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Abstract: Recently computer vision has been applied in various fields of engineering successfully
ranging from manufacturing to autonomous cars. A key player in this development is the achieve-
ments of the latest object detection and classification architectures. In this study, we utilized computer
vision and the latest object detection techniques for an automated assessment system. It is devel-
oped to reduce the person-hours involved in worker training assessment. In our local building and
construction industry, workers are required to be certificated for their technical skills in order to
qualify working in this industry. For the qualification, they are required to go through a training
and assessment process. During the assessment, trainees implement an assembly such as electrical
wiring and wall-trunking by referring to technical drawings provided. Trainees’ work quality and
correctness are then examined by a team of experts manually and visually, which is a time-consuming
process. The system described in this paper aims to automate the assessment process to reduce
the significant person-hours required during the assessment. We employed computer vision tech-
niques to measure the dimensions, orientation, and position of the wall assembly produced hence
speeding up the assessment process. A number of key parts and components are analyzed and their
discrepancies from the technical drawing are reported as the assessment result. The performance
of the developed system depends on the accurate detection of the wall assembly objects and their
corner points. Corner points are used as reference points for the measurements, considering the
shape of objects, in this particular application. However, conventional corner detection algorithms
are founded upon pixel-based operations and they return many redundant or false corner points. In
this study, we employed a hybrid approach using deep learning and conventional corner detection
algorithms. Deep learning is employed to detect the whereabouts of objects as well as their reference
corner points in the image. We then perform a search within these locations for potential corner
points returned from the conventional corner detector algorithm. This approach resulted in highly
accurate detection of reference points for measurements and evaluation of the assembly.

Keywords: computer vision; deep learning; corner detection; quality construction

1. Introduction

Computer vision has long been applied for inspection and quality control tasks in
various industries [1–4]. These applications are primarily concerned with detecting patterns,
irregularities, or deriving information from the objects analyzed that can be broadly defined
as recognition tasks. Among these, manufacturing is a typical application where geometric
measurement tests for manufactured parts and artifacts are performed. Typically inspection
involves automatic recognition of the object and then analyzing its geometric measurements.
Using computer vision in manufacturing saves time, minimizes errors, and improves the
automation process. It is important to note that in these applications, the environment is
controlled to minimize measurement errors. In some cases, special light arrangements are
used to assist vision algorithms [5]. On the other hand, computer vision is also used for
inspecting artifacts in a dynamic environment, such as agriculture [6]. However, these are
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mostly classification problems such as detecting diseases, insects, and quality of produce,
rather than measuring geometric properties. The application concerned in this paper is
an automated inspection and assessment system developed to be used in the construction
industry. It involves inspecting the correctness of dimensions, angles, and other physical
properties of the installation made by trainee workers. In this application, the environment
is not controlled as in a manufacturing line, therefore, it is a challenging problem to
tackle [7,8].

In the local construction industry, workers are required to go through a training and
certification process in order to ensure the quality of building and construction standards.
After the training period, workers go through an assessment process for their certification
in which they are expected to build a trunking assembly from its technical drawing in a
given time period. All the trainees receive the same materials and build the same assembly.
The quality of the work produced is then examined by a team of experts manually and
visually. The assessment involves checking measurements, alignments, and positions of the
assembly, and it is rated based on its compliance with the technical drawing given. Figure 1
shows examples to work produced with alignment issues as well as the manual assessment
process. Naturally, it is an arduous and time-consuming process for the training providers.
Therefore, a computer vision solution is developed to automate the assessment process in
order to speed up.
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Figure 1. (a) Example of poor workmanship and alignment issues. (b) Manual assessment of
trainees’ work.

Computer vision and image processing techniques in the building and construction
industry has long been utilized typically for construction safety, resource tracking and
activity monitoring, surveying, inspection, and condition monitoring. For a comprehensive
survey on computer vision applications in the building and construction industry, refer to
Martinez et al. [3] Smart construction, quality inspection for construction products, and
off-site construction are also seen as future research avenues in this field [3]. The research
work presented in this paper evaluates the quality of construction products done though
it’s aimed as an assessment tool for construction workers’ training and qualification.

In our application, a vision system inspects the work produced by a trainee in terms
of the geometric measures, orientation, and position. It produces a report highlighting
discrepancies from the specifications. The primary object feature used for the analysis is
the object corners. Consequently, the performance of the system is highly dependent on
the accurate detection of the corner points of the objects. Corner detection is widely used
in image processing and there are numerous algorithms available in the literature most
popular ones being FAST [9], SUSAN [10], and Harris corner detection algorithms [11].
These algorithms are pixel-based operations and they often return redundant or false
corner points. In this study, we experimented with FAST, Harris, and Minimum Eigen
value corner detection algorithms that are available in Matlab image processing libraries.
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We observed that Minimum Eigen value performed well. However, it is computationally
costly to filter out noisy detections in order to find corners that belong to the reference
points of the objects for our analysis. On the other hand, convolutional networks (CNN) and
evolutionary techniques are gaining popularity as corner detectors providing competitive
results, especially with noisy images [12]. Recently, deep learning architectures employing
many layers of CNNs have become very popular in computer vision due to their remarkable
performance. Our experiments showed that deep learning can identify object corners
effectively, however, it is within a bounded box [13]. Using a hybrid approach that applies a
pixel-based filter, such as Minimum Eigen value algorithm, and further filtering the results
with the backing of deep learning output, we are able to detect corners of the objects that
we are interested in very accurately. This enabled making reliable geometric measurements
and inspections in relatively less controlled environmental conditions.

Recently, we began to see deep learning techniques applied in the building and
construction industry. For instance, the presence of workers, equipment, and materials are
detected from camera images on sites to improve safety and productivity [14]. Advances in
machine learning present many opportunities to be exploited in this industry, such as site
supervision, cost prediction, intelligent maintenance, and many more. A detailed survey of
various machine learning algorithms, ranging from simple to highly complex techniques,
and their applications are presented in [15,16]. Another field where the latest deep learning
architectures are dominantly utilized is medicine. Medical images are obtained through
various technologies such as ultrasound, magnetic resonance, CT-Scan, and so on. Analysis
of these images requires expertise, where recently, deep learning algorithms are used
in assistance (see, for instance, tracking tissue in ultrasound videos [17], medical image
segmentation [18]). A comprehensive survey on the application of deep learning algorithms
in medical image analysis can be found in [19]. As mentioned, deep learning algorithms
include many layers of CNNs. After training, these layers become very effective in detecting
useful features in input images. We now find deep learning is also supporting conventional
image processing techniques in such image segmentation [18], image denoising [20], corner
detection [21], and edge detection [22]. In this study, our method for the corner detection is
hybrid, where we employed deep learning to detect only the objects that we are interested
and their corner locations. We then applied a conventional corner detection algorithm
within those boundaries to acquire their precise locations.

In the following, an overview of the system, together with the hybrid solution and
performance results will be presented. Section 2 presents key building blocks of the system
and their performance. Section 3 presents its operation and user interface. Section 4
presents the performance of the system in achieving an accurate assessment of the trainee’s
work. An earlier version of this study was presented in [13].

2. System Overview

At the earlier phase of this study, off-the-shelf components were used for the hardware
setup [13]. Currently, vision hardware is upgraded to an industrial camera (EXO 540CU3 by
SVS Vistek, Seefeld, Germany) with 50 mm lens and lighting system since project become
ready to be used in real application environment. The camera is set at the midline of the
wall assembly. The acquired image resolution is 5320 × 4600 pixels. The distance between
the camera and wall assembly is set as 180 cm. The acquired images have negligible lens
distortion. The camera is calibrated using checkerboard images and using Matlab camera
calibration tools [23]. The hardware setup and test assemblies used in the experiments are
shown in Figure 2. Two black tapes on the wall assembly are used as a reference, in order to
measure the height of the assembly from the floor, which is also an assessment component.
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Figure 2. Hardware setup and test assemblies used in the experiments.

Matlab is used for the software development. Figure 3 shows an overview of the
operations performed in software. After image acquisition, the very first step is to detect
the type of wall assembly using a trained deep learning model. This step helps the system
to decide which assembly type is subject to analysis so that it can perform computations
accordingly. In the next step, object corner points are detected using the hybrid approach
that will be described in detail in the following sections. These corner points are used as
reference points in the measurement of object dimensions, alignments, angles, and so on.
A template of the objects in the wall assembly is available as a CAD drawing, hence, the
expected work from the trainee is known prior. The next step of the process is to match
detected features with the template and determine all the discrepancies. Furthermore, an
examiner can manually mark any points of interest in the image and obtain the measure-
ments for them. Finally, the system generates a report about the inspection results and
records it with the candidate’s particulars.
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Figure 3. A flow chart of the operations.

2.1. Detecting Assembly for Inspection

The current system is designed to inspect two different types of electrical trunking
assembly as requested by our industry partner. In the remaining, we will use the term
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assembly A and B to describe them. Type A assembly is a rather simple L-shaped trunking
that has to be installed with the correct dimensions, as shown in Figure 4a. On the other
hand, Assembly B tasks involve bending trunking to a certain angle with a correct length
and alignment, as shown in Figure 4b. For Type A assembly, the key inspection points
are the size, length, and the angle of the trunking, as well as the position and placement
of the conduit and switchbox. In addition, for assembly B, the angle of the protruding
trunk needs to be measured, which is rather challenging. As mentioned, the first step of the
vision system is to identify the type of assembly it is being examined. In this way, we are
able to initiate the right inspection algorithm depending on the assembly that appears in
the input image. Deep Learning network architecture used in this study is YOLO version 2.
YOLO v2 is trained to do classification and bounding box regression at the same time.
Additionally, YOLO v2 learns generalizable representations of objects, therefore, it can
perform better when applied to new domains or unexpected inputs. There are many well-
known meta-architectures in the literature, such as SSD (single shot multibox detector),
Faster R-CNN and later versions of YOLO V5 [24]. However, in this study, we are simply
concerned with a practical application of a state-of-the-art deep learning network rather
than discussing and comparing their performances. For the feature extraction network,
we employed Resnet-50 based on our empirical study comparing network and feature
extractor architectures. Resnet-50 consists of 50 layers and the pre-trained network can
classify images in up to a thousand object categories. The detection sub-network is a small
CNN compared to the feature extraction network and is composed of a few convolutional
layers and layers specific for YOLO v2.
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The training dataset was created by labeling the images using ‘Image Labeler’ appli-
cation of Matlab. Test images included samples with different lighting conditions. The
training data set enriched further with augmented images with various tilts and rotations,
making it a balanced dataset. The number of training images used for Assembly A is 600
and Assembly B is 630. Subsequently, both models were trained and tested.

Intersection over union (IOU) is an evaluation metric used to measure the accuracy
of an object detector on a particular dataset. The IOU measures the overlap between the
ground truth box and the predicted bounding box. The ground truth box is manually
marked boxes during the labeling process of datasets. The predicted bounding box is the
bounding box returned by the trained model. IOU is simply the ratio of intersection over
the union of these two bounding boxes where 100% result implies perfect overlap between
ground truth and predicted [25]. An object detector is considered good if the IOU value is
above 50%.

Intersection over union computations are applied in testing both Assembly A and
B detectors, as shown in Figure 4, where the green box represents the ground truth box
whereas the yellow box represents the predicted bounding box. The IOU values of 20 test
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images for both assemblies are shown in Table 1. As seen from the table, the average IOU
scores were 0.933 and 0.940, indicating that both assembly detectors were demonstrating
superior performance.

Table 1. IOU results for the test images.

Image Assembly A Assembly B

1 0.9462 0.9623
2 0.9515 0.9442
3 0.9751 0.9397
4 0.9420 0.9221
5 0.9466 0.9487
6 0.9467 0.9399
7 0.9466 0.9512
8 0.9464 0.9444
9 0.9514 0.9626
10 0.9468 0.9182
11 0.9025 0.9446
12 0.9332 0.9579
13 0.9378 0.9359
14 0.9378 0.9272
15 0.9244 0.9352
16 0.9030 0.9397
17 0.8985 0.9308
18 0.9369 0.9399
19 0.8928 0.9270
20 0.9013 0.9270

Average 0.933 0.940

2.2. Detecting Corner Points

Detection of the reference points of the objects in the assembly and their measurements
is the next step in the assessment process. Our method is primarily built upon the accurate
detection of corner points of the objects. As these are manmade objects, corner points are
the most prominent features. There is a vast literature on corner detection, which is one
of the fundamental image processing algorithms. We have experimented with three well-
known algorithms, namely Minimum Eigen, Harris, and FAST. We observed that under
good lighting conditions all the algorithms are able to detect corner points with test images
for both assembly types. However, under poor lighting conditions, the Minimum Eigen
algorithm captured most of the corner points that we would like to detect. In particular,
assembly B images captured under a single light source due to our inspection schemes and
illumination, in this case, are not ideal. Output from these three algorithms are shown in
Figure 4 for comparison.

Although the Minimum Eigen algorithm is capable of detecting the corner points
of the objects that we are interested in, there are still redundancies and errors present,
as seen from Figure 5a. The quality of the image, including its resolutions and lighting
conditions also contribute to these errors. On the other hand, recent developments in
computer vision demonstrate that deep learning algorithms are very effective in object
detection, particularly in a natural environment with much background clutter. In the
next phase of the corner detection process, a trained deep learning network is used for
detecting key reference corner points of the objects in the image. The bounding boxes
generated by the trained network as the region of interest (ROI) are not as precise as the
pixel-level detection of corner points. Therefore, we cannot use them directly for measuring
object features since they will not be accurate. However, using the ROI determined by
the network, we are able to filter out redundant/ erroneous corner points detected by the
Minimum Eigen algorithm. This hybrid approach yielded precise detection of object corner
points in the image, as it can be seen in Figure 6.
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2.3. Deep Learning for Detecting Corner Points

We consider using a pre-trained network when developing models for detecting the
wall assemblies and corner points of objects. A model’s performance heavily relies on the
pre-trained network’s ability to extract dominant and needed features from the datasets
during its training. Instead of developing and training the network from scratch, we use
pre-trained networks that are relatively well-known with their good performance. We
tested and compared the performance of pre-trained networks Resnet-18, Resnet-50, and
Resnet-101. For this experiment, we utilized the deep learning algorithm architecture
YOLOV2. Training datasets used in this experiment include 879 images for assembly A
and 700 for assembly B. Data augmentation is used to add more variety to the training
data from the labeled images. In this case, flipped and rotated images are added to the
training set. Key training parameters are set as follows. Image size is 224 × 224 × 3. The
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Relu activation function is used in all the networks experimented. The stochastic gradient
descent with momentum (SGDM) optimizer is used to solve the training network since it
provides a faster conversion. Mini-batch size of 10 and an initial learning rate of 0.001 are
used. Training takes a longer time if the learning rate is low. On the other hand, training
may achieve poor results if the learning rate is too high. Lastly, the number of epochs to
complete the training session was 100. We did not use larger values to evade over the
fitting problem.

Table 2 shows the performance of each pre-trained network model for both assembly
A and B during training. After observing precision and recall curve graphs, we observed
that Resnet-50 well suited pre-trained network to employ since it yields a higher area under
the curve and delivers high precision (for the simplicity of presentation, we did not include
these graphs). Resnet-101 had higher average precision though it is a complex network
with a longer training time. Resnet-18 was faster to train though precision and recall curve
graph showed a smaller area under the curve.

Table 2. Performance comparison of pre-trained networks during training.

Pre-Trained Networks Average Precision (%) Elapsed Time (min)

Assembly-A Resnet-18 96.9 105
Resnet-50 96.2 386

Resnet-101 97 515
Assembly-B Resnet-18 92.8 88

Resnet-50 92.9 275
Resnet-101 96.7 432

Considering that vision-based inspection system is going to operate under dynamic
environmental conditions rather than a controlled one, we further evaluated the accuracy
and consistency of the trained network. A set of 20 test images with different lighting
conditions and camera angles were used. The accuracy is defined as the ratio of accurately
detected corner points over actual number of object corner points in the image. Table 3
tabulates these test results. Majority of test results lie above 93% accuracy, however, there
were also some false detections as well as relatively poor accuracies as low as 75%, mainly
due to extremely poor lighting and image quality of the selected test images.

Table 3. Network performance on test images.

Image Corners Expected Corners Detected Corners Missed Accuracy False Detection

1 12 12 0 100% 1
2 12 12 0 100% 1
3 12 12 0 100% 1
4 12 12 0 100% 3
5 12 12 0 100% 1
6 12 12 0 100% 1
7 12 12 0 100% 1
8 12 12 0 100% 0
9 12 12 0 100% 1
10 12 12 0 100% 2
11 12 11 1 91.7% 0
12 12 10 2 83.3% 0
13 12 11 1 91.7% 0
14 12 10 2 83.3% 1
15 12 9 3 75% 1
16 12 8 4 66.7% 0
17 12 10 2 83.3% 0
18 12 10 2 83.3% 0
19 12 12 0 100% 0
20 12 12 0 100% 0

Average 92.2%
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3. Template Matching and Inspection of the Wall Assembly

The above-mentioned hybrid approach provided a robust detection of corner points
that are needed for our analysis. Nevertheless, there may still be a few remnant stray corner
points. As the technical drawing of the wall assembly is known prior, in the final step
of the analysis, a template matching method is used to establish the most suitable corner
points to represent the corners of the objects in the assembly. The template is constructed
starting from the top left corner point using geometric methods. The selection of valid
corner points is made by accepting the corner points that are closest to the template’s
corner points, thereby completing the corner point selection process. Figure 7a shows the
best fitting template, and Figure 7b the final reference corner points extracted. Once these
reference points are obtained, measurements for assessment are done using basic geometric
techniques. Finally, a report, as an excel spreadsheet, is created where the result of the
analysis, listed as shown in Figure 7c.
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Figure 7. Template matching for Assembly A. (a) Template of the object fitted on the image. Edges
labeled 1 to 6 and conduit length are some of the key measurements (b) Detected reference corner
points illustrated on the image for better visualization. (c) A screen capture of the final report
generated at the end of assessment.

A key requirement for Assembly type B was the measurement of the protruding
angle of the trunking. The vision hardware unit is positioned in a fixed distance from the
wall assemblies and needs to remain fixed for the sake of calibration accuracy. However,
hardware unit can be shifted laterally to capture images. A light source positioned above
the camera lens with a fixed angle is used for projecting a shadow of the trunking as
shown in Figure 8a. The angles of protruding part of the trunking are then measured from
the shadow of the object rather than the object itself, as shown in Figure 8b,c. Given the
position of the light source, angles of the protruding part of the trunking on the shadow
are calculated as 130 degrees using basic geometric transformations. Hence, a correctly
fabricated bent trunking measurement should be measured as 130 degrees; a deviation from
this indicates that there are flaws in the fabrication. Similarly, an Excel report is created
providing the analysis results, as shown in Figure 8d. For both assembly types, after object
dimensions are analyzed, a best fitting template of the actual objects in the assembly is used
to illustrate user the outcome of the analysis visually. As mentioned, the template matching
algorithm starts a search process to find the best fit starting from the top left-most corner
point detected. A comparison of the template with the analyzed objects from the image
enables the user to see the amount of deviation. If this deviation is very large, the examiner
may have to adjust the hardware before taking another image. There is still a possibility of
either the minimum Eigen corner detector or the deep learning model may not be able to
detect corner points or make false detections. This may occasionally result in failures in
the analysis. In order to provide a workaround for such cases, we also provided manual
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assessment options where users can mark points of interest over the image manually and
obtain the measurement of distances or angles.
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Figure 8. Template matching for Assembly B. (a) A block diagram showing camera and light
arrangement. (b) Template of the object fitted on the image. Edges labeled 1 to 4, conduit length and
two angles of the bent trunking are the key measurement points (c) Detected reference corner points
illustrated on the image for better visualization. (d) A screen capture of the final report generated at
the end of assessment.

Graphical User Interface

In this session, the user interface of the system will be described. After selecting the
type of assembly to inspect, the user is prompted with a menu, as shown in Figure 9a. The
image on the left is for assembly A and the one on the right is for assembly B. The analyze
image button will open the file explorer to upload the captured image from the assembly
made by the trainee. Inspection will be run automatically and the results will be displayed as
shown in Figure 9b. Considering possible detection errors for each assembly, a list of manual
marking options are given, as shown in the user menu. In this way, the user can still manually
obtain measurements if it is missed during auto-inspection. Users can also mark other areas
of interest to get their measurement as shown in Figure 9b. Finally, the “create report” and
“save image” button brings up a pop-up window to enter trainee particulars and examiners’
comments. The resulting report is saved as an excel file together with the image analyzed. A
video demonstration of the final system and its usage is provided in [26].
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4. Performance

In order to evaluate the performance of our system, we used a test setup that is
fabricated accurately, as indicated in the technical drawings given to trainees, as shown in
Figure 1. Using the hardware setup, we have taken images from the fixed point, however,
under slightly varying lighting conditions. A total of 30 images were used for testing each
assembly. We obtained the measurement errors for each assessment component in all the
images. For the purpose of illustration, we tabulated measurement results in Table 4 using
only five images taken under normal lighting conditions for Assembly A. These results
compare the actual properties of the correctly made assembly versus what is measured by
the system. The difference between them consequently implies the measurement error of
our system. Table 4 lists all the measurements for each test image and average errors. In
most of the cases, the average error lay below 1%, which implies a negligible measurement
error. However, it is also noticeable that the average percentage of error for some edges
(Edges 3 and 7) were relatively higher than the other edges. These larger errors were due to
the inaccuracies generated during template matching, particularly caused by shadows of
the objects. However, these two measurements are trivial since they correspond to the width
of the trunking, which is standard. Similar observations have been made for Assembly
B. Table 5 lists the measurement results versus actual values for a selected number of
images taken under normal lighting conditions for the purpose of illustration. The critical
measurement point in this assembly is the protruding angle of the trunking. Results show
a minor 0.2% average measurement error for them. It is important to note that here we
provide average error as a simple performance indicator. Nevertheless, as required by our
industry partner, in any of the measurement points, more than a 5% error is considered a
non-negligible system error. In all the test images taken under normal conditions, we did
not observe a major system error.
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Table 4. Average measurement (in millimeters) error for test images (Assembly A).

Feature Image 1 Image 2 Image 3 Image 4 Image 5 Actual Average Measurement
Error (%)

Edge 1 499.9 499.9 499.8 499.4 499.6 500 0.06
Edge 2 197.5 197.4 196.8 196.4 197 200 1.49
Edge 3 44.8 45 45.7 45.5 44.5 50 9.8
Edge 4 150.6 150.2 149 149.3 150 150 0.3
Edge 5 255.7 255.9 248.4 247.7 255.6 250 1.69
Edge 6 200.7 200.6 200.2 200.5 200.3 200 0.23
Edge 7 48.5 48 48.5 48.8 48.3 50 3.16

Conduit 422.8 423.1 422.5 422.2 422.2 425 0.57
Height

reference 229.8 230 228.3 227.9 229.4 230 0.4

Table 5. Average measurement (in millimeters) error for test images (Assembly B).

Feature Image 1 Image 2 Image 3 Image 4 Image 5 Actual Average Measurement
Error (%)

Edge 1 608.1 608.6 608.7 609 610.7 610 0.21
Edge 2 48.5 48.6 48.6 48.7 48.8 50 2.72
Edge 3 610.3 610.5 610.5 610.9 612.6 610 0.16
Edge 4 49.8 50 49.8 49.9 50.2 50 0.28
Angle 1 130 129.7 129.7 129.6 129.7 130 0.20
Angle 2 128.8 129 129.1 129 129.2 129 0.08
Conduit 414.6 414.5 414.9 415.2 415.7 425 2.36
Height

reference 378.5 378.6 378.4 378 379 380 0.39

Edge 1 608.1 608.6 608.7 609 610.7 610 0.21

In some odd cases, we observed large errors (i.e., more than 5%). In a closer look
into the root cause of these errors, we observed that there were slight deviations between
detected and actual reference points, as illustrated with examples in Figure 10. There
were two major causes for this error: rotation and/or illumination. It was expected that
both test assemblies were not tilted, however, a minor tilt can happen while capturing
the image by the user if the camera is not fixed properly. Another possibility is that the
assembly produced by the trainee was tilted, which should have been made parallel to the
floor. In this case, the reference corner points obtained from the images would cause an
inaccurate template match and would increase the errors in the measurements. Based on
our experiments, we observed that if the measurement errors were more than 5%, it was
due to these external factors or the wall assembly done very badly by the trainee. We did
not include a rotation function to fit the template if the assembly was tilted in making since
such assembly is considered failed. Nevertheless, other parameters can still be measured if
needed by correcting tilt using an image editor before the analysis. The other source of error
was due to the presence of shadows. They appear when there is an uneven distribution of
light sources over the assembly during image capture. When the difference in light intensity
between the shadow and the object itself is not wide enough, the corner detector algorithm
will capture the corner point in the shadow, instead of the actual object. Consequently,
template matching was not able to correct this error and the shadow’s corner was used for
measurements. This also produced inaccurate results, however, errors due to shadows can
be minimized with better lighting arrangement in hardware.
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5. Conclusions

This paper described a computer vision-based inspection system for automated as-
sessment of work done by trainees in the construction industry for their certification. The
primary objective of the study was to minimize the mundane manual/visual assessment
process and save person hours. However, in order for the computer vision system to replace
the manual assessment method, it should make geometric measurements accurately. A
key feature used for this purpose was the corner points of the objects. Accurate detection
of the corner points contributes to the system’s accuracy and performance significantly.
Intuitively, object corner points in the image should be detected within a few pixel accuracy.
The minimum Eigen Value corner detection algorithm is used for this purpose. In this ap-
plication, the environment is not fully controlled when compared to, for instance, a quality
control application in manufacturing. Therefore, the corner detection algorithm may return
many redundant points. In order to filter them out and identify the ones that belong to the
objects analyzed, we utilized deep learning algorithms. This hybrid approach provided
accurate detection of object corners. Using the template matching method, measurements
of detected objects such as dimensions, alignments, and angles are compared with the
template obtained from the technical drawings. Our experimental results revealed that
the vision system has minor measurement errors under good lighting conditions. In sum-
mary, the computer vision-based solution reduced the time spent significantly compared to
manual inspection. Moreover, the physical presence of experts at the assessment ground
is not required as image capturing and processing can be done remotely. An interesting
contribution of this study is the hybrid corner detection approach which enables computer
vision techniques to analyze and evaluate manufactured objects in dynamic environments.
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It provides avenues to explore other quality control and inspection problems in rather less
controlled environments.

Our future study involves developing a generic system where various assessment
configurations can be programmed by the instructors creating a wide range of scenarios
that can be used for examining trainees’ work and grading them.

Author Contributions: Conceptualization, M.F.E. and R.B.W.; methodology, M.F.E. and R.B.W.; soft-
ware, R.B.W.; validation, M.F.E.; formal analysis, M.F.E. and R.B.W.; investigation, M.F.E.; resources,
R.B.W.; datacuration, R.B.W.; writing—original draft preparation, M.F.E. and R.B.W.; writing—review
and editing, M.F.E. and R.B.W.; visualization, M.F.E. and R.B.W.; supervision, M.F.E.; project adminis-
tration, M.F.E.; funding acquisition, M.F.E. All authors have read and agreed to the published version
of the manuscript.

Funding: This project is sponsored by Singapore Polytechnic under the Technology Harvesting Grant
2020. Project title: Computer vision-based solution to electrical installation and workmanship quality
inspection. Grant number 03-11000-36-J723.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Batchelor, B.G. Machine Vision for Industrial Applications. In Machine Vision Handbook; Batchelor, B.G., Ed.; Springer: London,

UK, 2012.
2. Mavridou, E.; Vrochidou, E.; Papakostas, G.A.; Pachidis, T.; Kaburlasos, V.G. Machine vision systems in precision agriculture for

crop farming. J. Imaging 2019, 5, 89. [CrossRef] [PubMed]
3. Martinez, P.; Al-Hussein, M.; Ahmad, R. A scientometric analysis and critical review of computer vision applications for

construction. Autom. Constr. 2019, 107, 102–947. [CrossRef]
4. Park, C.; Took, C.C.; Seong, J.K. Machine learning in biomedical engineering. Biomed. Eng. Lett. 2018, 8, 1–3. [CrossRef] [PubMed]
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