
computers

Article

The Use of Template Miners and Encryption in Log
Message Compression

Péter Marjai 1 , Péter Lehotay-Kéry 1 and Attila Kiss 1,2,*

����������
�������

Citation: Marjai, P.; Lehotay-Kéry, P.;

Kiss, A. The Use of Template Miners

and Encryption in Log Message

Compression. Computers 2021, 10, 83.

https://doi.org/10.3390/

computers10070083

Academic Editor: George Angelos

Papadopoulos

Received: 31 May 2021

Accepted: 20 June 2021

Published: 23 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information Systems, ELTE Eötvös Loránd University, 1117 Budapest, Hungary;
g7tzap@inf.elte.hu (P.M.); lkp@caesar.elte.hu (P.L.-K.)

2 Department of Informatics, J. Selye University, 94501 Komárno, Slovakia
* Correspondence: kiss@inf.elte.hu

Abstract: Presently, almost every computer software produces many log messages based on events
and activities during the usage of the software. These files contain valuable runtime information that
can be used in a variety of applications such as anomaly detection, error prediction, template mining,
and so on. Usually, the generated log messages are raw, which means they have an unstructured
format. This indicates that these messages have to be parsed before data mining models can be
applied. After parsing, template miners can be applied on the data to retrieve the events occurring in
the log file. These events are made from two parts, the template, which is the fixed part and is the
same for all instances of the same event type, and the parameter part, which varies for all the instances.
To decrease the size of the log messages, we use the mined templates to build a dictionary for the
events, and only store the dictionary, the event ID, and the parameter list. We use six template miners
to acquire the templates namely IPLoM, LenMa, LogMine, Spell, Drain, and MoLFI. In this paper,
we evaluate the compression capacity of our dictionary method with the use of these algorithms.
Since parameters could be sensitive information, we also encrypt the files after compression and
measure the changes in file size. We also examine the speed of the log miner algorithms. Based on
our experiments, LenMa has the best compression rate with an average of 67.4%; however, because
of its high runtime, we would suggest the combination of our dictionary method with IPLoM and
FFX, since it is the fastest of all methods, and it has a 57.7% compression rate.

Keywords: log file processing; template mining; compression; encryption

1. Introduction

Creating logs is a common practice in programming, which is used to store runtime
information of a software system. It is carried out by the developers who insert logging
statements into the source code of the applications. Since log files contain all the important
information, they can be used for numerous purposes, such as outlier detection [1,2],
performance monitoring [3,4], fault localization [5], office tracking [6], business model
mining [7], or reliability engineering [8].

Outlier detection (also known as anomaly detection) is done by detecting unusual
log messages that differ significantly from the rest of the messages, thus raising suspicion.
These messages can be used to pinpoint the cause of the problem such as errors in a
text, structural defects, or network intrusion. For example, a log message with high
temperature values could indicate a misfunctioning ventilator. The authors of “Anomaly
Detection from Log Files Using Data Mining Techniques” [1] proposed an anomaly-based
approach using data mining of logs, and the overall error rates of their method were below
10%. There are three main types of anomaly detection methods, such as K-Means+ID3
(supervised) [9], DeepAnT (unsupervised) [10] or GANomally (semi-supervised) [11].
Supervised techniques work based on data sets that have been labeled “normal” and
“abnormal”. Unsupervised algorithms use unlabeled datasets. Semi-supervised detection
creates a model that represents normal behavior [2].

Computers 2021, 10, 83. https://doi.org/10.3390/computers10070083 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-1462-5629
https://orcid.org/0000-0002-0884-4297
https://orcid.org/0000-0001-8174-6194
https://doi.org/10.3390/computers10070083
https://doi.org/10.3390/computers10070083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10070083
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10070083?type=check_update&version=2

Computers 2021, 10, 83 2 of 17

With the appearance of large-scale systems, performance monitoring has become
a vital task. Since these systems produce numerous log messages every minute, it is
impossible to monitor the data by hand. For these reasons, various tools have been created
to aid the developer tasked with the monitoring of the performance. One such tool was
proposed by the authors of “Structured Comparative Analysis of Systems Logs to Diagnose
Performance Problems” [3] that uses machine learning to find the relations between the
performance and different modules of the system. Another such tool has been proposed in
“Personalized Ranking for Digital Libraries Based on Log Analysis” [4], where the authors
analyzed user feedback from access logs and predicted user preferences.

The authors of “Scalable Offline Monitoring” [6] proposed an approach to monitor
IT systems offline, where system actions are logged in a distributed file system and subse-
quently checked for compliance against policies formulated in an expressive temporal logic.

Log files also contain information of the preference of the users, which can be used
to create business models. Such models can be later used for example to provide better
deals for the customers of a webshop that generated the log files. For example, authors
of “An e-customer behavior model with online analytical mining for internet marketing
planning” [7] developed constructs for measuring the online movement of e-customers to
identify important dimensions of their behavior and abstract changes in their behavior by
developing an e-customer behavioral graph.

Automated log analysis can also be used for reliability engineering. In “A Survey on
Automated Log Analysis for Reliability Engineering” [8], the authors provided a survey on
this topic.

The volume of the software logs has escalated rapidly due to the evolution of com-
puters and the wide usage of different types of software. More and more storage space
is needed to store these files. The authors of “Loghub: a large collection of system log
datasets towards automated log analytics” [12] provide a large collection of log datasets. To
handle such datasets, compression of these files is necessary. A comprehensive comparison
between the general compressing algorithms can be seen in “A study of the performance
of general compressors on log files” [13].

Numerous techniques that take different aspects of log files into account have been
developed to decrease the size of these files. A compression algorithm for CAN traffic log
files is proposed by the authors of “Efficient lossless compression of CAN traffic logs” [14].
It uses semantic compression to retain precise information, which is needed for forensic
purposes. Operational profiles, containing the most common usage scenarios of different
softwares, are used to compress log files in “An industrial case study of customizing
operational profiles using log compression [15]. Since creating a profile could be time- and
resource-consuming, they use an approach that converts log files into log signals, which
are then used to easily create profiles.

In “SEAL: Storage-efficient Causality Analysis on Enterprise Logs with Query-friendly
Compression” [16], the authors created a dependency graph from the log files, which was
then compressed. Hidden structures can also be used to compress log files. In “Logzip:
Extracting Hidden Structures via Iterative Clustering for Log Compression” [17] the authors
provide a tool that uses such items to compress log files. In “Improving State-of-the-art
Compression Techniques for Log Management Tools” [18], a method is proposed by the
authors that pre-processes small log blocks. After the pre-processing, a general compressor
is applied on the data.

Many times, choosing the best data compressor of a given set is done by the empirical
comparison of the compressors. One of the goals of “Time-universal data compression and
prediction” [19] was to turn this process into a part of the compression method, automating
and optimizing it.

In “Lossless Compression of Time Series Data with Generalized Deduplication” [20],
the authors presented a new strategy for data deduplication to provide compressed data
storage for large amounts of time series data. In their approach, they split each data chunk

Computers 2021, 10, 83 3 of 17

into a part that must be stored directly and a part worth deduplicating. This enables greater
compression than the classic deduplication based on their analysis.

Shared dictionary compression has been shown to reduce data usage in pub/sub
networks, but it requires manual configuration. A new dictionary maintenance algorithm
by the authors of “PreDict: Predictive Dictionary Maintenance for Message Compression
in Publish/Subscribe” [21] adjusts its operation over time by adapting its parameters to
the message stream and enabling high compression ratios.

Learning categorical features with large vocabularies has become a challenge for ma-
chine learning. In “Categorical Feature Compression via Submodular Optimization” [22],
the authors designed a vocabulary compression algorithm, a novel parametrization of
mutual information objective, a data structure to query submodular functions and a dis-
tributed implementation. They also provided an analysis of simple alternative heuristic
compression methods.

The authors of “Integer Discrete Flows and Lossless Compression” [23] introduced
Integer Discrete Flow (IDF), a flow-based generative model, an integer map that can learn
transformation on high-dimensional discrete data. They also demonstrate that IDF-based
compression achieves state-of-the-art lossless compression rates.

In “On the Feasibility of Parser-based Log Compression in Large-Scale Cloud Sys-
tems” [24] the authors built LogReducer based on three techniques to compress numerical
values in system logs: delta timestamps, correlation identification, and elastic encod-
ing. Their evaluation showed that it achieved high compression ratio on large logs, with
comparable speed to the general-purpose compression algorithm.

The authors of “Pattern-Guided File Compression with User-Experience Enhancement
for Log-Structured File System on Mobile Devices” [25] introduced file access pattern
guided compression (FPC). It is optimized for the random-writes and fragmented-reads
of mobile applications, featuring dual-mode compression: foreground and background
compression to reduce write stress on write-mostly files and to pack random-reading
file blocks.

The raw log messages are usually unstructured, but all the previously mentioned
techniques require a structured input. Because of that, the use of log parsing is necessary.
It is used to transform the raw messages into structured events. These events can be later
used to encode the log messages and decrease the size of the log files. Several algorithms
have been introduced to address this problem [26–28]. Since log files can contain sensitive
user data, it is important to encrypt the files. Up to this date, various encrypting methods
have been proposed [29,30].

2. Materials and Methods

In this paper, we propose a method that uses a dictionary and employs different
template miners to extract message types from raw log lines. The utilized algorithms
are IPLoM, LenMa, Spell, Drain, and MoLFI. We then use these message types to build a
dictionary where each ID represents a template/message type. This dictionary is used to
encode the raw lines into entries that consist of the corresponding ID and the parameters
of the specific line.

We compare the size of the encoded messages and their corresponding dictionary
with the size of the raw messages. We do not evaluate the performance or accuracy of the
algorithms. Since parameters could be sensitive user data, we use encryption methods on
the encoded messages. Specifically, these methods are AES, Blowfish, and FFX. The size of
the encrypted messages is also compared to the size of the original raw messages. Lastly,
we study the speed of the template miners.

The structure of the paper is as follows. Section 3 gives a brief overview of log parsing
and how the individual template miners work. A high-level definition of the encryption
methods is explained in Section 4. Section 5 contains the description of the performed
experiments. Numerical examples based on log lines generated by real-life networking
devices are represented to evaluate the compression capacity of the different algorithms.

Computers 2021, 10, 83 4 of 17

The possible future work about the issue in question and the conclusion we draw can be
read in Section 6.

3. Concepts and Problems
3.1. Log Parsing

To gather run-time information of a software, logging is used as a programming
routine. This is carried out by programmers by inserting commands into the source code
to print the desired information into log file entries. One line of the log file is referred to as
a log record, which is created by a log print statement.

Since developers are allowed to write free-text messages, the entries are usually raw,
unstructured messages. They typically describe an event that occurs in the form of raw
messages (free text explanation) such as restarts, system updates, or flash messages. These
unstructured entries usually contain more than just a message, but also include other
information, like the Timestamp (containing the time of the event occurrence), the Module
(which generated the message), or the Performed action. An example from our log lines can
be seen in Figure 1.

Figure 1. An example of a log event.

A word delimited by a space in the message part of the entry is called a Token. For
example, in Figure 1, the word “APU” is a token. A log message is always made up of two
parts. The first is the fixed part, which is called Template and is the same for all appearances.
The template contains the Constant tokens. These are the words that cannot be expressed
by a wildcard value in its associated message type; for example, the “restart” token in
the example is a constant. The other part is the variable part which may alter at different
occurrences. This part incorporates the variable tokens, which can be represented by a
wildcard value in its associated message type. The “241” and “6” and “cold” values in
Figure 1 are variable tokens.

Parsing each log record r into a set of message types (and the belonging parameter
values) is the objective of log parsing. More formally, in the case of an ordered list of log
records, log = r1, r2, . . . , rN containing M different message types generated by P different
processes, where these values are not known, a Structured log parser parses the log entries
and returns all M different message types. Using such a parser is necessary for almost any
log analysis technique. Log parsers are powerful tools; however, they do not apply to all
cases, which means pre- and post-processing are also necessary. There are guidelines for
pre-processing in “ An Evaluation Study on Log Parsing and Its Use in Log Mining” [31]
like the use of regex to identify trivial constant parts or deleting duplicate lines.

3.2. Iplom

IPLoM is a log data clustering algorithm introduced in “ Lightweight Algorithm for
Message Type Extraction in System Application Logs” [32] that iteratively partitions a set of
log messages that are used as training examples. The algorithm is divided into four steps.

The first step partitions the messages by event size (the number of tokens in the message
part). The algorithm assumes that log messages belonging to the same message type have
equal event sizes. It uses this heuristic to partition the messages into nonoverlapping
batches of messages.

The second step is to partition by token position. Since all messages have the same
length, they can be viewed as n-tuples where n is the length of the messages. This step
also uses a heuristic, which is that the column with the minimum number of unique words
is likely to contain constant words at that position in the message type. The messages

Computers 2021, 10, 83 5 of 17

are again partitioned by these unique words in a way that the result partitions will only
contain one of the previously discovered unique values at that position.

In the third step, new partitions are created by bijection. To determine the most
frequently appearing token count amidst the positions, the number of unique tokens at
each position is calculated. This implies the number of message types in the partition. After
this, the first two positions with the same number of unique tokens as the most frequent
token count are chosen to partition again the log messages containing these tokens at the
given positions.

Finally, in the fourth step, message types are created for each cluster by counting
the unique tokens in all positions. If a position has multiple values, then it is treated as a
variable, otherwise, it is considered to be a constant.

3.3. Lenma

LenMa was proposed in “Clustering system log messages using length of words” [28]
and uses the assumption that messages belonging to the same message type have words
of equal length in the same positions. First, a word length vector Vm is created from the
message. For example, the word length vector of “APU error, slot 6 (npu cold restart)”
would be encoded as the following:

Vm = [len(”APU”), len(”error, ”), len(”slot”), len(”6”), len(”(npu”),

len(”cold”), len(”restart)”)] = [3, 6, 4, 1, 4, 4, 8]

The tokens of the message are also stored in a new word vector Wm. This vector
contains the template of the message. After this, an Sm similarity value is calculated
between the actual message and all clusters with the same event size by the use of cosine
similarity. More formally,

Sc =
Vc ·Vm

‖ Vc ‖‖ Vm ‖
=

∑n
i=0 vc,ivm,i√

vv2
c,i

√
∑n

i=0 v2
m,i

. (1)

where VC is the word length vector of cluster c and Vm is the word length cluster of the
actual message, while vc,i and vm,i are the length of the ith word in both the cluster and
the actual message. This, however, is not enough to correctly cluster all the messages. The
comparison between the constant tokens in the same position is also important. This is
done by calculating the positional similarity index Sp, which was also introduced in [28].
The Sp is defined as:

Sp = |{wc,i = wm,i(wc,i ∈ Wc, wm,i ∈ Wm)}|, (2)

where Wc and Wm are the word vectors and i is the position in them. If the message’s Sp
value is higher than the threshold the message is considered to be in the cluster. Afterward,
two things can happen. If there is no cluster with a similarity score greater than the
threshold, the message is used to create a new cluster. It is important to note that higher
threshold values could result in an increased cluster production. Otherwise, the word
length vector of the cluster with the highest score is updated. If there is a word in the
cluster whose length does not equal to the length of the word in the new message at the
same position, the value is updated to the length of the word in the new message. For
example, if we take the message “APU error, slot 6 (device cold restart)”, and the previous
example as our c cluster, the new Vc vector would be:

Vc = [3, 6, 4, 1, 7, 4, 8]

The word vector is also updated in a similar fashion. If there is a word in the cluster
that is different from the word in the actual message at the same position, the word is

Computers 2021, 10, 83 6 of 17

changed to a wildcard mask, indicating that it is a variable token. In the end, each cluster
represents a message type.

3.4. Spell

Spell views log messages as sequences and uses LCS (Longest Common Subsequence)
to extract message types [33]. Every word is considered to be a token. Log lines are then
converted into token sequences, and a unique ID is assigned to them.

A special data structure called LCSObject is created to store LCSseq, which is the LCS
of numerous log messages. It is also seen as a possible message type for these log messages.
That said, LCSObject also contains a list of the line IDs of the corresponding lines. The
already parsed LCSObjects are stored in a list called LCSMap.

The algorithm works as follows. When a new log line li is parsed, si token sequence is
created from it, and a search through the LCSMap is initiated. Consider the LCSseq in the
ith LCSObject as qi and calculate li, indicating the length of LCS(qi, si). During the search,
lmax (the largest li) and qj, the index of the LCSObject that resulted in lmax, are stored. In the
end, the LCSseq of qj and si are believed to have the same message type, if lmax is greater
than the given threshold. In the case of multiple LCSObjects with Lmax, the one with the
smallest |qj| value is chosen. After that, the new LCS sequence describing the message type
for li and all entries in the jth LCSObject is created via backtracking. While backtracking,
the positions where two sequences are different are denoted with the “*” wildcard mask.
After this, li’s line ID is added to the line IDs of the jth LCSObject and its qj is changed to
LCS(qj, si). If there is no such LCSObject that has an LCS with si larger than |si|/2, then a
new LCSObject is created with si as its LCSseq and li’s line ID as its line ID list.

3.5. Drain

Drain is a fixed-depth tree-based online log parsing method that was introduced in
“An online log parsing approach with fixed depth tree” [26]. The parse tree consists of
three types of nodes. At the top of the parse tree is the root node, which is connected to
the internal nodes. They do not involve any log groups since they are designed to contain
specially constructed rules that control the search process. The bottom layer of the parse
tree is made from the leaf nodes. These nodes hold the log groups, and they can be reached
by a path from the root node. The log groups are made log line IDs and log events. The
log event is used to indicate the message type that is best suited for the log messages in
the group. The name suggests that all leaf nodes have a fixed predefined depth, and Drain
only traverses through (depth− 2) internal nodes before reaching a leaf node.

The first step is to search by the length of the log message that is equal to the number
of words in the message. Log groups with a different number of tokens are expressed by
the first-layer nodes. A path to the first node representing the same length as the actual log
line length is selected. For example, in the case of “NPU cold restart” the internal node
representing “Length-3” is chosen.

The second step uses the presumption that log messages that have the same message
type usually have the same constant token in the first position of the message. The next
node is selected by this assumption. For example, in the case of the previous “NPU cold
restart” message, the 2nd layer node encoding that the message starts with “NPU” is
picked. Messages beginning with a parameter can lead to branch explosion. Tokens that
only contain digits are considered to be special. In the case of such messages, a special “*”
node is selected in this step.

The third step is to search by token similarity. By this step, the search has already
reached a leaf node containing multiple log groups. The most appropriate log group is
selected based on the similarity of the actual message and the log event of each group. The
similarity, simSeq, is defined as:

simSeq =
∑n

i=1 equ(seq1(i), seq2(i))
n

, (3)

Computers 2021, 10, 83 7 of 17

where n is the number of tokens in the message and seq1 is the actual log message, seq2 is
the log event of the group and seq(i) denotes the ith token in the message. The function
equ is defined as the following:

equ(t1, t2) =

{
1, if t1 = t2

0, otherwise,
(4)

where t1 and t2 are the two tokens. If the greatest similarity reaches the predefined
threshold, the log group that reached the largest similarity is returned; otherwise, a flag is
returned to indicate that the message does not fit into any log group.

The last step is to update the parse tree. If the output of the previous step is a log
group, the ID of the actual log line is added to its ID list and the log event of the group is
updated. This is done by checking if the tokens are the same in the different positions of
the actual message and the log event. If they differ, a wildcard mask “*” is set in the log
event at that position; otherwise, nothing happens. If a previous step resulted in the flag, a
new log group is created from the actual message, only with the ID of the actual log line.

3.6. MoLFI

MoLFI was proposed in “A search-based approach for accurate identification of log
message formats” [34] and employs the standard NSGA-II for the log parsing problem.
While pre-processing the data, trivial constants are replaced with a unique #spec# token
that cannot be changed in the later steps. The messages are also sorted into buckets based
on their token count.

A new two-level encoding schema is applied: each chromosome C is a set of groups
C = {G1, . . . , Gmax} where each group GN = {t1, . . . , tj} is a collection of templates
(message types) with the token count N. This schema ensures that only messages and
templates of the same length are matched in the later steps.

In the first step, the initial population is created. Let M denote the pre-processed
log messages. After a chromosome is created, it is filled with groups of templates. Each
group contains pre-processed log messages MN ∈ M with the same N length. Initially,
all messages are in a special set called unmatched. In every turn, a message is randomly
selected from here, and a template t is created based on it. The template is identical to the
message except for a randomly selected token, which is changed to “*”. This is then added
to the group GN , and the unmatched set is updated (the message is removed). This loop
stops when the unmatched set becomes empty.

The next step is to Crossover, which is achieved by the use of the uniform crossover [35]
operator. Two parents are taken and two offsprings are created by this operator by mixing
the attributes of the parents. The templates between the parents are exchanged without
changing the set of templates constructing each group. The offsprings contain all the
already-processed messages and do not overlap on any template.

The next step is to mutate the offsprings. This is done by randomly altering a template
in each of its groups. Let ti = {token1, . . . , tokenn} be the selected template. Each token has
1
n chance to be changed. If a token is modified, the following can happen: If it is a variable
token, it is changed to a constant token randomly selected from the fixed tokens at that
position in the messages that match ti. If it is a constant token, it is replaced by a wildcard
“*” token. If it is the special #spec# token, nothing happens. At this point, a correction
algorithm is used to remove overlapping templates and to add random templates to groups
that do not match all of their messages. In the end, the variable tokens that do not influence
the frequency scores are removed by inspecting if their deletion changes the messages
that match their template or not. If there is a change, they are added back to the template;
otherwise, the template remains unchanged. This algorithm results in numerous optimal
solutions, from which the knee point is chosen as the final output.

Computers 2021, 10, 83 8 of 17

4. Encryption Techniques

Encryption is a basic term in cryptography that stands for the process of encoding
information. The original human-readable data, plaintext, are transformed into an in-
comprehensible text, a ciphertext that appears to be random. The process requires the
use of a secret key that both the sender and the recipient know. These keys are usually
pseudo-random generated keys. Ideally, with the use of the key, only authorized parties
can decode the ciphertext and access the initial message. While it is possible to decrypt the
message without the key, it requires a computing capacity that modern computers cannot
deal with.

4.1. AES

The Advanced Encryption Standard (AES) is a symmetric encryption that is a subset
of the Rijndael block cipher introduced in “AES proposal: Rijndael” [29]. It is considered
to be one of the best encrypting algorithms. It has a key size of either 128, 192, or 256 bits
and a fixed block size of 128 bit and encrypts only one block at a time. It operates on the
state, which is a 4× 4 column-major order array of bytes. The algorithm’s input is the
plaintext, which is converted into the output (ciphertext) via a number of transformation
rounds. The number of rounds Nr depends on the size of the key. In the case of 128-bit
keys, 10 round is used, 12 rounds in case of 192-bit keys and 14 rounds for 256-bit keys. A
high-level description of the operation of the method is the following.

The first step is the KeyExpansion that derives round keys from the cipher key based
on the AES key schedule. This is followed by an initial AddRoundKey that uses bitwise xor
to combine each byte of the state with a byte of the round key.

This is followed by Nr − 1 rounds consisting of four phases. The first is SubBytes,
which replaces each byte with another based on a lookup table in a non-linear fashion. This
is followed by ShiftRows, a cyclical shift in the last three rows of the state. After this, the
four bytes in each column of the state are combined by the MixColumns operation. Lastly,
another AddRoundKey is used. The Nr − 1 rounds are followed with a final round, which
is composed of SubBytes, ShiftRows, and AddRoundKey. To decode the ciphertext with
the use of the same encryption key, a set of reverse rounds is used. The algorithm can be
seen in Figure 2.

Figure 2. The encryption rounds of the AES.

Computers 2021, 10, 83 9 of 17

4.2. Blowfish

Blowfish was designed by Bruce Schneier in “Description of a new variable-length
key, 64-bit block cipher (Blowfish)” [30], 1993, to replace DES. It is a fast and free public
encryption software; therefore, it is neither licensed nor patented. It is also a Feistel
cipher [36]. Blowfish is a symmetric block cipher with a fixed block size of 64 bits, which
means that it divides the input into fixed 64-bit blocks while encrypting and decrypting. It
has a variable key length that can vary from 32 bits up to 448 bits. The encryption schedule
of Blowfish can be seen in Figure 3. There are 18 subkeys stored in a P-array, with each
being a 32-bit entry. Four Substitution boxes (S-box) S1, S2, S3, S4 are used by the algorithm,
each consisting of 256 entries with a size of 32 bits.

First, the P-array and the S-boxes are initialized with the use of Blowfish’s key schedule:
values are generated from the hexadecimal digits of pi. This is followed by 16 rounds, each
consisting of four operations. Each Ri round takes two inputs, the corresponding subkey
and the plaintext (data), from the output of the previous round. Let DLI and DRI denote
the left and right sides of the data. The first step is to XOR the ith subkey in the P-array, PI ,
with DLI .

The second step is to use this XORed data as the input of the F-function. The function
works as follows: four 8-bit quarters X1, X2, X3, X4 are created from the 32-bit input and
are used as the input of the S-boxes, which then creates 32-bit values XA, XB, XC, XD from
them. XA and XB are added modulo 232; next, the result is XORed with XC. This value is
added with XD, generating the output of the F-function.

In the third step, the DRI is XORed with the output of the function. The final step
swaps the left side and the right side. The output of the 16th round is then post-processed
(output whitening). The last swap is undone and P18 is XORed with DL17, while P17 is
XORed with DR17. Decryption works in the same way as encryption, except that the
subkeys in P-array are used in reverse order.

Figure 3. The encryption schedule of Blowfish.

Computers 2021, 10, 83 10 of 17

4.3. FFX

FFX is a Format-preserving, Feistel-based encryption method that was introduced in
“Format-Preserving Feistel-Based Encryption Mode” [37]. Format-preserving encryption
means that the ciphertext has the same format as the plaintext input. For example, the
encryption of a 16-digit credit card number would result in a ciphertext consisting of
16 digits. FFX takes three parameters as its input, the plaintext that is to be encoded, the
key that will be used as the round key, and a tweak [38]. A tweak is a nonempty set of
strings that are used to modify the round key. As its name suggests, the algorithm is based
on the use of a Feistel network [36].

The core of each Feistel network is a round function that takes a subkey and a data
block as its inputs and returns an output with the same size of the data block. Each round
in the network consists of two main operations. The first one is to run the round function
on half of the data, and the second is to XOR the output of the function with the other half.
FFX uses AES as the round function for its Feistel network. Only one secret key is used as
the round keys of AES; however, it is marginally tweaked every round.

5. Results
5.1. Data

Our data consisted of log lines produced by different network devices used at the
Ericsson-ELTE Software Technology Lab. We tested the compression efficiency on four dis-
tinct log message collections varying in size. Table 1 contains the details about the collections.

Table 1. Size of the datasets.

Name Number of Messages Size in Bytes Size in Kilobytes

Biggest 637,369 23,350,348 22,840 KB
Large 280,002 10,441,998 10,198 KB
Mid 124,433 4,717,484 4607 KB

Small 39,139 1,588,912 1152 KB

5.2. Experimental Analysis

Several experiments were conducted to verify the compression efficiency of our
method with the use of different template miners. Evaluating the accuracy of these methods
is not part of this paper. The change in size before and after different encryptions was also
examined. For our experiments, we used the template miner implementations proposed
in [39]. The experimental analyses are divided into three parts and are explained below.

5.2.1. Experiment 1: Comparing the Size of the Compressed Messages with Our Method
and Different Template Miners

In order to compress the log messages, we employ five template miners namely
IPLoM, LenMa, Spell, Drain, and MoLFI to attain the different message types from the
processed log messages. Log messages are then sorted based on their matching message
template. After this, an ID is assigned to each message type, and thus a dictionary is
created. This dictionary is then used to encode each message. If a message does not contain
any parameter, it is changed to the ID corresponding to its message type. If it contains
parameters, then the ID is followed by the parameter list. For example, if the ID “1”
indicates the template “XF_Restart”, then a log message “XF_Restart” would be changed to
“1”. The "NPU cold restart" message, where “cold” is a parameter and its ID is “2” would
be changed to “2 cold”. We encoded all of our datasets based on this principle, and the
numerical differences between the sizes in bytes and kilobytes can be seen in Table 2.

Computers 2021, 10, 83 11 of 17

Table 2. Compressed data sizes on the four datasets.

Biggest Dataset

Template Miner Compressed File Size Dictionary Size Overall Size

IPLoM 9,904,236 (9673 KB) 4396 (5 KB) 9,908,632 (9677 KB)
LenMa 7,728,034 (7547 KB) 6171 (7 KB) 7,734,205 (7553 KB)
Spell 13,482,906 (13,167 KB) 3250 (4 KB) 13,486,156 (13,171 KB)
Drain 10,926,091 (10,671 KB) 4161 (5 KB) 10,930,252 (10,675 KB)
MoLFI 9,846,833 (9617 KB) 4568 (5 KB) 9,851,401 (9621 KB)

Large Dataset

Template Miner Compressed File Size Dictionary Size Overall Size

IPLoM 4,597,412 (4490 KB) 4342 (5 KB) 4,601,754 (4494 KB)
LenMa 3,822,516 (3733 KB) 6033 (6 KB) 3,828,549 (3739 KB)
Spell 5,164,654 (5044 KB) 3233 (4 KB) 5,167,887 (5047 KB)
Drain 5,005,779 (4889 KB) 4301 (5 KB) 5,010,080 (4893 KB)
MoLFI 4,375,515 (4272 KB) 4717 (5 KB) 4,380,232 (4278 KB)

Mid Dataset

Template Miner Compressed File Size Dictionary Size Overall Size

IPLoM 1,839,053 (1796 KB) 4368 (5 KB) 1,843,421 (1801 KB)
LenMa 1,466,446 (1433 KB) 7376 (8 KB) 1,473,822 (1440 KB)
Spell 2,319,417 (2666 KB) 3217 (4 KB) 2,322,634 (2669 KB)
Drain 2,040,298 (1993 KB) 4138 (5 KB) 2,044,436 (1997 KB)
MoLFI 1,773,076 (1732 KB) 4557 (5 KB) 1,777,633 (1736 KB)

Small Dataset

Template Miner Compressed File Size Dictionary Size Overall Size

IPLoM 691,051 (675 KB) 3053 (3 KB) 694,104 (678 KB)
LenMa 470,057 (460 KB) 6436 (7 KB) 476,493 (466 KB)
Spell 584,083 (571 KB) 2271 (3 KB) 586,354 (573 KB)
Drain 620,965 (607 KB) 3253 (4 KB) 624,218 (610 KB)
MoLFI 560,232 (548 KB) 3924 (4 KB) 564,156 (551 KB)

It can be seen that there is no significant difference between the size of the dictionaries,
only LenMa produces light overhead. Despite that, the use of a dictionary increases the
overall size, it is negligible in comparison with the log file sizes. Figures 4–7 present the
compression rates on the datasets.

Figure 4. Compression achieved by the different template miners on the Biggest dataset.

Computers 2021, 10, 83 12 of 17

Figure 5. Compression achieved by the different template miners on the Large dataset.

Figure 6. Compression achieved by the different template miners on the Mid dataset.

Figure 7. Compression achieved by the different template miners on the Small dataset.

Out of all of the investigated methods, LenMa has the best compression rate with our
method with an average of 67.407%, while Spell’s performance is the worst with an average
of 51.718%. This can be explained by the differences in dictionary sizes. LenMa creates a
slightly bigger dictionary containing more templates than the other methods, which can
be explained with the sensitivity of its threshold parameter; however, this pays off during
the encoding of the file. Having more message types results in a larger number of IDs and
fewer parameters. Its also notable that using any of the discussed template miners and our
dictionary method, the size of a log file can be reduced by at least 50%.

5.2.2. Experiment 2: Comparing Size of the Compressed and Encrypted Messages

Sometimes, log files often contain sensitive user data. These pieces of information
are viewed as parameters by the template miners, so they are stored as plain text when
our previously discussed method is used. For this reason, we employed three different
encryption methods to make the compressed files more secure. The size of the encrypted
datasets can be seen in Table 3.

Computers 2021, 10, 83 13 of 17

Table 3. Compressed data sizes on the four datasets using encryption.

Biggest Dataset

Template Miner Without Encryption AES Blowfish FFX

IPLoM (9678 KB)
9,908,632

(9673 KB)
9,904,535

(26,054 KB)
26,679,293

(9141 KB)
9,359,864

LenMa (7554 KB)
7,734,205

(7548 KB)
7,728,343

(19,861 KB)
20,336,656

(6994 KB)
7,161,668

Spell (13,171 KB)
13,486,156

(13,168 KB)
13,483,207

(35,745 KB)
36,602,389

(12,670 KB)
12,973,985

Drain (10,676 KB)
10,930,252

(10,671 KB)
10,926,391

(28,750 KB)
29,439,879

(10,148 KB)
10,391,499

MoLFI (9622 KB)
9,851,401

(9617 KB)
9,847,143

(25,355 KB)
25,962,525

(9085 KB)
9,302,020

Large Dataset

Template Miner Without Encryption AES Blowfish FFX

IPLoM (4495 KB)
4,601,754

(4490 KB)
4,597,719

(12,021 KB)
12,308,542

(4259 KB)
4,360,391

LenMa (3739 KB)
3,828,549

(3734 KB)
3,822,823

(9824 KB)
10,059,770

(3494 KB)
3,577,564

Spell (5048 KB)
5,167,887

(5044 KB)
5,164,951

(13,733 KB)
14,062,556

(4818 KB)
4,933,469

Drain (4894 KB)
5,010,080

(4889 KB)
5,006,087

(13,162 KB)
13,477,403

(4662 KB)
4,773,055

MoLFI (4242 KB)
4,380,232

(4274 KB)
4,375,815

(11,449 KB)
11,722,968

(4040 KB)
4,136,272

Mid Dataset

Template Miner Without Encryption AES Blowfish FFX

IPLoM (1801 KB)
1,843,421

(1797 KB)
1,839,351

(4846 KB)
4,962,083

(1692 KB)
1,731,735

LenMa (1441 KB)
1,473,822

(1433 KB)
1,466,743

(3733 KB)
3,821,890

(1324 KB)
1,355,323

Spell (2670 KB)
2,322,634

(2266 KB)
2,319,719

(6203 KB)
6,350,991

(2165 KB)
2,216,914

Drain (1998 KB)
2,044,436

(1993 KB)
2,040,599

(5375 KB)
5,503,321

(1890 KB)
1,935,082

MoLFI (1732 KB)
1,777,633

(1732 KB)
1,773,383

(4590 KB)
4,699,949

(1626 KB)
1,665,011

Small Dataset

Template Miner Without Encryption AES Blowfish FFX

IPLoM (678 KB)
694,104

(676 KB)
691,351

(1819 KB)
1,862,264

(644 KB)
658,531

LenMa (467 KB)
476,493

(460 KB)
470,359

(1205 KB)
1,232,970

(426 KB)
435,282

Spell (574 KB)
586,354

(571 KB)
584,391

(1532 KB)
1,567851

(538 KB)
550,485

Drain (611 KB)
624,218

(607 KB)
621,271

(1609 KB)
1,646,740

(574 KB)
587,605

MoLFI (552 KB)
564,156

(548 KB)
560,535

(1452 KB)
1,486,109

(514 KB)
526,304

Computers 2021, 10, 83 14 of 17

Out of the three algorithms, Blowfish has the worst performance, it makes the files
more than two and a half times larger, which is almost as big as the original datasets. AES
does not alter the size of the files, while FFX slightly reduces their size.

5.2.3. Experiment 3: Comparing the Speed of the Different Template Miners

The speed of a method is also an important feature. Using a template miner with
high speed is essential since there could be many log files that need to be compressed. We
evaluated the speed of the different methods on our datasets. The results can be seen in
Figures 8–11.

Figure 8. Speed of the different template miners on the Biggest dataset.

Figure 9. Speed of the different template miners on the Large dataset.

Figure 10. Speed of the different template miners on the Mid dataset.

Computers 2021, 10, 83 15 of 17

Figure 11. Speed of the different template miners on the Small dataset.

It can be seen that although LenMa has the best compression rate, it takes four times
more time than the other template miners. This could be explained by the slow speed of
cosine similarity. MoLFI is faster on larger datasets but becomes slow on smaller datasets.
This is because of the initialization of the multiple chromosomes. In almost every case,
IPLoM is the fastest algorithm, since it uses specifically designed heuristics.

6. Discussion and Conclusions

In this paper, we evaluated the compression capacity of our dictionary method with
the use of various template miners. These measures acquire message events from log
files. Events consist of variable tokens (parameters) and constant tokens. We use these
templates to create a dictionary where each ID represents a message event. The ID of the
corresponding template is assigned to each log line. We then use the dictionary to encode
the messages based on the principle that we only store the ID and the parameter list. Since
parameters could contain confidential information, the compressed files are encrypted
as well.

To analyze the performance of the template miners in pair with this encoding method,
several experiments were conducted. The experimental results showed that using any
type of template miner with the generated directory results in around 50% compression.
Out of all the investigated measures, LenMa proved to be the best with an average of
67.407%. It produced a bigger dictionary, and because of that, fewer parameters had to be
encoded, which resulted in smaller file sizes. In the case of the encryption methods, the
results showed that the use of FFX slightly decreases the size of the compressed file. The
speed of the template miners was also compared. Based on our experiments, LenMa was
outstandingly slower than the other methods, despite its good performance at compression.
Our results yielded that IPLoM is the fastest among the examined methods.

Based on our experiments, we would suggest the combination of IPLoM and FFX to
achieve the best results; however, using any of the log miners with the dictionary method
greatly reduces the size of the log file.

While we only investigated these five template miners, it is possible that other methods
could yield better results. We only evaluated the performance on log files, and it would be
interesting to measure the performance in the case of stream-like data. It would be also
beneficial to compare the performance of our method and the performance of the existing
general compressors. The compression rate achieved by the combination of our algorithm
and the general compressors could be also investigated.

Author Contributions: Conceptualization, P.M., P.L.-K., and A.K.; methodology, P.M., P.L.-K., and
A.K.; software, P.M. and P.L.-K.; validation, P.M., P.L.-K., and A.K.; investigation, P.M., P.L.-K., and
A.K.; writing—original draft preparation, P.M., P.L.-K., and A.K.; writing—review and editing, P.M.,
P.L.-K., and A.K.; supervision, A.K.; project administration, A.K.; All authors have read and agreed
to the published version of the manuscript.

Computers 2021, 10, 83 16 of 17

Funding: The project has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002). This research was also supported by grants of
“Application Domain Specific Highly Reliable IT Solutions” project that has been implemented
with the support provided from the National Research, Development and Innovation Fund of Hun-
gary, financed under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges
Subprogramme) funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data was provided by the Ericsson-ELTE Software Technology Lab.
Authors can confirm that all relevant data are included in the article.

Acknowledgments: This publication is the partial result of the Research & Development Operational
Programme for the project “Modernisation and Improvement of Technical Infrastructure for Research
and Development of J. Selye University in the Fields of Nanotechnology and Intelligent Space”,
ITMS 26210120042, co-funded by the European Regional Development Fund. The project was also
supported by the Ericsson-ELTE Software Technology Lab.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

IPLoM Iterative Partitioning Log Mining
LenMa Length Matters
SPell Streaming Parser for Event Logs using LCS
Drain Depth Tree Based Online Log Parsing
MoLFI Multi-objective Log message Format Identification
AES Advanced Encryption Standard
FFX Format-preserving, Feistel-based encryption

References
1. Breier, J.; Branišová, J. Anomaly Detection from Log Files Using Data Mining Techniques. In Lecture Notes in Electrical Engineering;

Springer: Berlin/Heidelberg, Germany, 2015; Volume 339, pp. 449–457.
2. Zimek, A.; Schubert, E. Outlier Detection. In Encyclopedia of Database Systems; Springer: New York, NY, USA, 2017; pp. 1–5.
3. Nagaraj, K.; Killian, C.; Neville, J. tructured Comparative Analysis of Systems Logs to Diagnose Performance Problems. In

Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12); USENIX Association: San
Jose, CA, USA, 2012.

4. Sun, Y.; Li, H.; Councill, I.G.; Huang, J.; Lee, W.C.; Giles, C.L. Personalized Ranking for Digital Libraries Based on Log Analysis.
In Proceedings of the 10th ACM Workshop on Web Information and Data Management; Association for Computing Machinery: New
York, NY, USA, 2008.

5. Reidemeister, T.; Munawar, M.A.; Jiang, M.; Ward, P.A.S. Diagnosis of Recurrent Faults Using Log Files. In Proceedings of the 2009
Conference of the Center for Advanced Studies on Collaborative Research; IBM Corp: Armonk, NY, USA, 2009.

6. Basin, D.; Caronni, G.; Ereth, S.; Harvan, M.; Klaedtke, F.; Mantel, H. Scalable Offline Monitoring. In Lecture Notes in Computer
Science; Springer International Publishing: Cham, Germany, 2014; pp. 31–47.

7. Kwan, I.S.; Fong, J.; Wong, H. An e-customer behavior model with online analytical mining for internet marketing planning.
Decis. Support Syst. 2005, 41, 189–204. [CrossRef]

8. He, S.; He, P.; Chen, Z.; Yang, T.; Su, Y.; Lyu, M.R. A Survey on Automated Log Analysis for Reliability Engineering. 2020.
Available online: https://arxiv.org/abs/2009.07237 (accessed on 6 June 2021).

9. Gaddam, S.R.; Phoha, V.V.; Balagani, K.S. K-Means+ ID3: A novel method for supervised anomaly detection by cascading
K-Means clustering and ID3 decision tree learning methods. IEEE Trans. Knowl. Data Eng. 2007, 19, 345–354. [CrossRef]

10. Munir, M.; Siddiqui, S.A.; Dengel, A.; Ahmed, S. DeepAnT: A deep learning approach for unsupervised anomaly detection in
time series. IEEE Access 2018, 7, 1991–2005. [CrossRef]

11. Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. GANomaly: Semi-supervised Anomaly Detection via Adversarial Training. In
Asian Conference on Computer Vision; Springer: Cham, Switzerland, 2018; pp. 622–637.

12. He, S.; Zhu, J.; He, P.; Lyu, M.R. Loghub: A large collection of system log datasets towards automated log analytics. arXiv 2020,
arXiv:2008.06448.

13. Yao, K.; Li, H.; Shang, W.; Hassan, A.E. A study of the performance of general compressors on log files. Empir. Softw. Eng. 2020,
25, 3043–3085. [CrossRef]

http://doi.org/10.1016/j.dss.2004.11.012
https://arxiv.org/abs/2009.07237
http://dx.doi.org/10.1109/TKDE.2007.44
http://dx.doi.org/10.1109/ACCESS.2018.2886457
http://dx.doi.org/10.1007/s10664-020-09822-x

Computers 2021, 10, 83 17 of 17

14. Gazdag, A.; Buttyan, L.; Szalay, Z. Efficient lossless compression of CAN traffic logs. In Proceedings of the 2017 25th International
Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 21–23 September 2017.

15. Hassan, A.E.; Martin, D.J.; Flora, P.; Mansfield, P.; Dietz, D. An industrial case study of customizing operational profiles using log
compression. In Proceedings of the 30th International Conference on Software Engineering, New York, NY, USA, 10–18 May 2008.

16. Fei, P.; Li, Z.; Wang, Z.; Yu, X.; Li, D.; Jee, K. SEAL: Storage-efficient Causality Analysis on Enterprise Logs with Query-friendly
Compression. In 30th USENIX Security Symposium (USENIX Security 21); USENIX Association: Berkeley, CA, USA, 2021.

17. Liu, J.; Zhu, J.; He, S.; He, P.; Zheng, Z.; Lyu, M.R. Logzip: Extracting Hidden Structures via Iterative Clustering for LogCompres-
sion. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), San Diego, CA,
USA, 11 November 2019.

18. Yao, K.; Sayagh, M.; Shang, W.; Hassan, A.E. Improving State-of-the-art Compression Techniques for Log Management Tools.
IEEE Trans. Softw. Eng. 2021, 1, doi:10.1109/TSE.2021.3069958. [CrossRef]

19. Ryabko, B. Time-universal data compression and prediction. In Proceedings of the 2019 IEEE International Symposium on
Information Theory, Paris, France, 7–12 July 2019; pp. 562–566.

20. Vestergaard, R, Zhang, Q, Lucani, D.E. Lossless compression of time series data with generalized deduplication. In Proceedings
of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

21. Doblander, C.; Khatayee, A.; Jacobsen, H.A. Predict: Predictive dictionary maintenance for message compression in pub-
lish/subscribe. In Proceedings of the 19th International Middleware Conference, Rennes, France, 10–14 December 2018;
pp. 174–186.

22. Bateni, M.; Chen, L.; Esfandiari, H.; Fu, T.; Mirrokni, V.; Rostamizadeh, A. Categorical feature compression via submodular
optimization. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp.
515–523.

23. Hoogeboom, E.; Peters,W.; Berg, R.V.; Welling, M. Integer discrete flows and lossless compression. arXiv 2019, arXiv:1905.07376.
24. Wei, J.; Zhang, G.; Wang, Y.; Liu, Z.; Zhu, Z.; Chen, J.; Sun, T.; Zhou, Q. On the Feasibility of Parser-based Log Compression

in Large-Scale Cloud Systems. In Proceedings of the 19th USENIX Conference on File and Storage Technologies (FAST 21),
Berkeley, CA, USA, 23–25 February 2021; pp. 249–262.

25. Ji, C.; Chang, L.P.; Pan, R.; Wu, C.; Gao, C.; Shi, L.; Kuo, T.W.; Xue, C.J. Pattern-Guided file compression with user-Experience
enhancement for log-Structured file system on mobile devices. In Proceedings of the 19th USENIX Conference on File and
Storage Technologies (FAST 21), Berkeley, CA, USA, 23–25 February 2021; pp.127–140.

26. He, P.; Zhu, J.; Zheng, Z.; Lyu, M.R. Drain: An online log parsing approach with fixed depth tree. In Proceedings of the IEEE
International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017.

27. Li, L.; Man, Y.; Chen, M. A Method of Large—Scale Log Pattern Mining. In Lecture Notes in Computer Science; Springer International
Publishing: Cham, Switzerland, 2018; pp. 76–84.

28. Shima, K. Length matters: Clustering system log messages using length of words. arXiv 2016, arXiv:1611.03213.
29. Daemen, J.; Rijmen, V. AES Proposal: Rijndael; Gaithersburg, MD, USA, 1999. Available online: https://www.cs.miami.edu/

home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf (accessed on 6 June 2021).
30. Schneier, B. Description of a new variable-length key, 64-bit block cipher (Blowfish). In Fast Software Encryption; Springer:

Berlin/Heidelberg, Germany, 1994; pp. 191–204.
31. He, P.; Zhu, J.; He, S.; Li, J.; Lyu, M.R. An Evaluation Study on Log Parsing and Its Use in Log Mining. In Proceedings of the 46th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN); IEEE: Toulouse, France, 2016.
32. Makanju, A.; Zincir-Heywood, A.N.; Milios, E.E. A Lightweight Algorithm for Message Type Extraction in System Application

Logs. IEEE Trans. Softw. Eng. 2012, 24, 1921–1936. [CrossRef]
33. Du, M.; Li, F. Spell: Streaming parsing of system event logs. In Proceedings of the IEEE 16th International Conference on Data

Mining (ICDM), Barcelona, Spain, 12–15 December 2016.
34. Messaoudi, S.; Panichella, A.; Bianculli, D.; Briand, L.; Sasnauskas, R. A search-based approach for accurate identification of

log message formats. In Proceedings of the IEEE/ACM 26th International Conference on Program Comprehension (ICPC),
Gothenburg, Sweden, 27 May–3 June 2017.

35. Sivanandam, S.N.; Deepa, S.N. Introduction to Genetic Algorithms, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 15–37.
36. Nyberg. K. Generalized Feistel networks. In ASIACRYPT 1996 -Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,

Germany, 1996; pp. 91–104.
37. Bellare, M.; Ristenpart, T.; Rogaway, P.; Stegers, T. Format-preserving encryption. In International Workshop on Selected Areas in

Cryptography; Springer: Berlin/Heidelberg, Germany, 2009; pp. 295–312
38. Liskov, M.; Rivest, R.L.; Wagner, D. Tweakable block ciphers. In Annual International Cryptology Conference; Springer:

Berlin/Heidelberg, Germany, 2002; pp. 31–46.
39. Zhu, J.; He, S.; Liu, J.; He, P.; Xie, Q.; Zheng, Z.; Lyu, M.R. Tools and benchmarks for automated log parsing. In Proceedings of the

IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), Montreal, QC,
Canada, 25–31 May 2019.

http://dx.doi.org/10.1109/TSE.2021.3069958
https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf
https://www.cs.miami.edu/home/burt/learning/Csc688.012/rijndael/rijndael_doc_V2.pdf
http://dx.doi.org/10.1109/TKDE.2011.138

	Introduction
	Materials and Methods
	Concepts and Problems
	Log Parsing
	Iplom
	Lenma
	Spell
	Drain
	MoLFI

	Encryption Techniques
	AES
	Blowfish
	FFX

	Results
	Data
	Experimental Analysis
	Experiment 1: Comparing the Size of the Compressed Messages with Our Method and Different Template Miners
	Experiment 2: Comparing Size of the Compressed and Encrypted Messages
	Experiment 3: Comparing the Speed of the Different Template Miners

	Discussion and Conclusions
	References

