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Abstract: In this paper, we propose a new data-driven framework for 3D hand and full-body
motion emotion transfer. Specifically, we formulate the motion synthesis task as an image-to-image
translation problem. By presenting a motion sequence as an image representation, the emotion can
be transferred by our framework using StarGAN. To evaluate our proposed method’s effectiveness,
we first conducted a user study to validate the perceived emotion from the captured and synthesized
hand motions. We further evaluate the synthesized hand and full body motions qualitatively and
quantitatively. Experimental results show that our synthesized motions are comparable to the
captured motions and those created by an existing method in terms of naturalness and visual quality.

Keywords: hand animation; body motion; skeletal motion; emotion; motion capture; generative
adversarial network; style transfer; user study

1. Introduction

Effectively expressing emotion is crucial to improve the realism of 3D character
animation. While animating facial expressions to reflect the character’s emotional states is
an active research area [1–4], less attention has been paid to expressing emotion by other
body parts, practically ‘the body language’. In this work, we propose a general framework
for synthesizing new hand and full body motions from an input motion, namely emotion
transfer, by specifying the target emotion label. Our objective is to create motions for the
character to present four emotions: anger, sadness, fear, and joy. Building on our pilot
study [5], we found that hand motion plays a vital role in computer animation since subtle
hand gestures can express a lot of different meanings and are useful for understanding
a person’s personality [6]. A classic example would be the character Thing T. Thing of
the “The Addams Family” which is a hand, and it can ‘act’ and express a lot of different
emotions solely by the fingers and hand movements. It is not surprising to see researchers
proposing frameworks [7,8] for synthesizing hand and finger movements based on the
given full-body motion to improve the expressiveness of the animation.

However, synthesizing hand motion is not a trivial task. Capturing hand motion
using an optical motion capture system is not easy as the fingers are in proximity, and the
labeling of the markers can be mixed up easily. As a result, most of the previous hand
motion synthesis frameworks are based on physics-based motion generation models [8–12].
Recently, more effective hand motion capturing approaches are proposed. Alexanderson et
al. introduce a new system for a passive optical motion capture system that can better obtain
correct markers labels of fingers in real time [13]. Han et al. [14] improve the difficulties
in marker labeling for the optical MOCAP system using convolutional neural networks.
While hand motion can be synthesized or captured using the approaches mentioned above,
those motions are always challenging to be reused because of the difficulties in transferring
the styles to improve the expressiveness in different scenes.
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This paper focuses on validating the effectiveness of the StarGAN-based emotion
transfer framework proposed in our pilot study [5], which consist of three main compo-
nents as illustrated in Figure 1: (1) converting motion data into image representation, (2)
synthesizing new image by specifying the target emotion label using StarGAN, and (3)
converting the synthesized image into motion data for animating 3D mesh models. In par-
ticular, we conducted a user study on evaluating how users perceived the emotion from the
hand motions captured in [5] and those synthesized by our method. The naturalness and
visual quality of the motions synthesized by our method are also evaluated and compared
with exiting work [15]. We further demonstrate the generality of the proposed framework
by transferring emotion on full-body 3D skeletal motions.

Figure 1. The overview of the proposed emotion transfer framework. (left) Convert motion data
to image format. (middle) StarGAN learn how to generate realistic fake image given a sample and
target domain label. (right) Obtain new motion data from the generated image

The contributions in this work can be summarized as follows:

• We proposed a new framework for transferring emotions in synthesizing hand and
full body skeletal motions, which is built upon the success of our pilot study [5].

• We conducted a user study to validate the perceived emotion on the dataset we
captured and open-sourced in our pilot study [5].

• We provide qualitative and quantitative results on the hand and full-body motion
emotion transfer using the proposed framework, showing its validity by comparing
them to captured motions.

2. Related Work
2.1. Hand Animation

Examples of hand animation can be easily found in various applications such as
movies, games, and animations. However, capturing hand motion using existing motion
capture systems is not a trivial task. There was no commercial or academic real-time
vision-based hand motion capture solution until a recent work presented by Han et al. [14].
As a result, most of the previous work focused on synthesizing hand motions based on
physics-based models. Liu [9] proposed an optimization-based approach for synthesizing
hand-object manipulations. Given the initial hand pose for the desired initial contact, the
properties of the object to interact and the kinematics goals, the 2-stage physics-based
framework will synthesize the reaching and object manipulation motions accordingly. An-
drews and Kry [10] proposed a hand motion synthesis framework for object manipulation.
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The method divides a manipulation task into 3 phases (approach, actuate, and release), and
each phase is associated with a control policy for generating physics-based hand motion.

Liu et al. [11] introduced an optimization-based approach to hand manipulation of
grasping pose. A physically plausible hand animation will be created by providing the
grasping pose and the partial trajectory of the object. Ye and Liu [8] proposed a physics-
based hand motion synthesis framework to generate detailed hand-object manipulations
which match seamlessly with the full-body motion with wrist movements provided as
the input. With the initial hand pose driven by the wrist movements, feasible contact
trajectories (i.e., contacts between the hand/fingers and the object) will be found by random
sampling at every time-step. Finally, detailed hand motion will be computed by using the
contact trajectories as constraints in spacetime optimization. Bai and Liu [12] presented
a solution to manipulate the orientation of a polygonal object using both the palm and
fingers of a robotic hand. Their method considers the physical properties such as collisions,
gravitational, and contact forces.

A PCA-based framework is proposed for data-driven approaches in [16] for gen-
erating detailed hand animation from a set of sparse markers. Jörg et al. [7] proposed
a data-driven framework for synthesizing the finger movements for an input full-body
motion. The methods employ a simple approach for searching for an appropriate finger
motion from the pre-recorded motion database based on the input wrist and body motion.
While a wide range of approaches for hand motion synthesis are presented in the literature,
less attention has been paid to synthesizing expressive hand motions using high-level and
intuitive control. Irimia et al. [15] proposed a framework for generating hand motion with
different emotion by interpolation in the latent space. For every hand motion captured
with different emotions, the hand poses are collected and projected to the latent space
using PCA. New motion can be created by interpolating the hand poses using the latent
representation. In contrast, our framework enables emotion transfer between different
hand motions.

2.2. Style Transfer for Motion

Motion style transfer is a technique used to convert the style of a motion to another
style, thus creating new motions without losing the primitive content of the original
one. An early work by Unuma et al. [17] proposed using Fourier principles to create
an interactive and real-time control of locomotion with emotion, and include cartoon-ish
exaggerations and expressions. Amaya et al. [18] introduced a model that could emulate
emotional animation using signal processing techniques. The emotional transform is based
on the speed and spatial amplitude of the movements.

Brand et al. [19] proposed a learned statistical model to synthesize styled motion
sequences by interpolating and extrapolating the motion data. Urtasun et al. [20] lowered
the dimension of the motion data by principal component analysis (PCA) and model the
style transfer as the difference between the features. Ikemoto et al. [21] edited the motion
using Gaussian process models of dynamics and kinematics for motion style transfer.
Xia et al. [22] proposed a time-varying mixture of autoregressive models to represent the
style difference between two motions. Their method learns such models automatically
from unlabeled heterogeneous motion data.

Hsu et al. [23] presented a solution for translating the style of a human motion by
comparing the difference of the behaviour of the aligned input and output motions using a
linear time-invariant model. Shapiro et al. introduced a novel method of interactive motion
data editing based on motion decomposition, which separates the style and expressiveness
from the main motion [24]. The method uses Independent Component Analysis (ICA) to
separate the style from the motion data.

Machine learning is applied to learn the style transfer from samples. Holden et al.
leveraged a Convolution neural network to learn the style transfer from unaligned motion
clips [25]. Smith et al. proposed a compact network architecture for learning the style
transfer, which focuses on pose, foot contact, and timing [26]. To learn a motion controller
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with behavior styles applicable to unseen environment, Lee and Popović proposed an
inverse reinforcement learning-based approach that works with a small set of motion
samples [27].

Until now, the only research of style transfer was for a full-body character. This paper
will propose a general method to full body character and the human hand. While we share
a similar interest with the pilot study [15] on synthesizing hand motion with emotion,
the previous work is technically interpolating emotion strength instead of emotion transfer.

Image Style Transfer

Inspired by the encouraging results in image style transfer, we proposed formulating
the emotion transfer for motion synthesis as an image-to-image translation problem. In this
section, we review the recently proposed approaches in image style transfer.

Selim et al. [28] presented a new technique of style transfer that uses Convolutional
Neural Networks (CNN) for extracting features from the input images. The method uses
style transfer to transfer the features from a portrait painting to a portrait image. The
method is generic and different kinds of styles can be transferred given the training data
contains the required styles. To maintain the integrity of the facial structure and to capture
the texture from the painting, the method uses spatial constraints such as the local transfer
of the colour distribution. Elad et al. [29] presented a method for transferring the style
from painting to image indifferently of the portrayed subject. The method uses a fast
style transfer process that gradually changes the resolution of the output image. To obtain
the result, the creators applied multi-patch sizes and different resolution scales of the
input source. The method is also able to control the colour pallet for the output image
depending on the desire of the developer. Matsuo et al. [30] presented another style transfer
method that uses CNN by combining a neural style transfer method with segmentation to
obtain a partial texture style transfer. The method uses a CNN-based weakly supervised
semantic segmentation technique and transfers the style to selected areas of the picture
while maintaining the image’s structure. The method uses neural style transfer to change
the style of the selected part of the image. Unfortunately, a problem appears when the
sources fail to map the style transfer, changing the background of the image even when
the user does not select that area. In this work, we will represent the motion features as an
image and CNN will be used in the core network.

3. Methodology

In this section, the proposed emotion transfer framework will be presented, and the
overview is shown in Figure 1. Firstly, we introduce two datasets, hand motion database
captured using Senso Glove DK2 and a full-body motion database captured using the
MOCAP system (Section 3.1). These two databases contain motions with various emotional
states and types. Next, the captured motions are standardized (Section 3.2) as a pre-
processing step for the learning process. The motion data will then be transformed into an
RGB image representation for learning the emotion transfer model using StarGAN. The
StarGAN model learns how to generate a new image given a target domain label and the
input image (Section 3.3). Finally, the synthesized new image will be converted to the joint
angle/position space for generating the final 3D animation (Section 3.3.3). The details of
each step will be explained in the following subsections.

3.1. Motion Datasets

To learn how the motion features are mapped to emotion status, motion data is
collected for training the models to be proposed in this paper. In particular, we used two
datasets, which include the hand motion dataset collected in our pilot study [5] for hand
motion synthesis, and the 3D skeletal motions in Body Movement Library [31] for full-body
motion synthesis.
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3.1.1. Hand Motion with Emotion Label

We start with the details from the hand motion dataset which were captured in our
pilot study [5]. High-quality 3D skeletal hand motions were captured using the Senso
Glove DK2 (https://senso.me/ accessed on 10 February 2021). There are 35 motions in
total, with seven different action types, including Crawling, Gripping, Patting, Impatient,
Hand on Mouse, Pointing, and Pushing. Each motion type is captured using five different
types of emotions and their characteristics are listed on Table 1. Readers are referred to [5]
for the details of the data capturing process.

Table 1. The 5fivetypes of emotions used in the hand motion dataset [5] and their characteristics.

Emotion Characteristics

Angry exaggerated, fast, large range of motion
Happy energetic, large range of motion
Neutral normal, styleless motion

Sad sign of tiredness, small range of motion
Fearful asynchronous finger movements, small range of motion

In this dataset, each hand motion at each frame is represented by a vector Pj

Pj = [p0
j,x, p0

j,y, p0
j,z, ..., pn−1

j,x , pn−1
j,y , pn−1

j,z ] (1)

where j is the index of the frame, n is the joint number in the 3D hand skeletal structure
and n = 27 in all of the data we capture, and p contains the joint rotations on the x,y and z
axes, respectively. Therefore, each keyframe is a 81-dimensional feature vector. The hand
translation was discarded as in [5,15] due to the inconsistent global locations of the hand in
the captured motions.

3.1.2. Full Body Motion with Emotion Label

Here, the details of the full-body motion dataset are presented. The Body Movement
Library [31] were captured with the Falcon Analog optical motion capture system. To cap-
ture the emotion expressions naturally from the subjects, 30 nonprofessional participants
(15 females and 15 males) with an age range from 17 to 29 years old were recruited. Three
motion types, knocking, lifting, and throwing, are included in our experiment. A skeletal
structure with 33 joints was used in all of the captured motions. Please note that only the
3D joint positions in Cartesian coordinates are available. There are three motion types in the
dataset, including knocking, lifting and throwing. Each subject performed each motion type
with four different emotion status: Neutral, Angry, Happy, and Sad. The dataset contains
4080 motions in total.

3.2. Standardizing Motion Feature

Due to the environmental setting and personal style, the captured hand motion data
varies significantly representation both spatially and temporally. Data standardization
(or normalization) is used to facilitate the learning process in the later stage. While some
advanced techniques such as Recurrent Neural Network (RNN) can be used to model data
sequences with variations in length, such a method requires a significant amount of data to
train the model, which is not feasible with the dataset that have been collected.

To handle the temporal difference, keyframes are extracted from the motion by curve
simplification to facilitate the learning process. By considering the reconstruction errors
when interpolating the in-between motion using spline interpolation, we found the optimal
numbers of keyframes for every type of motion. For hand motion, good performance can
be achieved by extracting nine keyframes as in [5].

As a result, each hand motion sequence is represented by a vector M in the joint
angle space:

M = [Pk0, ..., Pkk−1, Pkk] (2)

https://senso.me/
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where k is the total number of keyframes and k = 9, Pki is the i-th keyframe and Pk has the
same representation as in P (Equation (1)).

For full-body motions, we empirically found that the optimal number of keyframes of
knocking, throwing, lifting are 13, 20, and 13, respectively. In [32], Chan et al. observed
that people express different emotions by using different speeds and rhythms. Such an
observation aligns well with the characteristics we found in hand motions as presented in
Table 1. Specifically, there is a significant difference in the speed of body movements. For
example, the arm of the subject swings faster in the angry throwing motion than the sad
one (see Figure 8). To better represent this key characteristic, we compute the joint velocity
between adjacent keyframes as follows:

vi+1 = (ki+1 − ki)/∆t (3)

where ∆t is the duration between the two adjacent keyframes. Therefore, each keyframe is
represented by 3D joint positions and velocities and results in a 99 + 99 = 198-dimensional
feature vector. The full body motion sequence can then be represented as a sequence of
keyframes as in Equation (1).

3.3. Emotion Transfer

Generative adversarial network (GAN) based framework gain much attention in the
area of Computer Graphics. Encouraging results are found in style transfer frameworks
such as CycleGAN [33] and DualGAN [34] for image-to-image translation. These results
inspire us to adopt such kind of framework for emotion transfer for skeletal motion
synthesis tasks.

In the rest of this section, we will first explain how to represent a motion in the
format of an image in Section 3.3.1. Next, the justifications on adopting the StarGAN [35]
framework will be given in Section 3.3.2. Finally, a new motion will be reconstructed from
the synthesized image (Section 3.3.3).

3.3.1. Representing Motion as an Image

To use the Image-to-Image domain translation framework for motion emotion transfer,
we will show how to represent a motion sequence as an image. The x, y, and z components
(i.e., angles for hand motions and positions for full-body motions) are arranged chrono-
logically as the RGB components of the image. Each frame of a motion is represented as
a row of an image, while each joint of a motion is represented as a column of an image.
Hence, each keyframed hand motion M will be arranged as a 3-channel (27× k) matrix.
On the other hand, each keyframed full-body motion M f ull will be arranged as a 3-channel
(66× k) matrix. The values in the 3-channel matrix are then re-scaled into the range of
[0, 255], which is the typical range of RGB value, as follows:

vm
i,c = round(255×

(pm
i,c − pmin)

(pmax − pmin)
) (4)

where m is the joint index, i is the keyframe index, c ∈ {x, y, z} represents the channel
index, Vm

i,c is the normalized pixel value, pmax and pmin are the maximum and minimum
values among all the joint angles/positions/velocities existed in the dataset. Noted that
the images are saved in Bitmap format to avoid data loss during compression. Examples of
the image representation of the motions are illustrated in Figures 2 and 3. It can be seen
that the different motions are represented by different image patterns, which will be useful
for extracting discriminative patterns in the learning process. From Figure 3, we can see
that the main difference between the four emotions is at the right-hand side of the images,
which is about joint velocity.
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Figure 2. Examples of the image representation of neutral hand motions. From left to right: Crawling,
Gripping, Impatient, Patting, Pointing and Pushing.

Figure 3. Examples of the image representation of full body motions (throwing) under different
emotions. From left to right: Angry, Happy, Neutral and Sad.

When converting the motion into an image, sequential ordering is used. Such an
approach is commonly used for arranging the data of each joint [36]. In this study, our main
focus is to evaluate the performance of adapting the StarGAN network for emotion transfer
in motion synthesis tasks. As a result, we directly use the original StarGAN network
architecture which contains 2D Convolutional layers. Since 2D Convolution focuses on
local neighbours (i.e., image pixels nearby) only, using the sequential ordering method can
result in sub-optimal results when representing the tree-like skeletal structure for full-body
and hand motions as the neighbouring joints are not necessarily close-by after converting
into the image representation. While encouraging results are obtained in this study, we will
explore the use of other approaches to better represent motions in the StarGAN framework
in the future, such as Graph Convolutional Networks (GCNs) [37] and its variants [38]
which demonstrated better performance in modelling human-like skeletal motions.

3.3.2. Emotion Transfer as Image-to-Image Domain Translation

One of the potential applications of the proposed system is to create new motion
by controlling the emotion labels. To support the translation between multi-domain and
considering the robustness and scalability, StarGAN [35] is adapted to translate motion
from one emotion to another emotion while preserving the basic information of the input
motion. Compared to typical GANs with cycle consistency losses such as CycleGAN [33]
and DualGAN [34] for style transfer, StarGAN [35] can perform image-to-image translations
for multiple domains using only a single model, which is suitable for transferring different
types of emotions. Readers are refereed to our pilot study [5,35] for the technical details.

3.3.3. Reconstructing Hand Motion from Generated Images

Since the output of StarGAN is an image, we need to reconstruct it to obtain the new
motion (i.e., joint position/angle space). The first step is to re-scale the RGB values:

pm
i,c = (

vm
i,c

255
× (pmax − pmin)) + pmin (5)

where vm
i,j is the pixel value for the c-th channel of the m-th row at i-th column on the

synthesized image, pmax and pmin are same values as in Equation (4). Next, we rearrange
the pixel values to convert the image representation back to the keyframed motion M. Then
the duration between two adjacent keyframes can be approximated by using joint velocity:

∆t = (ki+1 − ki)/vi+1 (6)

Finally, the new motion is produced by applying spline interpolation on those keyframes.
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4. Experimental Results

To evaluate the effectiveness of the proposed emotion transfer framework, a wide
range of experiments are conducted to assess the performance qualitatively and quanti-
tatively. In particular, we first carried out a user study (Section 4.1) to understand how
users perceive the emotions from the captured and synthesized hand motions. Next, a
series of hand and full body animations are synthesized to compare different emotions
visually (Section 4.2). To demonstrate the framework’s practicality, we employ a leave-one-
out cross-validation approach to split the data into training, and testing sets. The results
presented in the section are synthesized from unseen samples. We employed a leave-one-
out cross-validation approach for hand motions as in the existing approaches [5,15]. For
each action type, we only captured one sample for each emotion type in the hand motion
dataset. As a result, the leave-one-out cross-validation is the best data-split approach we
can use in order to (1) maximize the number of training data, while (2) keeping the testing
sample to be ‘unseen’ during the training process. For full-body motions, the motions
of 26 subjects are used for training, while the motions of the remaining four subjects are
used for synthesizing the results. The readers are referred to the video demo submitted as
supplementary materials for more results.

4.1. User Study on Hand Animations

A user study was conducted to evaluate how users perceived the emotion from each
hand animation created by either the captured motions or synthesized by our proposed
method. The study was published online using Google Form, and the animations are
embedded in the online form to facilitate the side-by-side comparison. We invited a group
of final year undergraduate students who are studying in the Computer Science programme.
These particular students completed a course on Computer Graphics and Animation
recently, although the course does not cover any specific knowledge of hand animation
and emotion-based motion synthesis. The range of age in the group is 20–25. At the end of
the study, 30 completed sets of the survey were received. The study is divided into several
parts, including the emotion recognition from the captured dataset (Section 4.1.1) and
synthesized animations (Section 4.1.2) for validating whether the participants perceived
the emotion correctly, and the evaluation of naturalness and visual quality of the captured
motions, synthesized motions and results created by Irimia et al. [15] (Section 4.1.3).
The details are explained in the following subsections.

4.1.1. Evaluating the Emotion Perceived from the Captured Hand Motions

To evaluate how users perceive emotion from hand animation, we first analyze the
accuracy of emotion recognition from the captured hand motions. Specifically, we randomly
select four hand animations from the capture motions, which include one motion in each
emotion category (i.e., Angry, Happy, Sad, and Afraid). Please note that no briefing, such as
the characteristics for each emotion class as listed on Table 1, is provided to the users. As a
result, the users labeled each hand animation based on their interpretation of the emotions.
For each animation, the neutral emotion of the hand animation is shown to the user first.
Next, the user was asked to choose the most suitable emotion label for the hand animation
with emotion. The averaged and class-level emotion recognition accuracies are reported in
Table 2 (see the ‘Captured’ column).

The averaged recognition accuracy is 65.83%, which shows that the majority of the
users perceived the correct emotion from the captured hand motions. The class-level
recognition accuracies further show the consistency among all classes. In particular, a good
recognition accuracy at 70.00% was achieved in both Angry and Sad classes. To further
analyze the results, the confusion matrix of the emotion recognition test is presented in
Table 3. It can be seen that the recognition accuracy of the Happy class is lower than other
classes. This is mainly caused by the inter-class similarity between happy and angry since
the motions in both classes have a large range of motion. Although ambiguity can be
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found between motions from different classes, the results highlight the correct recognition
is dominating the results.

Table 2. Emotion recognition accuracy (%) on the captured and synthesized hand motions in the
user study.

Emotion Captured Synthesized

Angry 70.00% 73.33%
Happy 60.00% 60.00%

Sad 70.00% 60.00%
Fearful 63.33% 70.00%

Average 65.83% 65.83%

Table 3. Confusion matrix of the emotion recognition test on the captured hand motions in the
user study.

Perceived Emotion

Angry Happy Sad Fearful

Ground Truth Labels

Angry 70.00% 15.00% 3.33% 11.67%
Happy 23.33% 60.00% 6.67% 10.00%

Sad 6.67% 10.00% 70.00% 13.33%
Fearful 13.33% 10.00% 13.33% 63.33%

4.1.2. Evaluating the Emotion Perceived from the Hand Motions Synthesized by Our Method

Similar to Section 4.1.1, we also analyze the accuracy of emotion recognition from the
hand motions synthesized using our method. Again, each user was asked to label four
synthesized hand animations. The averaged and class-level emotion recognition accuracies
are reported in Table 2 (see the ‘Synthesized’ column). The averaged recognition accuracy
is 65.83%, which is the same as the accuracy obtained from the captured dataset. This
result highlights no significant difference in the expressiveness of emotion between the
captured and synthesized hand motions. While the averaged recognition accuracies are the
same, it can be seen that the class-level accuracies are different, and the confusion matrix
is presented in Table 4. The results indicate that the synthesized motions demonstrated a
lower level of inter-class similarity. The perceived emotion only spread across three classes
for Angry, Sad and Fearful (i.e., with one class having 0% of voting) instead of four classes
as in the results obtained from captured motions.

Table 4. Confusion matrix of the emotion recognition test on the synthesized hand motions in the
user study.

Perceived Emotion

Angry Happy Sad Fearful

Ground Truth Labels

Angry 73.33% 16.67% 0.00% 10.00%
Happy 23.33% 60.00% 6.67% 10.00%

Sad 0.00% 21.67% 60.00% 18.33%
Fearful 6.67% 0.00% 23.33% 70.00%

While the inter-class similarity is reduced in general, it can be observed that some pairs
of classes have higher similarity in the motions synthesized by our method. For example,
the ‘Sad-Happy’ pair (i.e., misperceiving Sad as Happy) increases from 10% to 21.67%.
This can be caused by the small changes in the speed of the motions as the synthesized
motions tend to have a slightly smaller range of speed difference across different emotions.
This affects the Sad and Happy motions since the major difference between these 2 classes is
the speed. The ‘Fearful-Sad’ and ‘Sad-Fearful’ also demonstrated an increase in ambiguity.
This can be caused by the averaging effect by training the StarGAN model using all
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different types of motions. The most discriminative characteristics of the Fearful class is
the asynchronous finger movement. Learning a generic model for all different emotions
and action types has reduced the discriminative characteristics in the synthesized motions.
It will be an interesting future direction to explore a better way to separate the emotion,
action and personal style into different components in the motion to better preserve the
motion characteristics.

4.1.3. Comparing the Naturalness and Visual Quality of the Synthesized Animations with
the Captured Motions and Baseline

To evaluate the visual quality and naturalness of the synthesized hand animations,
we follow the design of the user study conducted in [39] by playing back the captured and
synthesized motions side-by-side, and ask the user which one is ‘more pleasant’ or the user
can answer ‘do not know’ if it is difficult to judge. In this experiment, 4 pairs of animations
were randomly selected from our database and shown to each user. We randomly selected
non-neutral motions from the captured data and paired them up with the corresponding
synthesized motions, which are emotionally transferred from neutral to the target emotion
state. The results are summarized in Table 5. From the results, it can be seen that both of
the synthesized and captured motions have received a similar percentage of users rating
as ‘more pleasant’, while the motion produced by our method is 6.67% higher than the
captured motions. There are 13.3% of users who cannot decide which motion is better. To
validate the user study results, A/B testing is used to find out the statistical significance of
the results. By treating the captured motions as variant A and our synthesized motions
as variant B, the p-value is 0.2301. This suggests the conclusion on ‘the synthesized motions
are visually more pleasant than the captured motions’ is not statistically significant at the 95%
confidence interval. On the other hand, when including our synthesized motions and the
‘do not know’ option in variant B, the p-value becomes 0.0127. This suggests the conclusion
on ‘the synthesized motions are not visually less pleasant than the captured motions’ is statistically
significant at the 95% confidence interval. In summary, the visual quality between the
captured and synthesized hand motions are similar, and arguably our method will not
degrade the visual quality of the input hand motion, as the results indicate.

Table 5. Emotion recognition accuracy (%) on the captured and synthesized hand motions in the
user study.

Synthesized is more pleasant 46.67%
Do not know 13.33%

Captured is more pleasant 40.00%

We further compared the motions synthesized by our method with those created
using a PCA-based method proposed by Irimia et al. [15]. Again, we follow the user study
explained above to evaluate the difference in the visual quality and naturalness of the
synthesized motions. A side-by-side comparison will be given to the user to rate whether
ours or Irimia et al. [15]’s method produces ‘more pleasant’ animation or no decision can
be made. Each user was asked to rate 4 pairs of animations, and the results are presented in
Table 6. The results show that the animations synthesized by our methods have better visual
quality than those generated by Irimia et al. [15] with a more significant margin of 8.33%
more users rated our results as ‘more pleasant’, although the p-value (p = 0.1757) computed
in the A/B test suggests that the results are not statistically significant at the 95% confidence
interval. Similar to the comparison between the captured and synthesized motions, we
group our synthesized motions and the ‘do not know’ option and compare with the results
created generated by Irimia et al. [15]. The p-value becomes 0.0012 which suggests ‘our
synthesized motions are not visually less pleasant than those generated by Irimia et al. [15]’. Again,
the results highlight the methods compared in this study are producing motions with
similar visual quality. In addition to the visual quality, the capability of multi-class emotion
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transfers in our proposed method is another advantage over Irimia et al. [15] since their
approach is essentially interpolating the motion between two different emotional states.

Table 6. Emotion recognition accuracy (%) on the captured and synthesized hand motions in the
user study.

Synthesized is more pleasant 45.00%
Do not know 18.33%

Irimia et al. [15] is more pleasant 36.67%

4.2. Evaluation on Emotion Transfer

In this section, a wide range of results synthesized by our method are presented.
We will first present the synthesized hand animations in Sections 4.2.1 and 4.2.2. Next, the
synthesized full-body animations will be discussed in Section 4.2.3. The animations are
also included in the accompanying video demo.

4.2.1. Hand Animation

Here, we demonstrate the effectiveness of the proposed method by showing some
of the synthesized hand animations. Like the experiments mentioned earlier, we used
an unseen neutral hand motion as input and synthesized the animations by specifying
the emotion labels. Due to the limited space, we visualize the results (Figure 4a–d) on
four motion sets including crawling, patting, impatient and pushing. In each figure, each
row contains five hand models which are animated by motions with different emotions
(from left to right): angry, happy, input (neutral), sad, fearful. The four rows in each figure
are referring to the keyframes of the 4 progression stages (i.e., 0%, 33%, 67%, and 100%) in
each animation.

The experimental results are consistent. To assess the correctness of the synthesized
motion, we can compare the changes of the motion between keyframes in each column
in each figure and evaluate if the changes align with the characteristics listed in Table 1.
Specifically, input motions become more exaggerated by transferring to angry. The range
of motion increases, and the motion becomes faster. This is highlighted by the movement
of the thumb in the video demo. By transferring to the happy emotion, the motion becomes
more energetic with a larger range of motion when compared with the input (neutral) mo-
tion. The motion’s speed is getting higher as well, although the motion is less exaggerated
than those transferred to angry. With the sad emotion, the synthesized motions show the
sign of tiredness, which results in slower movement. Finally, the fearful emotion brings
the asynchronous finger movements to the neutral motion as those characteristics can be
found in the captured data. In summary, the consistent observation of the synthesized
motions highlighted the effectiveness of our framework.
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(a) crawling (b) impatient

(c) pushing (d) patting

Figure 4. Screenshots (one frame per row) of transferring the input (neutral) motion to different types of emotions. Columns
from left to right: angry, happy, input (neutral), sad, fearful.

4.2.2. Comparing Emotion Transferred Motions with Captured Data

Next, we compare the synthesized motions with the captured data. Recall that leave-
one-out cross-validation is used in defining the training and testing data sets. As a result,
the motion type of the input (i.e., testing) motion is not included in the training data. It is
possible that the action of the synthetic motion looks slightly different from the captured
motion. Having said that, an effective emotion transfer framework should be able to
transfer the characteristics of the corresponding emotion to the new motion.

The results are illustrated in Figure 5a–e. Similar to Section 4.2.1, we extracted three
keyframes (i.e., each row in each figure) at the different progression stages (0%, 50% and
100%) of the animation. The hand models in each column (from left to right) were ani-
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mated by the input (neutral), synthesized (i.e., emotion transferred) and captured motions,
respectively. Here, readers can focus on whether the synthesized motions (middle column
in each figure) contains the characteristics of the corresponding emotion as in the captured
motions (right column in each figure). Readers can also compare the difference between
the input (neutral, left column in each figure) and the synthesized motion to evaluate the
changes made by the proposed framework.

It can be seen that the motions synthesized by the proposed framework have the
characteristics of the corresponding emotion. For example, the motions are exaggerated in
the angry crawling and pushing motions in Figure 5a,d, respectively. On the other hand,
the sad crawling motion shows the sign of tiredness. The fearful emotion can again transfer
the asynchronous finger movements to the pushing motion, as illustrated in Figure 5b.
Finally, a larger range of motion can be seen in the happy impatient motion (Figure 5c).

(a) crawling, transferred to angry (b) pushing, transferred to fearful

(c) impatient, transferred to happy (d) pushing, transferred to angry

Figure 5. Cont.



Computers 2021, 10, 38 14 of 19

(e) crawling, transferred to sad

Figure 5. Screenshots (one frame per row) of the comparison between the input (neutral, left),
synthesized (i.e., emotion transferred, middle) and captured (right) motions.

4.2.3. Body Motion Synthesis Results

To further demonstrate the generality of the proposed framework, we trained the
proposed framework using 3D skeletal full-body motion in this experiment. Again, unseen
motions with the neutral emotion are used as input, and new motions are synthesized by
specifying the emotion labels. Three types of motions, including knocking, lifting, and
throwing, are included in the test and the screenshots of some examples are illustrated
in Figures 6–8. We selected three key moments from each animation representing the
early, middle, and late stages of the motion in the screenshots. To facilitate the side by
side comparison, we show the input motion (blue), synthesized motions (green) and the
captured motions (purple) in Figures 6–8.

In general, there is a consistent trend in terms of the difference in the speed between
motions with different emotions. Specifically, the angry motions are the fastest, with happy
motions are slightly slower, neutral motions are the third, and sad motions are the slowest in
most of the samples. Such a pattern can be seen in the motions synthesized by our method.
Another observation from the results is the small difference between the synthesized
motions and the captured ones (i.e., ground truth). We believe the small difference is
mainly caused by the proposed method emphasized learning emotion transfer without
explicitly modeling the personal style differences from motions performed by different
subjects. As a result, small differences can be introduced when synthesizing new motions
by our method. This is an interesting further direction to incorporate personal style in the
motion modeling process to further strengthen the proposed method.
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Figure 6. Screenshots of the knocking motion extracted from different stages—early (top row), middle
(middle row), late (bottom row).
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Figure 7. Screenshots of the lifting motion extracted from different stages—early (top row), middle
(middle row), late (bottom row).
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Figure 8. Screenshots of the throwing motion extracted from different stages—early (top row), middle
(middle row), late (bottom row).

5. Conclusions and Discussion

In this paper, we propose a new framework for synthesizing motion by emotion
transfer. We demonstrate the generality of the framework by modeling hand and full body
motions in a wide range of experiments. A user study is conducted to verify the perceived
emotion from the hand motions as well as evaluating the visual quality and naturalness
of the animations. Experimental results show that our method can (1) generate different
styles of motions according to the emotion type, (2) the characteristics in each emotion type
can be transferred to new motions, and (3) achieving similar or better visual quality when
comparing the hand motions synthesized by our method with those captured motions and
created by [15].

In the future, we will be interested in incorporating the personal style into the motion
modeling framework. In addition to specifying the emotion labels to synthesize different
motions, de-tangling the ‘base’ motion and personal style can further increase the variations
in the synthesized motions. Another further direction will be evaluating the feasibility of
having multiple emotion labels with different levels of strengths for motion representation
and synthesis. Such a direction is inspired by the emotion recognition results of the user
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study in which not all users are agreed on a single type of emotion being associated with
each hand motions in the study. It is also an interesting future direction to quantitatively
evaluate the results by comparing the differences between the synthesized and ground-
truth motion numerically. To achieve this goal, more hand motions have to be captured. As
in our pilot study, we have difficulties capturing the global translation and rotation in high
quality. As a result, the global transformation is discarded, which limits the expression
of emotion. One possible solution is to capture the hand motions using state-of-the-art
MOCAP solutions such as [14].
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