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Abstract: The Curiosity rover has landed on Mars since 2012. One of the instruments onboard the
rover is a pair of multispectral cameras known as Mastcams, which act as eyes of the rover. In this
paper, we summarize our recent studies on some interesting image processing projects for Mastcams.
In particular, we will address perceptually lossless compression of Mastcam images, debayering and
resolution enhancement of Mastcam images, high resolution stereo and disparity map generation
using fused Mastcam images, and improved performance of anomaly detection and pixel clustering
using combined left and right Mastcam images. The main goal of this review paper is to raise public
awareness about these interesting Mastcam projects and also stimulate interests in the research
community to further develop new algorithms for those applications.

Keywords: Mars rover Curiosity; Mastcam; multispectral images; perceptually lossless compression;
demosaicing; stereo images; anomaly detection

1. Introduction

NASA has sent several rovers to Mars over the past few decades. The Sojourner rover
landed on 4 July 1997. It practically worked for a short while because communication
link was broken after two months. Sojourner traveled slightly more than 100 m. Spirit,
also known as the Mars Exploration Rover (MER-A), landed on 4 January 2004. Spirit
lasted for six years and had traveled 7.73 km. Opportunity (MER-B), a twin version of
Spirit, launched on 7 July 2003 and landed on 25 January 2004. Opportunity lasted for
8 Martian years or 15 Earth years) and traveled 45.16 km. Curiosity rover was launched
on 26 November 2011 and landed on 6 August 2012. It is still collecting data and moving
around as of April 2021. Perseverance, a rover very similar to Curiosity, just landed on
18 February 2021 [1].

This paper will focus on the Curiosity rover. Onboard the Curiosity rover, there are a
few important instruments. The laser induced breakdown spectroscopy (LIBS) instrument,
ChemCam, performs rock composition analysis from distances as far as seven meters [2].
Another type of instrument is the mast cameras (Mastcams). There are two Mastcams [3].
The cameras have nine bands in each with six of them overlapped. The range of wave-
lengths covers the blue (445 nm) to the short-wave near-infrared (1012 nm).

The Mastcams can be seen in Figure 1. The right imager has three times better resolu-
tion than the left. As a result, the right camera is usually for short range image collection
and the right is for far field data collection. The various bands of the two Mastcams are
shown in Table 1 and Figure 2. There are a total of nine bands in each Mastcam. One can
see that, except for the RGB bands, the other bands in the left and right images are non-
overlapped, meaning that it is possible to generate a 12-band data cube by fusing the left
and right bands. The dotted curves in Figure 2 are known as the “broadband near-IR cutoff
filter”, which has a filter bandwidth (3 dB) of 502 to 678 nm. Its purpose is to help the
Bayer filter in the camera [3]. In a later section, the 12-band cube was used for accurate
data clustering and anomaly detection.
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Figure 1. The Mars rover—Curiosity, and its onboard instruments [4]. Mastcams are located just 
below the white box near the top of the mast. 

Table 1. Mastcam bands [4]. There are nine bands with six overlapping bands in each camera. 

The Left Mastcam The Right Mastcam 
Filter Wavelength (nm) Filter Wavelength (nm) 

L2 445 R2 447 
L0B 495 R0B 493 
L1 527 R1 527 

L0G 554 R0G 551 
L0R 640 R0R 638 
L4 676 R3 805 
L3 751 R4 908 
L5 867 R5 937 
L6 1012 R6 1013 

 
Figure 2. Spectral response curves for the left eye (top panel) and the right eye (bottom panel) [5]. 

Figure 1. The Mars rover—Curiosity, and its onboard instruments [4]. Mastcams are located just
below the white box near the top of the mast.

Table 1. Mastcam bands [4]. There are nine bands with six overlapping bands in each camera.

The Left Mastcam The Right Mastcam

Filter Wavelength (nm) Filter Wavelength (nm)

L2 445 R2 447

L0B 495 R0B 493

L1 527 R1 527

L0G 554 R0G 551

L0R 640 R0R 638
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L3 751 R4 908

L5 867 R5 937

L6 1012 R6 1013

Computers 2021, 10, x FOR PEER REVIEW 2 of 19 
 

Bayer filter in the camera [3]. In a later section, the 12-band cube was used for accurate 
data clustering and anomaly detection. 

 
Figure 1. The Mars rover—Curiosity, and its onboard instruments [4]. Mastcams are located just 
below the white box near the top of the mast. 

Table 1. Mastcam bands [4]. There are nine bands with six overlapping bands in each camera. 

The Left Mastcam The Right Mastcam 
Filter Wavelength (nm) Filter Wavelength (nm) 

L2 445 R2 447 
L0B 495 R0B 493 
L1 527 R1 527 

L0G 554 R0G 551 
L0R 640 R0R 638 
L4 676 R3 805 
L3 751 R4 908 
L5 867 R5 937 
L6 1012 R6 1013 

 
Figure 2. Spectral response curves for the left eye (top panel) and the right eye (bottom panel) [5]. Figure 2. Spectral response curves for the left eye (top panel) and the right eye (bottom panel) [5].



Computers 2021, 10, 111 3 of 18

The objective of this paper is to briefly review some recent studies done by our team
for Mastcam. First, we review our work on perceptually lossless compression effort for
Mastcam images. The motivation of this study was to demonstrate that, with the help of
recent compression technologies, it is plausible to adopt perceptually lossless compression
(ten to one compression) instead of lossless compression (three to one compression) for
NASA’s Mastcam images. This will save three times the precious bandwidth between Mars
and Earth. Second, we review our recent study on debayering for Mastcam images. The
Mastcam is still using a debayering algorithm developed in 2004. Our study shows that
some recent debayering algorithms can achieve better artifact reduction and enhanced
image quality. Third, we review our work on image enhancement for the left Mastcam
images. Both conventional and deep learning approaches were studied. Fourth, we review
our past work on stereo imaging and disparity map generation for Mastcam images. The
approach was to combine left and right images for stereo imaging. Fifth, we further
summarize our study on fusing both Mastcam images to enhance the performance of data
clustering and anomaly detection. Finally, we will conclude our paper and discuss some
future research opportunities, including Mastcam-Z, which is the new Mastcam imager
onboard the Perseverance rover, image enhancement and stereo imaging by combining left
and right Mastcam images.

We would like to emphasize that one key goal of our paper is to publicize some inter-
esting projects related to Mastcam in the Curiosity rover and hopefully this will stimulate
some interest from the research community to look into these interesting projects and
perhaps further develop some new algorithms to improve the state-of-the-art. Our team
worked with NASA Jet propulsion Laboratory (JPL) and two other universities on the
Mastcam project for more than five years. Few researchers in the world actually know
the fact that NASA has archived Mastcam images as well as data acquired by quite a
few other instruments (LIBS, Alpha Particle X-Ray Spectrometer (APXS), etc.) onboard
the Mars rover Curiosity. The database is known as the Planetary Data System (PDS)
(https://pds.nasa.gov/ accessed on 6 September 2021). All these datasets are available to
the public free of charge. If researchers are interested in applying some new algorithms
to demosaic the Mastcam images, there are millions of images available. Another objec-
tive of our review paper is to summarize some preliminary algorithm improvement in
five applications so that interested researchers can look at this review paper alone and can
gather about the state-of-the-art algorithms in processing Mastcam images.

The NASA Mastcam projects are very specific applications. Few people are even aware
of these projects. For all of the five applications, NASA JPL first implemented some baseline
algorithms, and our team was the next one to continue the investigations. To the best of our
knowledge, no one else has performed detailed investigations in these areas. For instance,
in the demosaicing of Mastcam images, NASA used the Malvar-He-Cutler algorithm,
which was developed in 2004. Since then, there has been tremendous developments in
demosaicing. We worked with NASA JPL to compare a number of conventional and deep
learning demosaicing algorithms and eventually convinced NASA that it is probably time
to adopt newer algorithms. For the image compression project, NASA is still using the
JPEG standard, which was developed in the 1990s. We performed thorough comparative
studies and advocated the importance of using perceptually lossless compression. For
the fusion of left and right Mastcam images, no one has done this before. Similarly, for
anomaly detection and image enhancement, we are the only team working in this area.

2. Perceptually Lossless Compression for Mastcam Images

Up to now, NASA is still compressing the Mastcam images without loss using JPEG,
which is a technology developed around 1990 [6]. JPEG is computationally efficient. How-
ever, it can achieve a compression ratio of at most three times in the lossless compression
mode. In the past two decades, new compression standards, including JPEG-2000 (J2K) [7],
X264 [8], and X265 [9], were developed. These video codecs can also compress still images.
Lossless compression options are also present in these codecs.

https://pds.nasa.gov/
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In addition to the above codecs, some researchers developed lapped transform
(LT) [10] and incorporated it into a new codec known as Daala [11] in recent years. Daala
can compress both still images and videos. A lossless option is also present.

The objective of our recent study [12] was to perform thorough comparative studies
and advocated the importance of using perceptually lossless compression for NASA’s
missions. In particular, in our recent paper [12], we evaluated five image codecs, including
Daala, X265, X264, J2k, and JPEG. The objective is to investigate which one of the above
codecs can attain a 10:1 compression ratio, which we consider as perceptually lossless
compression. We emphasize that some suitable metrics are required to quantify perceptual
performance. In the past, researchers have found that peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM), two popular and widely used metrics, do not correlate
well with human’s subjective evaluations. In recent years, some metrics known as human
visual system (HVS) and HVS with masking (HVSm) [13] were developed. For Mastcam
images, HVS and HVSm were adopted in our compression studies. For perceptually
lossless compression studies, we could have used CIELab metric too, but did not do so
because we wanted to compare with other existing compression methods in the literature
which only used PSNR, SSIM, HVS, and HVSm. Moreover, we also evaluated the decom-
pressed RGB Mastcam images using subjective assessment. We noticed that perceptually
lossless compression can be attained even at 20 to 1 compression. If one focuses at ten to
one compression using Daala, the objective metrics of HVS and HVSm are 5 to 10 dBs
higher than those of JPEG.

Our findings are as follows. Details can be found in [12].

• Comparison of different approaches For the nine-band multispectral Mastcam images,
we compared several approaches (principal component analysis (PCA), split band
(SB), video, and two-step). It was observed that the SB approach performed better
than others using actual Mastcam images.

• Codec comparisons In each approach, five codecs were evaluated. In terms of those
objective metrics (HVS and HVSm), Daala yielded the best performance amongst the
various codecs. At ten to one compression, more than 5 dBs of improvement was
observed by using Daala as compared to JPEG, which is the default codec by NASA.

• Computational complexity Daala uses discrete cosine transform (DCT) and is more
amenable for parallel processing. J2K is based on wavelet which requires the whole
image as input. Although X265 and X264 are also based on DCT, they did not perform
well at ten to one compression in our experiments.

• Subjective comparisons Using visual inspections on RGB images, it was observed
that at 10:1 and 20:1 compression, all codecs have almost no loss. However, at higher
compression ratios such as 40 to 1 compression, it was observed that there are notice-
able color distortions and block artifacts in JPEG, X264, and X265. In contrast, we still
observe good compression performance in Daala and J2K even at 40:1 compression.

3. Debayering for Mastcam Images

The nine bands in each Mastcam camera contain RGB bands. Different from other
bands, the RGB bands are collected by using a Bayer pattern filter, which first came out in
1976 [14]. In the past few decades, many debayering algorithms were developed [15–19].
NASA still uses the Malvar-He-Cutler (MHC) algorithm [20] to demosaic the RGB Mastcam
images. Although MHC was developed in 2004, it is an efficient algorithm that can be
easily implemented in the camera’s control electronics. In [3], another algorithm known as
the directional linear minimum mean square-error estimation (DLMMSE) [21] was also
compared against the MHC algorithm.

Deep learning has gained popularity since 2012. In [22], a joint demosaicing and
denoising algorithm was proposed. For the sake of easy referencing, this algorithm can
be called DEMOsaic-Net (DEMONET). Two other deep learning-based algorithms for
demosaicing [23,24] have been identified as well.
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The objective of our recent work [4] is to compare a number of conventional and deep
learning demosaicing algorithms and eventually convince NASA that it is probably time to
adopt newer algorithms.

In our recent work [4], we have thoroughly compared traditional and deep learning-
based algorithms for demosaicing Mastcam images. We had two contributions. First,
our research investigated the existence of better algorithms, developed after 2004, for
debayering Mastcam images. In our paper [25], we started this effort and investigated
several pixel-level fusion approaches [26]. Other methods [27–30] with publicly available
codes were investigated. From the NASA’s Planetary Data System (PDS), we extracted
31 representative Mastcam images in our comparative studies. Second, we focused on com-
paring conventional and deep learning based demosaicing algorithms. Four recent conven-
tional algorithms [31,32] were added to those non-deep learning based algorithms [19–30]
in our experiments.

We have several observations on our Mastcam image demosaicing experiments. First,
we observe that the MHC algorithm still generated reasonable performance in Mastcam
images even though some recent ones yielded better performance. Second, we observe
that some deep learning algorithms did not always perform well. Only the DEMONET
generated better performance than conventional methods. This shows that the performance
of demosaicing algorithms depends on the applications. Third, we observe that DEMONET
performed better than others only for right Mastcam images. DEMONET has comparable
performance to a method know as exploitation of color correlation (ECC) [31] for the left
Mastcam images.

We compared the following algorithms: linear directional interpolation and nonlocal
adaptive thresholding (LDI-NAT) [19], MHC [20], DLMMSE [21], Lu and Tan interpolation
(LT) [27], adaptive frequency domain (AFD) [28], alternate projection (AP) [29], primary-
consistent soft-decision PCSD [30], ATMF [26], DEMONET [22], fusion using three best
(F3) [25], bilinear, sequential energy minimization (SEM) [24], deep residual network
(DRL) [23], ECC [31], minimized-Laplacian residual interpolation (MLRI) [32], adaptive
residual interpolation (ARI) [33], directional difference regression (DDR) [34].

Due to the fact that there are no ground truth demosaiced images, we adopted an
objective blind image quality assessment metric known as natural image quality evaluator
(NIQE). Low NIQE scores mean better performance. Figure 3 shows the NIQE metrics
of various methods. One can see that ECC and DEMONET have better performance
than others.
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MHC is the default algorithm used by NASA.

From Figure 4, we see obvious color distortions in demosaiced image using bilinear,
MHC, AP, LT, LDI-NAT, F3, and ATMF. One can also see strong zipper artifacts in the
images from AFD, AP, DLMMSE, PCSD, LDI-NAT, F3, and ATMF. There are slight color
distortions in the results of ECC and MLRI. Finally, we can observe that the images of
DEMONET, ARI, DRL, and SEM are more perceptually pleasing than others.
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4. Mastcam Image Enhancement

The left Mastcam images have three times lower resolution than that of the right. We
have tried to improve the spatial resolution of the left images so that left and right images
may be fused for some applications such as anomaly detection. It should be noted that no
one, including NASA, has done this work before. Here, we summarize two approaches that
we have tried. The first one is based image deconvolution, which is a standard technique
in image restoration. The second one is to apply deep learning algorithms.

4.1. Model Based Enhancement

In [35], we presented an algorithm to improve the left Mastcam images. There are
two steps in our approach. First, a pair of left and right Mastcam bands is used to estimate
the point spread function (PSF) using a sparsity-based approach. Second, the estimated
PSF is then applied to improve the other left bands. Preliminary results using real Mast-
cam images indicated that the enhancement performance is mixed. In some left images,
improvements can be clearly seen, but not so good results appeared in others.

From Figure 5, we can clearly observe the sharpening effects of the deblurred image
(i.e., Figure 5f) compared with the aligned left images (i.e., Figure 5e). The estimated
kernel in Figure 5c, was obtained using a pair of left and right green bands. We can see
better enhancement in Figure 5 for the LR band. However, in some cases in [35], some
performance degradations were observed.

The mixed results suggest a new direction for future research, which may involve
deep learning techniques for PSF estimation and robust deblurring.

4.2. Deep Learning Approach

Over the past two decades, a large number of papers was published on the subject of
pansharpening, which is the fusion of a high resolution (HR) panchromatic (pan) image
with a low resolution (LR) multispectral image (MSI) [36–40]. Recently, we proposed an
unsupervised network for image super-resolution (SR) of hyperspectral image (HSI) [41,42].
Similar to MSI, HSI has found many applications. The key features of our work in HSI
include the following. First, our proposed algorithm extracts both the spectral and spatial
information from LR HSI and HR MSI with two deep learning networks, which share
the same decoder weights, as shown in Figure 6. Second, sum-to-one and sparsity are
two physical constraints of HSI and MSI data representation. Third, our proposed algo-
rithm directly addresses the challenge of spectral distortion by minimizing the angular
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difference of these representations. The proposed method is coined as unsupervised sparse
Dirichlet network (uSDN). Details of uDSN can be found in our recent work [43].
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band-PSNR = 24.78 dB; (f) enhanced image of (e) using PSF estimated in (c) PSNR = 30.08 dB.

Two benchmark datasets, CAVE [44] and Harvard [45], were used to evaluate the
proposed uSDN. More details can be found in [41,42]. Here, we include results of applying
uDSN to Mastcam images. As mentioned before, the right Mastcam has higher resolution
than the left. Consequently, the right Mastcam images are treated as HR MSI and the left
images are treated as LR HSI.

To generate objective metrics, we used the root mean squared error (RMSE) and
spectral angle mapper (SAM), which are widely used in the image enhancement and
pansharpening literature. Smaller values imply better performance.

Figure 7 shows the images of our experiments. One can see that the reconstructed
image is comparable to the ground truth. Here, we only compare the proposed method
with coupled nonnegative matrix factorization (CNMF) [46] which has been considered
a good algorithm. The results in Table 2 show that the proposed approach was able to
outperform the CNMF in two metrics.
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Figure 7. Results of pansharpening for Mars images. Left column (a,c,e) shows the original images;
right column (b,d,f) is the zoomed in view of the blue rectangle areas of the left images. The
first row (a,b) shows third band from the left camera. The second row (c,d) shows the corresponding
reconstructed results. The third row (e,f) shows the third band from the right camera.
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5. Stereo Imaging and Disparity Map Generation for Mastcam Images

In the past few years, more research has been investigated in using virtual reality and
augmented reality tools to Mars rover missions [47–49]. For example, a software called
OnSight was developed by NASA and Microsoft to enable scientists to virtually work
on Mars using Microsoft HoloLens [50]. Mastcam images have been used by OnSight
software to create a 3D terrain model of the Mars. The disparity maps extracted from stereo
Mastcam images are important by providing depth information. Some papers [51–53]
proposed methods to estimate disparity maps using monocular images. Since the two
Mastcam images do not have the same resolution, a generic disparity map estimation using
the original Mastcam images may not take the full potential of the right Mastcam images
that have three times higher image resolution. It will be more beneficial to NASA and other
users of Mastcam images if a high-resolution disparity map can be generated.

In [54], we introduced a processing framework that can generate high resolution
disparity maps for the Mastcam image pairs. The low-resolution left camera image was
improved and the impact of the image enhancement on the disparity map estimation was
studied quantitatively. It should be noted that, in our earlier paper [55], we generated
stereo images using the Mastcam instruments. However, no quantitative assessment of the
impact of the image enhancement was carried out.

Three algorithms were used to improve left camera images. The bicubic interpo-
lation [56] was used as the baseline technique. Another method [57] is an adaptation
of the technique in [5] with pansharpening [57–61]. Recently, deep learning-based SR
techniques [62–64] have been developed. We used the enhanced deep super resolution
(EDSR) [65] as one representative deep learning-based algorithm in our experiments. It
should be emphasized that no one, including NASA, has carried out any work related to
this stereo generation effort. As a result, we do not have a baseline algorithm from NASA
to compare with.

Here, we include some comparative results. From Figure 8, we observe that the image
quality with EDSR and the pansharpening-based method are better when compared with
the original and bicubic images.

Figure 9 shows the objective NIQE metrics for the various algorithms. It is worth
mentioning that even though the pansharpening-based method provides the lowest NIQE
values (best performance) and provides visually very appealing enhanced images, it is
noticed that some pixel regions in the enhanced images do not seem to be well registered
in the sub-pixel level. Since the NIQE metric does not take into consideration issues related
to registration in its assessment, it clearly favors the pansharpening-based method over
others as shown in Figure 9. Other objective metrics using RMSE, PSNR, SSIM were used
in [54] to demonstrate that the EDSR algorithm performed better than other methods.
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Figure 9. Natural image quality evaluator (NIQE) metric results for enhanced “original left Mastcam
images” (scale: ×2) by the bicubic interpolation, pansharpening-based method, and EDSR.

Figure 10 shows the estimated disparity maps with the three image enhancement
methods for Image Pair 6 in [54]. Figure 10a shows the estimated disparity map using
the original left camera image. Figure 10b–d show the resultant disparity maps with the
three methods. Figure 10e shows to the mask used when computing the average absolute
error values. According to our paper [54], the disparity map shown in Figure 9d has the
best performance. More details can be found in [54].
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Figure 10. Disparity map estimations with the three methods and the mask for computing average absolute error. (a) Ground
truth disparity map; (b) disparity map (bicubic interpolation); (c) disparity map (pansharpening-based method); (d) disparity
map (EDSR); (e) mask for computing average absolute error.

6. Anomaly Detection Using Mastcam Images

One important role of Mastcam imagers is to help locate anomalous or interesting
rocks so that the rover can go to that rock and collect some samples for further analysis.
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A two-step image alignment approach was introduced in [5]. The performance
of the proposed approach was demonstrated using more than 100 pairs of Mastcam
images, selected from over 500,000 images in NASA’s PDS database. As detailed in [5], the
fused images have improved the performance of anomaly detection and pixel clustering
applications. We would like to emphasize that this anomaly detection work was not done
before by NASA and hence there is no baseline approach from NASA.

Figure 11 illustrates the proposed two-step approach. The first step uses RANSAC (ran-
dom sample consensus) technique [66] for an initial image alignment. SURF features [67]
and SIFT features [68] are then matched within the image pair.
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Figure 11. A two-step image alignment approach to registering left and right images.

The second step uses the diffeomorphic registration [69] technique to perform a
refinement on the alignment. We observed that the second step achieves subpixel alignment
performance. After the alignment, we can then perform anomaly detection and pixel
clustering with the constructed multispectral image cubes.

We used K-means for pixel clustering. The number of clusters are set to be six
following suggestion of the gap statistical method [70]. Figure 12 shows the results. In each
figure, we enlarged one clustering region to showcase the performance. There are several
important observations:

(i) We observe that the clustering performance is improved after the first and second
registration step of our proposed two-step framework;

(ii) The clustering performance of the two-step registration for the M34-resolution and
M100-resolution is comparable;

(iii) The pansharpened data show the best clustering results with fewer randomly clus-
tered pixels.

Figure 13 displays the anomaly detection results of two LR-pair cases for the
three competing methods (global-RX, local-RX and NRS methods) applied to the original
nine-band data captured only by the right Mastcam (second row) and the five twelve-band
fused data counterparts (third to seventh rows). There is no ground-truth information
about anomaly targets. Consequently, we relied on visual inspection. From Figure 13,
we observe better detection results when both RANSAC and diffeomorphic registration
steps are applied as compared with just RANSAC registration. Moreover, the results using
BDSD and PRACS pan-sharpening produce less noise than the detection outputs of purely
registration-based MS data.
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Figure 13 displays the anomaly detection results of two LR-pair cases for the three 
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band data captured only by the right Mastcam (second row) and the five twelve-band 
fused data counterparts (third to seventh rows). There is no ground-truth information 

Figure 12. Clustering results with six classes of an LR-pair on sol 0812 taken on 18 November 2014.
(a) Original RGB right image; (b) original RGB left image; (c) using nine-band right camera MS cube;
(d) using twelve-band MS cube after first registration step with lower (M-34) resolution; (e) using
twelve-band MS cube after the second registration step with lower resolution; (f) using twelve-band
MS cube after the second registration step with higher (M-100) resolution; (g) using pan-sharpened
images by band dependent spatial detail (BDSD) [71]; and (h) using pan-sharpened images by partial
replacement adaptive CS (PRACS) [72].
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The new Mars rover Perseverance that has landed on Mars in 2021 contains a new 
generation of stereo instrument known as Mastcam-Z, (https://mars.nasa.gov/mars2020/ 
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7. Conclusions and Future Work

With the goals of raising public awareness and stimulating research interests of some
interesting Mastcam projects, we briefly review our recent projects related to Mastcam
image processing. First, we studied various new image compression algorithms and
observed that perceptually lossless compression at ten to one compression can be achieved.
This will tremendously save scarce bandwidth between Mars rover and JPL. Second,
we compared recent debayering algorithms with the default algorithm used by NASA
and found that recent algorithm can yield less artifacts. Third, we investigated image
enhancement algorithms for left Mastcam images. It was observed that, with the help of
right Mastcam images, it is possible to improve the resolution of left Mastcam images.
Fourth, we investigated stereo image and disparity map generation by combining left and
right Mastcam images. It was noticed that the fusion of enhanced left and right images
can create higher resolution stereo image and disparity maps. Finally, we investigated
the fusion of left and right images to form a 12-band multispectral image cube and its
application to pixel clustering and anomaly detection.

The new Mars rover Perseverance that has landed on Mars in 2021 contains a new
generation of stereo instrument known as Mastcam-Z, (https://mars.nasa.gov/mars202
0/spacecraft/instruments/mastcam-z/ accessed on 7 September 2021). We are currently
pursuing funding to continue our customization of our algorithms described in this paper
to those images in Mastcam-Z. In the stereo imaging work, more research is needed in
order to deal with left and right images from different view angles.
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