extraction and Sentiment Analysis
Pertaining to Verbatim Reuse of Extracted Features as New Requirements?

This question seeks whether or not the systems analyst would be willing to reuse
the extracted features to revise the requirement document. For positive and negative
sentiment categories, the percentage results are lower compared to RQ2. Most the features
with negative sentiment score considerably lower, below 50%. Likewise, the features with
positive sentiment also score lower, although not as significant as that of the negative
sentiment. Meanwhile, the high similarity feature has a consistent value compared to the
RQ2. The subjectivity and similarity have the same pattern as RQ2.

4.2. Main Finding

The main finding from this research show that features with a high similarity outper-
formed the positive and negative sentiments in terms of acquiring relevant features. The
high similarity category has a consistent value of above 70% for relevancy; the positive
sentiment group can only offset this result. The value is lower in the prompting new re-
quirements category and in the category of using the features verbatim as new requirement.
Meanwhile, the value for the negative sentiment category is deficient, which means that
although it is possible to obtain relevant features based on negative sentiment, it is unlikely
to produce significant results. However, it should be noted that the results of feature
extraction can have negative or positive sentiment values; this applies to the relevant
feature category, prompting a similar new feature category, and adding verbatim as a new
feature category. To obtain the best results, filtration with a certain similarity threshold is
recommended, then, categorizing them under high similarity, positive sentiment, and neg-
ative sentiment. Thus, feature extraction for the requirement reuse that considers polarity
and subjectivity values can be shown to the analysis system. However, since each project
is unique, the primary determinant of feature reuse should involve human intervention,
hence comparing the results with the system analysts’ assessments.

4.3. Related Studies

Based on the previous studies, user reviews can provide excellent feedback. User
reviews may contain appreciations, bug reports, and new feature requests, which could
be useful for a software and requirements engineering development [27]. User reviews
in software development can be used in many ways. Jiang et al. [24] used online reviews
to conduct requirements elicitation. Guzman et al. [26] used user reviews to analyze an
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application feature systematically. Bakar et al. [18] extracted software user reviews to reuse
software features. Keertipati et al. [25] extracted application reviews to prioritize feature
improvements. In this study, user reviews are used to assist systems analysts in extending
the scope of the existing software requirements.

Previous research analyzes in more depth the opinions or sentiments of user reviews.
Jiang et al. [24] adopted a mining technique to extract opinions about software features.
Keertipati et al. [25] found how negative sentiment in software features helped develop-
ers prioritize features that needed improvement. Meanwhile, in this study, we provide
subjectivity and polarity scores for each extracted feature. The system analysts can choose
which features to be used for requirements reuse to expand existing software requirements.
Table 14 shows a comparison of this study with related research.

Table 14. Comparison with related research.

Jiang, et al. [24] Guzman et al. [26] Bakar, et al. [18] Keertipati et al. [25] Proposed Method

Objective Use online reviews to
requirements elicitation

Use user reviews to
help app developers
analyze user
opinions about
features.

Software features
reuse from user
reviews.

App reviews to
prioritize feature
enhancements using
sentiment analysis.

Extending the scope
of existing software
requirements using
sentiment analysis.

Input User reviews User reviews
User reviews, Legacy
requirements, and
Product descriptions

User reviews
User reviews and a
draft of software
requirements

Output
Evolutionary
Requirements
Document

High-level features
with sentiment score software feature List of features that

need to be improved.

The Requirements
report contains a list
of software features
along with the
sentiment value and
similarity attributes.

Feature Extraction
Techniques

Expanded version of
Syntactic relation-based
propagation approach
(SRPA+)

Natural Language
Processing (NLP)
collocation finding,
and
Latent Dirichlet
Allocation
(LDA) topic
modelling.

Feature
Extraction for Reuse
of Natural Language
requirements (FENL)

Feature identification
using POS Tag and
N-gram

Software feature
extraction using
POS-Tag and
Chunking

Sentiment Analysis
Techniques

Using existing
sentiment words rule to
assign polarity

Using SentiStrength -
Using LIWC
dictionary to analyze
emotion

Using sentiment
feature in Text Blob

4.4. Thread to Validity

The results of our study have limitations and should be considered within the study
context. The extracted software features have low precision, recall, and F-measure values,
which has been a problem in many studies. For this reason, we used selected features for
the respondents’ data to determine relevance, inspiring new features, and adding them
verbatim as new features.

We only measured a few samples from user reviews, which precludes us from filtering
the extracted software features based on their importance level. Another aspect to note
is the manual tagging done by the system analysts, which will vary when carried out in
other studies and by different people. This is because the definition of software feature will
differ from one to another depending on the research objectives. In our study, this issue
may impact the software feature’s extraction results, which are evaluated by the experts to
measure the relevancy. To solve this issue, in this study, we selected the ten best extraction
results with positive and negative sentiments, and with the best similarity compared to the
existing requirements.

To some extent, this study’s results still rely on human involvement as the main
determining factor in software feature selection. The domain may also become a limitation
as different domains will have different results. Finally, this study uses only two case
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studies with different domains. The results are similar but it cannot be guaranteed that the
results will be the same in other domains.

5. Conclusions

In this research, we performed software feature extraction from user reviews to extend
the existing software requirements by using sentiment analysis. The extraction results
were grouped based on the polarity, subjectivity, and similarity value. We evaluated
the correlation between software feature extraction results with regards to the polarity,
subjectivity, and similarity. This was done to enhance the requirements elicitation process.

Both extracted features with positive and negative sentiments can be used as a require-
ment reuse, primarily to expand the existing requirements. However, to obtain the best
results, we recommend that all extracted features are filtered based on the similarity value
by using a certain threshold. This is crucial in filtering out features that are not relevant
to the existing requirements. From this study, it can be concluded that features that have
positive or negative sentiments can be used to acquire the relevant requirements, to inform
the system analysts in determining new requirements, and reuse the extraction results
verbatim as new requirements. However, the positive sentiment group yields a better
performance than the negative sentiment group. In fact, the positive sentiment group has a
value close to the features with high similarity. The primary source for requirement reuse is
the feature extraction with a high similarity value. However, this does not mean we should
overlook the feature extraction based on the positive and negative sentiments because it
still provides the relevant information to help the determination of requirement reuse.

Further research should be undertaken to investigate the specific roles of the sentiment
analysis in the feature extraction and analysis. This includes the semantic meaning of a
feature, such as whether a feature has negative sentiment when the feature is not working,
incomplete, or has other issues.
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