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Abstract: The Fifteen Puzzle problem is one of the most classical problems that has captivated
mathematics enthusiasts for centuries. This is mainly because of the huge size of the state space with
approximately 1013 states that have to be explored, and several algorithms have been applied to solve
the Fifteen Puzzle instances. In this paper, to manage this large state space, the bidirectional A* (BA*)
search algorithm with three heuristics, such as Manhattan distance (MD), linear conflict (LC), and
walking distance (WD), has been used to solve the Fifteen Puzzle problem. The three mentioned
heuristics will be hybridized in a way that can dramatically reduce the number of states generated by
the algorithm. Moreover, all these heuristics require only 25 KB of storage, but help the algorithm
effectively reduce the number of generated states and expand fewer nodes. Our implementation
of the BA* search can significantly reduce the space complexity, and guarantee either optimal or
near-optimal solutions.

Keywords: Fifteen Puzzle; heuristic search; inadmissible heuristic function; metaheuristic; bidirectional
search; unidirectional search

1. Introduction

The Fifteen Puzzle is a standard sliding puzzle invented by Samuel Loyd in the
1870s [1] that consists of 15 tiles with one tile missing within a 4 × 4 grid. The fifteen tiles
are numbered from 1 to 15. The numbered tiles should initially be ordered randomly. The
aim of the game is to slide the tiles that are located next to the space into the space (one at
a time) to achieve the numerical order of the tiles from left to right with the blank at the
bottom right/top left corner in a minimum time and with minimum moves. Automatically
solving the Fifteen Puzzle is very challenging because the state space for the Fifteen Puzzle
contains about 16! /2≈1013 states [2]. The Fifteen Puzzle contains 16! instances but only
half of the instances are solvable [3,4]. Optimal solutions for any solvable instances of
the Fifteen Puzzle can take from 0 to 80 moves [5,6]. The two common heuristic search
algorithms, A* [7] and iterative deepening A* (IDA*) [8], have been successfully used for
computing optimal solutions for the Fifteen Puzzle instances. These algorithms are guided
by heuristic functions, which are estimates of the number of moves required to solve any
given puzzle configuration.

The most common heuristic functions that have been used to reduce the search space
are misplaced tile (MT), MD, LC and pattern databases (PDBs) [9–11]. WD has also been
used, but is not common. MT is the number of tiles that are not in their goal positions.
MD is the sum of the distance of each tile from its goal position. LC is the sum of two
moves for each pair of conflicting tiles that are in their goal row or column positions but
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in the wrong order. The WD was developed by [12], and counts the vertical moves and
horizontal moves separately, while considering the tiles’ conflict with each other. PDBs are
heuristics in the form of lookup tables. The two heuristics misplaced tile and Manhattan
distance were used with the A* algorithm for optimally solving the Eight Puzzle problem
by [13]. The Manhattan distance and linear conflict heuristics were combined and used
with the IDA* algorithm for the Fifteen Puzzle by [14]. The walking distance heuristic
was developed and used (with the IDA* search) by [12] for the Fifteen Puzzle. To the
best of our knowledge, the walking distance heuristic has not been used in any research
for the Fifteen Puzzle. The pattern database heuristics were first introduced by [15] and
then used by many researchers, and now there are various types of pattern databases [16].
The main drawback of pattern databases is that they require a large amount of memory
(several gigabytes for some types of pattern databases) [16,17]. Flener, Korf, and Hanan [18]
claimed that an effective heuristic for the Fifteen Puzzle is the 7–8 additive pattern database,
but this heuristic requires a lot of storage space and can be memory-intensive at about
575 megabytes.

All the heuristics used to estimate how close a state is to the goal suffer from a number
of drawbacks. For example, some of them are not very accurate at estimating the remaining
distance to a goal, such as MD, MT, and WD, and the others are accurate but require a
lot of storage space, such as PDBs. The main objective of this paper is to combine some
heuristics to accurately estimate the cost from the current state to the goal state without
generating a lot of states or requiring a large amount of storage space to store the nodes.
The contribution of this paper is to hybridize the three heuristics MD, LC, and WD to
estimate the number of steps to the goal state. Moreover, to increase the effectiveness of the
heuristic function, the MD value is divided by three. We use this heuristic in such a way
to significantly reduce the number of generated nodes to solve the puzzle states. Using
these heuristic algorithms in this way cannot be guaranteed to give an optimal solution,
but they usually find an optimal solution or a solution that is one to six moves away from
the optimum and, in some rare cases, more than six moves away from the optimum. For
the most difficult states, we run two searches—a forward search from the initial state and a
backward search from the end state (goal state), which is called a bidirectional search. This
is for the sake of improving the algorithm performance.

This paper is structured as follows. Section 2 is devoted to presenting and discussing
the implementation of our BA* algorithm. Section 3 presents and evaluates the three
heuristics we use to solve the Fifteen Puzzle problem. Section 4 presents the efficient way
of hybridizing the three heuristics for solving the Fifteen Puzzle. Section 5 presents and
discusses the results and their comparisons. Section 5.1 compares our implementation of
the BA* algorithm with the artificial bee colony (ABC) algorithm in terms of efficiency and
inadmissibility. Section 5.2 discusses the comparison between bidirectional A* (BA*) search
and unidirectional A* (UA*) search. Section 5.3 describes the experiments performed with
our implementation of the BA* algorithm and also compares the results obtained by our
algorithm with the results obtained by the IDA* algorithm with MD and LC heuristics.
Finally, Section 6 highlights the main conclusion of this study.

2. Bidirectional A* Algorithm

The IDA* and A* are the two most popular heuristic search algorithms widely used
to solve the Fifteen Puzzle problem. The A* algorithm is one of most well-regarded
algorithms in artificial intelligence for finding the shortest path or the smallest number
of moves from the initial state to the goal [7]. Despite being complete, this algorithm has
some disadvantages that can make it inefficient, especially for complex and large puzzle
problems. This is because billions of nodes need to be expanded and generated for the
difficult states, and in the A* algorithm all the generated nodes are kept in memory, which
can lead to running out of memory, or sometimes finding a solution takes a long time. The
IDA* algorithm is a variant of the A* algorithm that can be implemented for solving the
Fifteen Puzzle [8]. Due to the fact that IDA* does not store the expanded nodes in memory,
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it uses less space and expands nodes faster than the A* algorithm. Even though the IDA*
algorithm is more efficient than the A* algorithm, we still use the A* algorithm in this paper
for several reasons. First of all, since we use bidirectional search, the A* algorithm is a
good choice because it stores all the generated nodes in memory, and this leads to frontier
intersections that can be easily tested [9]. Secondly, the A* algorithm with the heuristics
that we use only generates a few states, and this does not cause the algorithm to run out of
memory. Thirdly, since the A* algorithm retains the generated states in memory, each state
is generated once.

Today, there are several variants of the A* algorithm since its performance can be
varied depending on several methods. One of the optimization methods is bidirectional
search, which is commonly used nowadays [19–22] since it can improve the efficiency of
the algorithm in terms of space and time complexity. Another method is heuristic function,
which directly affects the algorithm’s efficiency, and, therefore, there are several heuristics
proposed for estimating the distances to remaining unexplored nodes [20]. Additionally,
there are other variants of the A* algorithm in which the heuristic cost is weighted differ-
ently, and this has been utilized to speed up the A* algorithm [19,22]. This paper utilized
all three mentioned methods to improve the A* algorithm’s efficiency.

Algorithm 1 gives the pseudocode for the bidirectional A* (BA*) algorithm. Some
notations are used, such as OpenList, ClosedList, and NeighboringState, which denote
the states that have been visited but not expanded, the states that have been visited and
expanded, and the state that is directly connected to the current state. There are separate
copies of these variables for both the forward and backward search, with a subscript
(F or B) indicating the direction:

Forward search: OpenListf, ClosedListf, and NeighboringStatef, etc.
Backward search: OpenListb, ClosedListb, and NeighboringStateb, etc.
The BA* algorithm for each one of the two searches (forward and backward search)

needs two lists: a closed list, which is used for storing all the puzzle states that have been
visited and expanded, and an open list, which is used for storing the puzzle states that
have been visited but not expanded. At each step, the heuristic value and the depth cost of
the current state is determined. Then, the states inside the open list are sorted according
to the heuristic values in increasing order. At every step, the head of the open list, which
has the lowest evaluation function value (which is the heuristic value plus the path cost),
is removed from the open list and then checked to see whether it is the goal state (start
state for backward search) or not. If the head state is the goal state (start state for backward
search), the algorithm reconstructs the path to the goal (to the start for backward search).
If the head state is not the goal (is not the start for backward search), it is checked to see
if it is in the closed list of the opposite search direction, and if it is there, the algorithm
reconstructs the solution path from the two searches. When the goal (start for backward
search) is not found, the head state is expanded (all the valid moves are specified) and it is
placed on the closed list. Then, all the successors of the head state which are not already on
the closed list are stored in the open list. As is shown in Algorithm 1, the forward search
starts first and continues until 75,000 states are expanded, but after the first step of the
cycle, the forward search continues until 15,000 states are expanded. If the solution path
from the start state to the goal state is not found while generating this number of states, the
forward search stops, and the backward search starts. The backward search continues until
75,000 states are expanded (until 15,000 states are expanded after the first step of the cycle).
If, during that period, the solution path from the goal state to the start state is not found,
the backward search stops, and the forward search starts again. This process will continue
until the solution path is found.
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Algorithm 1. BA* algorithm pseudocode

function BA* (StartState, GoalState)
Initialise:

Iteratorf to control the loop
OpenListf to store the states to be traversed
ClosedListf to store already traversed states
OpenListb to store the states to be traversed
ClosedListb to store already traversed states

if Iteratorf = 0 then
set depth cost of StartState (g(s) in Equation (2)) to zero
calculate HH value from StartState to GoalState. Equation (3)
calculate evaluation function for StartState. Equation (2)
add StartState into OpenListf and ClosedListf

while OpenListf is not empty do
CurrentStatef is state with lowest evaluation function value (Equation (2)) in OpenListf
remove CurrentStatef from OpenListf
if CurrentStatef is GoalState then

reconstruct the solution path from StartState to CurrentStatef, and terminates the loop
for each NeighboringStatef of CurrentStatef do

if NeighboringStatef is not in ClosedListf then
depth cost of NeighboringStatef is equal to the depth cost of CurrentStatef plus one
calculate HH value from NeighboringStatef to GoalState. Equation (3)
calculate evaluation function for NeighboringStatef. Equation (2)
add NeighboringStatef into ClosedListf
add NeighboringStatef into OpenListf
if NeighboringStatef is in ClosedListb then

reconstruct the solution path from the two searches: from StartState
to NeighboringStatef
and from NeighboringStatef to GoalState, and terminates the loop

increase Iteratorf by 1
if Iteratorf mod 15000 is equal to 0 after the first step of the cycle or Iteratorf mod 75000
is equal to 0 then

->Expand in the backward direction, analogously

To further explain Algorithm 1, Figure 1 illustrates how the two searches work. The
puzzle state used in Figure 1 is Korf’s 15-puzzle problem instance #82 [8]. At the beginning,
the first search (forward search) starts from the initial state and the evaluation function
value (Equation (2)) for it is calculated, which is the summation of the heuristic value
(Equation (3)) and the depth cost (g). After expanding the initial state, two new puzzle states
are generated at depth one, the evaluation function value for each of them is calculated, and
the state with the minimum evaluation function value is expanded (as shown in Figure 1,
the state with the evaluation function value 63 is expanded). At each step, the puzzle state
is checked to see whether it is the goal state or not or, or whether it is in the closed list of
the opposite search direction. If the goal state is not found after expanding 75,000 states,
the backward search starts from the goal state. The same process as the forward search
is conducted. As illustrated in Figure 1, at depth 50, the backward search meets a puzzle
state which was already generated by the forward search at depth 18. Then, the algorithm
reconstructs the path from the two searches, which is 68 moves.
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Figure 1. A numerical example to illustrate the BA* algorithm.

3. Heuristic Functions

A heuristic is an informed guess to choose the next node to visit when exploring a
search space. A heuristic can lead the algorithm to a solution or fail to reach the goal. The
three heuristics which are used in this paper are Manhattan distance, walking distance,
and linear conflict. Figure 2a shows an arbitrary start state of the Fifteen Puzzle and (b)
shows the goal state of the Fifteen Puzzle. The tiles are denoted by ti and the blank by
t0. The sequences are <t1, t4, t2, t3, t13, t6, t7, t8, t5, t10, t11, t0, t9, t14, t15, t12> for the start
state and <t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t0> for the goal state, as shown
in Figure 2.

Figure 2. Fifteen Puzzle (a) start state, (b) goal state.

The Manhattan distance of a puzzle is the sum of the horizontal and vertical distance
of each tile (except the blank tile) from its goal position [8]. For the initial state of the Fifteen
Puzzle shown in Figure 2, only the tiles t4, t2, t3, t13, t5, t9, and t12 are not in their goal
positions, and they are away from their goal positions by 2, 1, 1, 2, 1, 1, and 1, respectively.
Therefore, the heuristic function value is 9 (2 + 1 + 1 + 2 + 1 + 1 + 1). This means that the
current state needs at least 9 moves to reach the goal. Manhattan distance is admissible
because it never overestimates the number of moves to the goal and each tile must at least
be moved from its current position to its goal position, and only vertical and horizontal
movement is allowed. Therefore, the Manhattan distance value of any state is less than
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or equal to the number of moves that the state needs to reach the goal. The Manhattan
distance of a tile in a puzzle can be found using Equation (1) (s is the current state) [17]:

h(s) =
n

∑
i=1

(|xi(s)− xi|+ |yi(s)− yi|) (1)

LC, which is used to enhance the effectiveness of the Manhattan distance, adds two
additional moves to the Manhattan distance for each pair of conflicting tiles that would
have to be swapped to reach the goal state. Two tiles, ti and tj, are in a linear conflict if
both tiles are positioned in their goal row or column but in the wrong order, or, in other
words, they are reversed relative to their goal location [14]. For example, in Figure 2, the
tile t4 conflicts with tiles t2 and t3, and by changing the row of tile t4 we can eliminate these
conflicts. The tile t13 conflicts with tiles t5 and t9 because they are in the correct column but
inverse order. In this case, t9 must move one place to the right to let the others pass by and
then move back to its column position. These four moves are not counted in the Manhattan
distance. Therefore, two additional moves are added to the Manhattan distance for each
pair of conflicting tiles and the heuristic evaluation function remains admissible.

So far, the total cost function for the initial state in Figure 2 is equal to 13 (9 for the
Manhattan distance, 4 for the linear conflict), while the optimal solution for the initial state
is 29 moves. Therefore, using these two heuristics cannot make the algorithm efficient,
especially for complex and large puzzle problems, and finding the solution takes a long
time. This is because Manhattan distance does not capture the conflicts and interactions
between the tiles, and this leads to heavily underestimating the actual optimal solution
cost in almost all the problem instances of the Fifteen Puzzle [23], and linear conflict only
adds two moves for every two tiles which are positioned in the correct row/column but
inverted. Walking distance counts the vertical moves and horizontal moves separately
while considering the tiles’ conflict with each other [12]. According to the goal state in
Figure 2, all four tiles (t1, t4, t2, and t3) in the first row of the initial state are from the
first row of the goal state and no tiles are from the other rows of the goal state. The same
approach is used for the other rows, as is shown in Table 1.

Table 1. Walking distance calculation.

No. of Rows Number of Tiles
from 1st Row

Number of Tiles
from 2nd Row

Number of Tiles
from 3rd Row

Number of Tiles
from 4th Row Blank Tile

1st row 4 0 0 0
2nd row 0 3 0 1
3rd row 0 1 2 0 ← here
4th row 0 0 2 2

To calculate the horizontal walking distance, we can only swap the blank tile with any
single tile from the row above or below, and the order of the tiles in each row is irrelevant.
We keep swapping until all the tiles are in their goal rows. The minimum number of moves
needed to take all the tiles to their goal row positions is the horizontal walking distance.
We can apply the same procedure to calculate the vertical walking distance by taking all
the tiles to their goal column positions with the minimum number of moves, and each
tile can only be taken into a column adjacent to the column containing the blank tile and
swap places with it. The order of the tiles in each column is irrelevant. The total walking
distance is the sum of the number of horizontal and vertical moves. To further explain
Table 1, Figure 3 illustrates how WD can be calculated manually step by step for the initial
state in Figure 2. Two 4 × 4 tables are needed, one for computing the horizontal WD value
and another one for computing the vertical WD value.



Computers 2023, 12, 11 7 of 23

Figure 3. Step by step walking distance calculation.

The table of the horizontal WD in Figure 3 has four ‘A’ elements in the first row, which
means that all the tiles t1, t4, t2, and t3 are from the first row of the goal state. It has one ‘D’
element and three ‘B’ elements in the second row, which is because t13 is from the fourth
row of the goal, and t6, t7, and t8 are from the second row of the goal. It has one ‘B’ element
and two ‘C’ elements with a blank (t0) element in the third row, which is because t5 is from
the second row of the goal, and t10 and t11 are from the third row of the goal. It has two ‘C’
elements and two ‘D’ elements in the fourth row, which is because t9 and t12 are from the
third row of the goal, and t14 and t15 are from the fourth row of the goal. As is shown in
Figure 3, only five steps are needed to take all the tiles to their goal row position, which
is the horizontal WD value for the initial state in Figure 2. The same procedure is used
for building the table of the vertical WD and calculating the vertical WD value, except
that when we build the table of vertical WD, we must specify which column each tile’s
goal position is in. As can be seen in Figure 3, to take all the tiles to their column position,
six steps are needed, which is the vertical WD value for the initial state in Figure 2. The
total walking distance is the sum of the number of horizontal and vertical moves, which is
11 steps.

Since walking distance cannot be easily computed at runtime, we can precompute all
these values and store them in the database, because if we do not precompute them, this
heuristic can slow the search down significantly. Instead of fully calculating the walking
distance during the search, a breadth-first search (BFS) can be executed backward from
the goal state to obtain all the distinct tables for all the Fifteen Puzzle configurations (all
possible configurations of the tiles), which are only 24,964 patterns, and store them in the
database to speed up the search. The size of the database is relatively small at about 25 KB.
The same database is used for calculating the number of horizontal and vertical moves.
The maximum walking distance value is 70 (such as t0, t15, t14, t13, t12, t11, t10, t9, t8, t7, t6, t5,
t4, t3, t2, t1), with 35 moves each for horizontal and vertical moves. WD is more accurate
and efficient than Manhattan distance because the WD value is always greater than the MD
value, as is illustrated in Figure 4.
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Figure 4. MD, WD, and optimal value for Korf’s 100 instances.

Figure 4 shows the MD, WD, and optimal values for Korf’s 100 instances [8] after
sorting the instances by optimal value. In all of them, the WD value is greater than the MD
value, and Table 2 shows that the total WD value for all the 100 instances is greater than the
total MD value. Table 2 also shows the minimal total cost (optimal solution) and total LC
values for all the 100 instances.

Table 2. Total WD, MD, LC, and optimal solution lengths for Korf’s 100 instances of the Fifteen Puzzle.

Problems Total WD Total MD Total LC Total Optimal

Korf’s 100 instances 3957 3705 212 5307

The walking distance can also be enhanced by the linear conflict, because WD does
not count the two moves which are determined by linear conflict for each pair of conflicting
tiles. As shown in Figure 3, when calculating the horizontal or vertical WD values when
we have two tiles in linear conflict, the first tile can slide to the row above or below, if that
row contains a blank, without moving the second tile, and for the second tile this is also
correct. For example, Figure 5 zooms in and shows a part of Figure 3 where the tile t13 (D)
that conflicts with the tile t5 (B) can slide to the third row without moving the tile t5 (B).

Figure 5. WD does not capture the LC heuristic.

We have built the walking distance lookup table for both goal states with a blank at
the bottom right and top left corner because the two different goal states have been used in
many types of research and we also use these two different goal states in this paper.
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4. Hybridized Heuristic Functions

Since we have no perfect heuristic function (exact distance function) to give us the
exact number of moves needed to solve all the Fifteen Puzzle instances and each heuristic
has its way to calculate the distance between the current state to the goal state, it is desirable
to combine multiple heuristics which can complete each other to estimate the solution
cost. Combining several heuristics is generally the best way to more accurately estimate
the cost of reaching the goal, but it is challenging [24–26]. Multiple heuristics have been
used in different ways. The most common way to use multiple heuristics is to combine
different heuristics and use their maximum value. Holte et al. [16] showed that taking the
maximum heuristic value from several heuristics can lead to reduced node generation and
result in improved performance of the search. When two or more admissible heuristics are
combined, taking their maximum, that is, by defining (hmax(s) = max(h1(s), h2(s)). ), is
also admissible [16,27].

Another way to use multiple heuristics is cost partitioning or cost splitting, which
has been used by many researchers [28–30] and is a technique to add multiple heuristic
values in an admissible way with operator cost partitioning by distributing the cost of each
operator among them. This technique has a drawback in finding good cost partitioning [29].
Korf and Taylor [31] took advantage of several heuristics including Manhattan distance,
linear conflict, last moves, and corner tile to improve the accuracy of the heuristic evaluation
function and result in improved search performance of the IDA* search. In addition, they
used the heuristics in a way that keeps the them admissible; for example, when the same
tile is involved in a corner tile and linear conflict, the extra moves are added only once.
Therefore, whenever we combine multiple heuristics and we want to find the optimal
solution, we must be sure that the actual distance for any tile is not calculated more than
once. Those heuristics are not complex, and it is easy to check which tiles are involved in
multiple heuristics. Manhattan distance and walking distance, the two heuristics that we
use in this paper, are complex and it is not easy to check which tiles’ actual distance to their
goal position is counted by the two heuristics.

Each heuristic has its strengths and weaknesses. Therefore, we must determine the
weaknesses and strengths of the heuristics when we want to combine multiple to create a
more accurate heuristic function. The main drawback of Manhattan distance is measuring
each tile’s distance to its goal position without considering the interference from any other
tiles [18]. For example, according to the MD, the tiles t6, t7, t8, t10, t11, t14, and t15 in the
initial state shown in Figure 3 need zero moves to reach their goal positions since they are
already in them. This estimation is not correct because it is not possible to take the tiles t4,
t2, t3 t13, t5, and t9 to their goal positions without moving some of the tiles t6, t7, t8, t10, t11,
t14, and t15. On the other hand, WD considers interactions between tiles and it calculates
the distance of the tiles to their goal positions like MD. As illustrated in Figure 6, which is a
part of Figure 3, one of the tiles t7, t11, and t15 makes two moves while calculating the WD
value, which proves that WD is more efficient than MD.

Figure 6. WD considers the interference of tiles with each other.

WD is not exactly equal to MD plus the interference of tiles with each other. It seems
that the WD heuristic considers interactions between tiles and the distance of each tile to its
goal position, but we think it finds the interaction of tiles to be more significant than their
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distances to their end positions, because there are many Fifteen Puzzle problem instances
that have the same MD and WD values. For instance, 23 out of Korf’s 100 instances have
the same WD and MD values despite a lot of interactions between their tiles. Additionally,
for the instance <t15, t4, t7, t11, t5, t8, t0, t3, t14, t2, t12, t13, t1, t6, t10, t9>, the WD and MD are
both 35 even though there are a lot of interactions between the tiles. If the WD is equal
to the exact MD plus the conflicts between the tiles, the WD value for that Fifteen Puzzle
instance must be greater than the MD value, not equal to it. Therefore, this proves that the
WD is not equal to the exact MD plus the conflicts between the tiles for the Fifteen Puzzle
problem instances. In spite of this, WD works somewhat similarly to but not exactly the
same as MD, since WD takes each tile to its goal column–row position when calculating
the horizontal and vertical values for a puzzle instance, as is illustrated in Figure 3. In
general, WD is more efficient and better than MD because WD is never less than MD, as is
illustrated in Figure 4. Because of this, we use WD and LC as the main heuristics together
with MD as a helping heuristic to assist the main heuristics. Since we use MD as a helping
heuristic, the MD value is divided by 3. In this way, the MD value is reduced to a number
when it is added to the main heuristics values, so the result will be close to the optimal
solution length.

As explained before, WD mainly considers the interactions between the tiles, and it
calculates the distance of the tiles to their actual positions in a way similar to MD. Therefore,
to compensate, the calculating tiles’ distance to their goal position MD is used but not
the whole MD value. The MD value is divided by a number (which is three) so that
the summation of WD, LC and MD/3 will be close to the optimal solution length. For
example, if we sum the total WD value (3957), LC value (212), and MD value divided by
three (3705/3), as is shown in Table 2, the result will be 5404, and this result is near to the
total optimal solution value 5307 for Korf’s standard 100 random Fifteen Puzzle instances.
Furthermore, this total overestimation is very small and it does not have a great impact
on the results of BA* with HH, as the implementation of our algorithm finds an optimal
solution or a solution that is near to the optimum and to reach the goal for each instance, a
small number of states are generated. Because of this, we calculate the heuristic function in
the evaluation function (Equation (2) [1]), as shown in Equation (3), named hybridizing
heuristic (HH). To find the shortest path, the A* algorithm uses the evaluation function as
it is shown in Equation (2), which is equal to the g(s), the depth cost from the start state to
the current state, plus the h(s), the heuristic that estimates the distance from the current
state to the goal state. The A* algorithm guarantees the optimal solution if the heuristic
function is admissible.

f (s) = g(s) + h(s) (2)

h(s) =
md(s)

3
+ wd(s) + lc(s) (3)

5. Results and Discussions

In this section, to evaluate the efficiency and performance of our implementation of
the BA* algorithm, we make some comparisons. Firstly, BA* with HH is compared with the
ABC algorithm in terms of admissibility. Secondly, in terms of directionality, BA* and UA*
are compared to show that the bidirectional search is more efficient than the unidirectional
search, especially when there is a guarantee that the two bidirectional searches do not
pass by each other without intersecting. Finally, the BA* search with HH is run on Korf’s
100 instances, along with a comparison with the IDA* search.

5.1. Inadmissible Heuristics

An algorithm can guarantee finding the shortest path or the smallest number of
moves from the initial state to the goal only if the heuristic function never overestimates
the actual path cost from the current state to the goal state, which we call an admissible
heuristic [32]. Due to the reason that finding the optimal solution for the Fifteen Puzzle is
too expensive and requires searching through a very large number of paths and generating
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a large number of nodes [33], many types of research have been conducted to obtain near-
optimal solutions instead of exact optimal solutions [34,35]. Thayer, Dionne, and Ruml [36]
state that, to reduce the solving time, a near-optimal solution is a practical alternative. To
reduce the number of generated nodes, we incorporated aspects from the three heuristics
to create a better one and the heuristic function in the evaluation function (Equation (2) [1])
is calculated as shown in Equation (3). As shown in Equation (3), three heuristics are
combined to estimate the cost from a given state (node) to the goal state. The value of
the Manhattan distance is divided by three because calculating in that way leads to fewer
nodes to be generated during the search. Because of the previous reasons, the algorithm
heuristic cannot guarantee finding the goal with the smallest number of moves, but this
brings some advantages. Firstly, a lesser number of nodes are generated and it can very
quickly find the goal. Secondly, the result is very close to the optimal solution. Since a
bidirectional search has been used to find the path from the initial state to the goal state,
the three heuristics have been used in both directions (search).

However, our implementation of the BA* algorithm with the three heuristics does
not find optimal solutions for most of the Fifteen Puzzle instances; the difference between
the solution length found by BA* and the optimal solution for each puzzle instance does
not increase when the puzzle instance requires more moves to optimally reach the goal.
Nowadays, metaheuristic optimization algorithms are widely used for solving complex
problems [37–39]. One of the algorithms that has recently been used to obtain non-optimal
solutions to the Fifteen Puzzle problems is a metaheuristic algorithm: artificial bee colony
(ABC) [40]. Here, the BA* algorithm with HH is compared with the ABC algorithm to show
that the obtained results of BA* are sufficiently accurate and much nearer to the optimal
results. To increase the effectiveness and performance of the heuristic function of the ABC
algorithm, three heuristics, PDB, MD, and LC, were combined. The ABC algorithm was
run on 25 randomly generated solvable instances of the Fifteen Puzzle, but the algorithm
did not produce an optimal solution for any of them; it provided solutions that are far
from the optimum [40]. Tuncer [40] argued that the results produced by the ABC algorithm
are acceptable even though the solution lengths are far from the optimal solution lengths.
Furthermore, the difference between the solution costs obtained by the ABC algorithm and
the optimal solutions for most of the puzzle instances increases when the puzzle instances
require more moves to optimally reach the goal. For example, according to Table 4, the
solution cost obtained by the ABC algorithm for the first nine puzzle instances that need
fewer steps to optimally reach the goal is near to the optima, while the rest of the puzzle
instances are very far from the optima. This is because these instances need more steps to
optimally reach the goal. According to this example, the difference between the number of
moves obtained by the ABC algorithm and the optimal solution will be big, especially for
those states that require 80 moves to reach the goal. On the other hand, an important point
about our implementation of the BA* algorithm is that the solution lengths for almost all
the Fifteen Puzzle instances are zero to six moves away from the optimal solution lengths,
even for the difficult states, as is shown in Tables 3 and 4.

The BA* algorithm with HH was run on the same 25 initial states, and the results
obtained by the BA* algorithm are very near to the optimal solutions compared to the
results obtained by the ABC algorithm. For example, Table 4 shows that the average
number of moves in the solutions that are obtained by the ABC algorithm is 58.76, while
the average number of moves in the solutions that are obtained by the BA* algorithm is
50.4. In addition, the average number of moves in the solutions found by BA* is only 1.92
away from the average cost of the optimum solution, which is 48.48, while the average
number of moves in the solutions found by ABC is 10.28 away from the average cost of
the optimum solution. Figure 7 illustrates the results of the 25 states presented in Table 4
obtained by the ABC and BA* algorithm.
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Table 3. Comparison of BA* search and UA* search for the 28 difficult Fifteen Puzzle instances
requiring 80 moves.

NO INITIAL STATE Optimal LEN LEN (UA*) Generated
States (UA*) LEN (BA*) Generated

States (BA*)

1 15 14 8 12 10 11 9 13 2 6 5 1 3 7 4 0 80 Memory ran out 88 187,592
2 15 11 13 12 14 10 8 9 7 2 5 1 3 6 4 0 80 84 138,505 84 138,505
3 15 11 13 12 14 10 8 9 2 6 5 1 3 7 4 0 80 82 1,605,359 86 367,391
4 15 11 9 12 14 10 13 8 6 7 5 1 3 2 4 0 80 82 771,924 86 420,441
5 15 11 9 12 14 10 13 8 2 6 5 1 3 7 4 0 80 84 1,207,604 86 199,905
6 15 11 8 12 14 10 13 9 2 7 5 1 3 6 4 0 80 82 809,360 82 185,126
7 15 11 9 12 14 10 8 13 6 2 5 1 3 7 4 0 80 Memory ran out 86 219,470
8 15 11 8 12 14 10 9 13 2 6 5 1 3 7 4 0 80 84 2,565,243 86 200,926
9 15 11 8 12 14 10 9 13 2 6 4 5 3 7 1 0 80 84 751,072 84 190,731
10 15 14 13 12 10 11 8 9 2 6 5 1 3 7 4 0 80 82 1,137,335 84 205,344
11 15 11 13 12 14 10 9 5 2 6 8 1 3 7 4 0 80 82 1,933,020 86 530,773
12 0 12 9 13 15 11 10 14 3 7 2 5 4 8 6 1 80 Memory ran out 88 186,644
13 0 12 10 13 15 11 14 9 3 7 2 5 4 8 6 1 80 84 2,096,287 84 207,896
14 0 11 9 13 12 15 10 14 3 7 6 2 4 8 5 1 80 84 949,297 84 198656
15 0 15 9 13 11 12 10 14 3 7 6 2 4 8 5 1 80 84 734,711 84 167,455
16 0 12 9 13 15 11 10 14 3 7 6 2 4 8 5 1 80 Memory ran out 86 256,899
17 0 12 14 13 15 11 9 10 3 7 6 2 4 8 5 1 80 84 917,307 86 205,555
18 0 12 10 13 15 11 14 9 3 7 6 2 4 8 5 1 80 82 1,623,362 86 341,405
19 0 12 11 13 15 14 10 9 3 7 6 2 4 8 5 1 80 Memory ran out 86 520,393
20 0 12 10 13 15 11 9 14 7 3 6 2 4 8 5 1 80 82 764,029 82 199,908
21 0 12 9 13 15 11 14 10 3 8 6 2 4 7 5 1 80 Memory ran out 86 213,147
22 0 12 9 13 15 11 10 14 8 3 6 2 4 7 5 1 80 84 998,668 86 205,473
23 0 12 14 13 15 11 9 10 8 3 6 2 4 7 5 1 80 84 1,372,770 86 416,315
24 0 12 9 13 15 11 10 14 7 8 6 2 4 3 5 1 80 82 1,205,808 86 213,283
25 0 12 10 13 15 11 14 9 7 8 6 2 4 3 5 1 80 84 105,242 84 105,242
26 0 12 9 13 15 8 10 14 11 7 6 2 4 3 5 1 80 82 2,259,670 86 534,581
27 0 12 9 13 15 11 10 14 3 7 5 6 4 8 2 1 80 Memory ran out 88 160,899
28 0 12 9 13 15 11 10 14 7 8 5 6 4 3 2 1 80 84 2,358,160 84 209,711

Average 80 83.1 1,252,606 85.4 256,774

Figure 7. Results of 25 Fifteen Puzzle states for ABC and BA* algorithms.

5.2. Bidirectional and Unidirectional Search

In a bidirectional search, two separate searches are sequentially or simultaneously run.
One search, called the forward search, is normal, starting from the initial state and moving
toward the goal state, and the other search, called the backward search, starts from the
goal state and moves toward the initial state. The search process terminates once the two
searches meet at a common node in the middle and the algorithm constructs a single path
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that extends from the initial state to the goal state [41–44]. Pohl [42] was the first person
who introduced and implemented a bidirectional heuristic search algorithm with the name
bidirectional heuristic path algorithm (BHPA) and he showed that a bidirectional search
is more efficient than a unidirectional search. BHPA did not work as expected, since after
the search frontiers meet, both directions of searches pass through the opposing frontier to
ensure optimality of the solution, and this leads to the same node being expanded by the
two searches. To resolve this issue, Kwa [45] created a bidirectional staged BS* heuristic
search algorithm, which is derived from Pohl’s BHPA algorithm, to avoid the re-expansion
of a state that has already been expanded in the opposite search. These days, there are
several types of research that prove that a bidirectional search is very efficient at solving
various problems [46–50].

As shown in Algorithm 1, we implemented a bidirectional search as follows: two
sequential processes are run, one branching from the start state, the other branching from
the goal state. The first search, “forward search”, starts from the initial state and will
continue until 75,000 nodes are expanded. If the goal state is not reached, the second search,
“backward search”, is initiated from the goal state towards the initial state and this search
will continue until it expands 75,000 nodes. If the goal is not found, the backward search
stops, and the forward search is performed again. The search process will continue to cycle
until both directions meet or the solution is found. During the search, whenever a state is
generated by one of the two searches, the algorithm checks if the state has already been
generated by the opposite search, and, if it has, it reconstructs a solution path from the
two searches. Korf and Schultze [51] were able to compute the number of unique states
at each depth of the Fifteen Puzzle. According to [51], the number of generated nodes at
each depth gradually increases from depth 0 to depth 53, then the number of generated
nodes at each depth starts to gradually decrease from depth 54 to 80. Based on this, the
bidirectional search may not be very effective, because the number of generated nodes at
depth 53 decreases in both directions and it can be difficult for both searches to meet in the
middle. Therefore, one of the problems for the bidirectional search is that the two searches
may not meet or may pass by each other without intersecting, but the A* algorithm retains
all the visited nodes in the memory, which ensures that the two searches meet and frontier
intersections can be easily tested [9]. Furthermore, there can be more than one optimal
solution or non-optimal solution for the Fifteen Puzzle instances that can help the two
searches not pass by each other without intersecting [52]. Additionally, the bidirectional
search is very useful when the problem has not had many goals.

Our implementation of the BA* search can reduce the number of generated states
because we use a priority queue to store the estimated costs of states (nodes), and the
state from anywhere in the entire queue (not at a specific level) with the lowest evalua-
tion function value (the heuristic value plus the path cost) is always selected to expand.
Therefore, the algorithm visits the states in order of their costs, not level by level, which
results in speeding up the search. Our implementation of the BA* search can find optimal
or near-optimal solutions to even the difficult states and with a small fraction of states
expanded (and stored) compared to the unidirectional A* (UA*) search. Table 3 shows
that the bidirectional search is more efficient than the unidirectional search concerning
generated nodes. In Table 3, we run the BA* and UA* search on 28 different states that
require 80 moves. The goal state with a blank tile in the top left corner is used for the first
11 instances, but the goal state with a blank tile in the bottom right corner is used for the
remaining 17 instances. The first nine instances were presented by [53], instances 10 and
11 were presented by [54], and the last 17 states were found by [55]. According to Table 3,
the BA* search is more efficient than the UA* search in terms of node expansion, and, for
seven of the states, UA* is unable to find a solution path and it runs out of memory before
finding a solution. Even though the average solution cost obtained by UA* is less than
the average solution cost obtained by BA*, the difference is not significant; it is only 2.3.
Additionally, the average number of states generated by the BA* search is significantly less
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than those generated by the UA* search, even though the number of states generated by
the UA* search for seven states has not been counted due to running out of memory.

Table 4. Comparison of results between BA* algorithm and ABC algorithm.

NO INITIAL STATE Optimal LEN LEN (ABC) BEST LEN (BA*)

1 1 5 2 7 10 14 11 6 15 12 9 3 13 0 8 4 34 37 34
2 5 6 10 7 1 3 11 8 13 4 15 9 14 0 2 12 38 43 38
3 1 11 6 2 10 13 15 5 3 12 0 4 9 7 14 8 40 46 42
4 6 5 2 7 13 0 10 12 4 1 3 14 9 11 15 8 44 49 46
5 4 3 10 7 6 0 1 2 12 15 5 14 9 13 8 11 44 52 46
6 4 10 3 2 1 0 7 8 9 6 13 15 14 12 11 5 44 51 52
7 3 4 11 2 9 1 14 15 7 6 0 8 5 13 12 10 44 51 44
8 3 10 2 5 15 6 13 4 0 11 1 7 9 12 8 14 46 52 48
9 9 4 0 3 14 7 5 12 15 2 13 6 10 1 8 11 46 54 48
10 7 1 12 10 6 11 15 4 0 2 5 14 3 13 8 9 48 59 50
11 1 13 5 7 14 9 10 12 11 8 2 15 6 0 4 3 48 62 50
12 13 9 5 12 10 2 4 11 3 8 0 7 1 14 6 15 48 64 50
13 2 13 6 1 14 5 11 0 12 4 8 10 9 3 15 7 50 66 50
14 11 3 12 9 2 8 10 14 0 7 15 13 1 6 5 4 50 68 52
15 7 6 15 12 14 1 13 3 0 9 8 4 2 11 5 10 50 68 52
16 5 8 13 15 14 0 1 7 4 6 10 2 11 9 12 3 52 59 56
17 12 2 5 11 10 0 1 6 3 14 8 9 7 4 13 15 52 62 52
18 13 3 2 8 12 0 5 1 11 6 9 15 4 14 7 10 52 63 52
19 7 13 1 4 9 12 8 5 15 14 0 6 11 2 3 10 52 59 52
20 8 11 12 10 2 0 15 1 14 6 4 3 7 9 5 13 54 61 58
21 6 8 12 13 7 2 5 14 9 3 1 15 11 0 10 4 54 65 54
22 9 12 2 5 11 1 10 14 0 4 3 8 6 15 7 13 54 67 60
23 10 12 11 7 8 9 14 5 3 13 4 1 6 0 2 15 56 69 56
24 3 10 14 5 1 12 11 8 15 7 9 6 2 0 13 4 56 71 58
25 9 3 12 5 4 14 6 11 8 7 15 13 10 0 2 1 56 71 60

Average 48.48 58.76 50.4

Table 5 [9] shows the comparison between the two searches, UA* and BA* with HH,
which were implemented in this paper. According to Table 5, the space and time complexity
of the UA* algorithm is O

(
bd
)

, where b is the branching and d is the depth of solution,

whereas the space and time complexity of the BA* algorithm is O
(

bd/2
)

, since two searches
are run in the BA* algorithm; thus, the solution depth is divided by two. One significant
point to notice is that the time and space complexity of the A* algorithm strongly depends
on the heuristics, which heuristics are used, and how they are implemented [9]. Therefore,
in this paper, we took advantage of the bidirectional search, the heuristics, and the way of
implementing them (as shown in Equation (3)) to reduce the space complexity. Table 5 also
presents the completeness and optimality of UA* and BA* with HH. It shows that both the
searches are complete but not optimal. This is because of the way of using heuristics, as we
mentioned before that BA* with HH guarantees either an optimal or near-optimal solution.

Table 5. Evaluation of UA* and BA* searches.

Criterion UA* with HH BA* with HH

Time complexity O
(

bd
)

O
(

bd/2
)

Space complexity O
(

bd
)

O
(

bd/2
)

Complete Yes Yes

Optimal No No
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5.3. Experiments

In the study, the BA* algorithm was applied by combining the advantages of WD, LC,
and MD heuristics. The algorithm was run on the 100 random initial states presented by [8],
which is mainly to show the efficiency and performance of our implementation of BA*. In
Korf’s goal state, the blank is located at the top left corner, and Korf used the IDA* search
algorithm with the MD heuristic. Then, those 100 random initial states were used by [14],
but this time the IDA* algorithm with MD and LC heuristics was run on them, and the
result has been added to Table 6. Even though the implementation of the IDA* algorithm
with MD and LC heuristics is quite old, we still compare our results with its results because
we also use both MD and LC heuristics, albeit in different ways and with another heuristic
(WD). Furthermore, our algorithm considerably reduces the number of generated nodes
compared to the results of IDA* with the two heuristics MD and LC.

Table 6 shows that the number of states examined using BA* with HH is much less
than the number of states examined using IDA* with MD and LC. For example, the average
cost of states examined using IDA* with MD and LC is 37,596,318 states, while the average
cost of states generated by BA* with HH is only 48,420 states. Furthermore, Table 6 also
shows that the average solution cost that is obtained by BA* with HH is about 55.01, and
this is very near the average optimal solution cost which is about 53.1 moves. In addition,
the number of moves and the number of generated states in the solution of each instance
using both the IDA* and BA* algorithms are also shown in Table 6. Moreover, it is evident
in Table 6 that the solution length of 98% of the instances from zero to six moves is far from
their optimal solution lengths.

Table 6 also demonstrates the number of state expansions and the WD, MD, and LC
values for each of the puzzle instances. Figure 8 graphically shows the total number of
states according to the cost difference between their optimal solutions and the solutions
achieved by BA* with HH based on Table 6. Table 6 also shows that the solution of 39 states
is zero moves away from optimum (they are optimal solutions), the solution of 36 states
is two moves away from optimum, the solution of 17 states is four moves away from
optimum, and the solution of six states are six moves away from optimum. The figure
also shows that the solution of only one state is eight moves away from optimum and the
solution of only one state is 10 moves away from optimum. Table 6 also presents the HH
value for each instance and it shows that the HH value is very near to the instance’s optimal
length. The average HH value is 54.04, only 0.97 away from the average optimal length,
which is 53.07. The last column of Table 6 indicates the time (in seconds) it takes to solve
each puzzle instance by BA* with HH.

Figure 8. Total number of states according to the cost difference between their optimal solutions and
the solutions achieved by BA* with HH.

In short, the most important thing about our implementation of BA* with HH is that
it drastically reduces the search space without consuming a lot of storage space, since for
all three heuristics used in this paper, only 25 KB is required. Furthermore, the results
for each instance are very close to the shortest path length, even for complex puzzle
states. Additionally, the estimation of HH for each instance shown Table 6 is near to the
optimal length.
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Table 6. Comparison of IDA* algorithm with MD and LC and BA* algorithm with HH for Korf’s 100 instances.

NO INITIAL STATE Optimal LEN
IDA* with MD

+ LC (Generated
States)

BA* with HH
(Generated

States)
LEN (BA*)

BA* with HH
(State

Expansion)
WD MD LC HH

Value
Time (s)

(BA*)

1 14 13 15 7 11 12 9 5 6 0 2 1 4 8 10 3 57 12,205,623 4348 59 2146 43 41 2 59 0.15
2 13 5 4 10 9 12 8 14 2 3 7 1 0 15 11 6 55 4,556,067 104,760 59 50,143 45 43 0 59 1.16
3 14 7 8 2 13 11 10 4 9 12 5 0 3 6 1 15 59 156,590,306 39,851 59 18,672 43 41 0 57 0.59
4 5 12 10 7 15 11 14 0 8 2 1 13 3 4 9 6 56 9,052,179 128,358 58 62,894 44 42 0 58 1.22
5 4 7 14 13 10 3 9 12 11 5 6 15 1 2 8 0 56 2,677,666 20,413 58 9635 44 42 2 60 0.41
6 14 7 1 9 12 3 6 15 8 11 2 5 10 0 4 13 52 4,151,682 4682 54 2234 40 36 4 56 0.15
7 2 11 15 5 13 4 6 7 12 8 10 1 9 3 14 0 52 97,264,710 150,410 54 75,251 34 30 0 44 1.57
8 12 11 15 3 8 0 4 2 6 13 9 5 14 1 10 7 50 3,769,804 22,921 54 11,354 36 32 4 51 0.43
9 3 14 9 11 5 4 8 2 13 12 6 7 10 1 15 0 46 88,588 1811 48 871 34 32 4 49 0.10
10 13 11 8 9 0 15 7 10 4 3 6 14 5 12 2 1 59 48,531,591 42,218 59 20,030 47 43 2 63 0.60
11 5 9 13 14 6 3 7 12 10 8 4 0 15 2 11 1 57 25,537,948 67,872 59 32,265 45 43 2 61 0.86
12 14 1 9 6 4 8 12 5 7 2 3 0 10 11 13 15 45 179,628 633 45 298 37 35 0 49 0.05
13 3 6 5 2 10 0 15 14 1 4 13 12 9 8 11 7 46 1,051,213 14,327 48 7164 36 36 2 50 0.34
14 7 6 8 1 11 5 14 10 3 4 9 13 15 2 0 12 59 53,050,799 153,470 63 76,125 43 41 2 59 1.47
15 13 11 4 12 1 8 9 15 6 5 14 2 7 3 10 0 62 130,071,656 43,608 64 20,685 46 44 2 63 0.54
16 1 3 2 5 10 9 15 6 8 14 13 11 12 4 7 0 44 2,421,878 67,984 44 34,375 24 24 2 34 0.86
17 15 14 0 4 11 1 6 13 7 5 8 9 3 2 10 12 66 100,843,886 206,372 76 98,417 54 46 0 69 2.38
18 6 0 14 12 1 15 9 10 11 4 7 2 8 3 5 13 55 5,224,645 19,272 57 9121 43 43 0 57 0.38
19 7 11 8 3 14 0 6 15 1 4 13 9 5 12 2 10 46 385,369 5381 46 2475 36 36 2 50 0.18
20 6 12 11 3 13 7 9 15 2 14 8 10 4 1 5 0 52 3,642,638 32,036 54 15,414 36 36 0 48 0.51
21 12 8 14 6 11 4 7 0 5 1 10 15 3 13 9 2 54 43,980,448 59,920 56 28,403 40 34 2 53 0.91
22 14 3 9 1 15 8 4 5 11 7 10 13 0 2 12 6 59 79,549,136 4517 63 2112 45 41 4 63 0.14
23 10 9 3 11 0 13 2 14 5 6 4 7 8 15 1 12 49 770,088 43,664 51 21,113 37 33 4 52 0.64
24 7 3 14 13 4 1 10 8 5 12 9 11 2 15 6 0 54 15,062,608 31,366 54 14,750 38 34 4 53 0.66
25 11 4 2 7 1 0 10 15 6 9 14 8 3 13 5 12 52 13,453,743 5258 52 2485 36 32 4 51 0.19
26 5 7 3 12 15 13 14 8 0 10 9 6 1 4 2 11 58 50,000,803 110,470 58 53,289 42 40 4 59 1.20
27 14 1 8 15 2 6 0 3 9 12 10 13 4 7 5 11 53 31,152,542 37,847 55 19,212 37 33 2 50 0.63
28 13 14 6 12 4 5 1 0 9 3 10 2 15 11 8 7 52 1,584,197 16,633 54 7814 40 36 0 52 0.39
29 9 8 0 2 15 1 4 14 3 10 7 5 11 13 6 12 54 10,085,238 21,435 54 10,644 42 38 2 57 0.44
30 12 15 2 6 1 14 4 8 5 3 7 0 10 13 9 11 47 680,254 21,016 47 10,296 35 35 0 47 0.41
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Table 6. Cont.

NO INITIAL STATE Optimal LEN
IDA* with MD

+ LC (Generated
States)

BA* with HH
(Generated

States)
LEN (BA*)

BA* with HH
(State

Expansion)
WD MD LC HH

Value
Time (s)

(BA*)

31 12 8 15 13 1 0 5 4 6 3 2 11 9 7 14 10 50 538,886 514 52 239 40 38 2 55 0.05
32 14 10 9 4 13 6 5 8 2 12 7 0 1 3 11 15 59 183,341,087 123,812 61 58,715 43 43 2 59 1.23
33 14 3 5 15 11 6 13 9 0 10 2 12 4 1 7 8 60 28,644,837 37,806 62 17,962 44 42 0 58 0.61
34 6 11 7 8 13 2 5 4 1 10 3 9 14 0 12 15 52 1,174,414 10,257 52 4916 38 36 6 56 0.26
35 1 6 12 14 3 2 15 8 4 5 13 9 0 7 11 10 55 9,214,047 58,967 55 28,765 41 39 0 54 0.72
36 12 6 0 4 7 3 15 1 13 9 8 11 2 14 5 10 52 4,657,636 13,346 52 6485 38 36 2 52 0.31
37 8 1 7 12 11 0 10 5 9 15 6 13 14 2 3 4 58 21,274,607 29,195 58 14,151 44 40 2 59 0.52
38 7 15 8 2 13 6 3 12 11 0 4 10 9 5 1 14 53 4,946,981 2105 53 1003 41 41 2 57 0.09
39 9 0 4 10 1 14 15 3 12 6 5 7 11 13 8 2 49 3,911,623 18,877 49 9056 35 35 0 47 0.35
40 11 5 1 14 4 12 10 0 2 7 13 3 9 15 6 8 54 13,107,557 120,964 56 58,445 38 36 2 52 1.17
41 8 13 10 9 11 3 15 6 0 1 2 14 12 5 4 7 54 12,388,516 5793 54 2776 42 36 4 58 0.17
42 4 5 7 2 9 14 12 13 0 3 6 11 8 1 15 10 42 217,288 17,756 46 8504 32 30 2 44 0.38
43 11 15 14 13 1 9 10 4 3 6 2 12 7 5 8 0 64 7,034,879 9938 68 4754 54 48 6 76 0.21
44 12 9 0 6 8 3 5 14 2 4 11 7 10 1 15 13 50 3,819,541 2461 50 1244 34 32 6 51 0.10
45 3 14 9 7 12 15 0 4 1 8 5 6 11 10 2 13 51 764,473 654 51 294 39 39 0 52 0.05
46 8 4 6 1 14 12 2 15 13 10 9 5 3 7 0 11 49 1,510,387 4417 51 2175 35 35 6 53 0.18
47 6 10 1 14 15 8 3 5 13 0 2 7 4 9 11 12 47 221,531 1173 47 565 35 35 0 47 0.08
48 8 11 4 6 7 3 10 9 2 12 15 13 0 1 5 14 49 255,047 2302 49 1080 41 39 0 54 0.11
49 10 0 2 4 5 1 6 12 11 13 9 7 15 3 14 8 59 203,873,877 156,955 65 75,800 39 33 4 54 1.54
50 12 5 13 11 2 10 0 9 7 8 4 3 14 6 15 1 53 6,225,180 37,831 57 18,100 41 39 2 56 0.61
51 10 2 8 4 15 0 1 14 11 13 3 6 9 7 5 12 56 4,683,054 25,419 56 12,338 44 44 0 59 0.48
52 10 8 0 12 3 7 6 2 1 14 4 11 15 13 9 5 56 33,691,153 120,510 60 60,031 40 38 4 57 1.22
53 14 9 12 13 15 4 8 10 0 2 1 7 3 11 5 6 64 125,641,730 103,879 68 49,722 54 50 0 71 1.11
54 12 11 0 8 10 2 13 15 5 4 7 3 6 9 14 1 56 26,080,659 47,294 58 22,908 42 40 2 57 0.76
55 13 8 14 3 9 1 0 7 15 5 4 10 12 2 6 11 41 163,077 5291 43 2400 33 29 2 45 0.18
56 3 15 2 5 11 6 4 7 12 9 1 0 13 14 10 8 55 166,183,825 153,475 59 75,038 35 29 4 49 1.50
57 5 11 6 9 4 13 12 0 8 2 15 10 1 7 3 14 50 3,977,809 8430 50 4021 36 36 0 48 0.22
58 5 0 15 8 4 6 1 14 10 11 3 9 7 12 2 13 51 3,563,941 8020 51 3771 39 37 4 55 0.21
59 15 14 6 7 10 1 0 11 12 8 4 9 2 5 13 3 57 90,973,287 36,373 57 17,423 39 35 4 55 0.65
60 11 14 13 1 2 3 12 4 15 7 9 5 10 6 8 0 66 256,537,528 167,180 72 80,902 54 48 0 70 1.69
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Table 6. Cont.

NO INITIAL STATE Optimal LEN
IDA* with MD

+ LC (Generated
States)

BA* with HH
(Generated

States)
LEN (BA*)

BA* with HH
(State

Expansion)
WD MD LC HH

Value
Time (s)

(BA*)

61 6 13 3 2 11 9 5 10 1 7 12 14 8 4 0 15 45 672,959 3024 45 1471 31 31 4 45 0.12
62 4 6 12 0 14 2 9 13 11 8 3 15 7 10 1 5 57 8,463,998 23,726 61 11,426 45 43 2 61 0.40
63 8 10 9 11 14 1 7 15 13 4 0 12 6 2 5 3 56 20,999,336 14,771 56 7196 42 40 4 59 0.34
64 5 2 14 0 7 8 6 3 11 12 13 15 4 10 9 1 51 43,522,756 80,791 53 38,143 37 31 4 51 0.96
65 7 8 3 2 10 12 4 6 11 13 5 15 0 1 9 14 47 2,444,273 9450 47 4669 33 31 4 47 0.26
66 11 6 14 12 3 5 1 15 8 0 10 13 9 7 4 2 61 394,246,898 57,527 61 27,714 43 41 2 59 0.84
67 7 1 2 4 8 3 6 11 10 15 0 5 14 12 13 9 50 47,499,462 154,127 56 75,339 30 28 2 41 1.59
68 7 3 1 13 12 10 5 2 8 0 6 11 14 15 4 9 51 6,959,507 28,456 51 13,873 33 31 4 47 0.52
69 6 0 5 15 1 14 4 9 2 13 8 10 11 12 7 3 53 5,186,587 48,211 57 23,657 37 37 2 51 0.75
70 15 1 3 12 4 0 6 5 2 8 14 9 13 10 7 11 52 40,161,673 85,108 52 41,672 36 30 2 48 0.97
71 5 7 0 11 12 1 9 10 15 6 2 3 8 4 13 14 44 539,387 12,680 46 6422 30 30 4 44 0.30
72 12 15 11 10 4 5 14 0 13 7 1 2 9 8 3 6 56 55,514,360 147,629 64 75,073 42 38 2 57 1.42
73 6 14 10 5 15 8 7 1 3 4 2 0 12 9 11 13 49 1,130,807 1645 53 809 41 37 2 55 0.09
74 14 13 4 11 15 8 6 9 0 7 3 1 2 10 12 5 56 310,312 32,986 62 15,904 48 46 0 63 0.67
75 14 4 0 10 6 5 1 3 9 2 13 15 12 7 8 11 48 5,796,660 150,985 50 75,069 30 30 4 44 1.75
76 15 10 8 3 0 6 9 5 1 14 13 11 7 2 12 4 57 25,481,596 51,179 57 24,049 45 41 2 61 0.80
77 0 13 2 4 12 14 6 9 15 1 10 3 11 5 8 7 54 5,479,397 62,726 58 30,141 42 34 2 55 0.94
78 3 14 13 6 4 15 8 9 5 12 10 0 2 7 1 11 53 2,722,095 8781 55 4147 43 41 0 57 0.22
79 0 1 9 7 11 13 5 3 14 12 4 2 8 6 10 15 42 107,088 4554 42 2197 30 28 2 41 0.16
80 11 0 15 8 13 12 3 5 10 1 4 6 14 9 7 2 57 39,801,475 22,413 61 10,698 45 43 0 59 0.55
81 13 0 9 12 11 6 3 5 15 8 1 10 4 14 2 7 53 1,088,123 1420 53 689 41 39 2 56 0.08
82 14 10 2 1 13 9 8 11 7 3 6 12 15 5 4 0 62 203,606,265 173,460 68 87,034 44 40 4 61 1.97
83 12 3 9 1 4 5 10 2 6 11 15 0 14 7 13 8 49 2,155,880 32,271 51 16,376 35 31 6 51 0.58
84 15 8 10 7 0 12 14 1 5 9 6 3 13 11 4 2 55 17,323,672 100,981 57 49,825 39 37 6 57 1.14
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Table 6. Cont.

NO INITIAL STATE Optimal LEN
IDA* with MD

+ LC (Generated
States)

BA* with HH
(Generated

States)
LEN (BA*)

BA* with HH
(State

Expansion)
WD MD LC HH

Value
Time (s)

(BA*)

85 4 7 13 10 1 2 9 6 12 8 14 5 3 0 11 15 44 933,953 11,604 46 5594 32 32 0 43 0.31
86 6 0 5 10 11 12 9 2 1 7 4 3 14 8 13 15 45 237,466 4906 47 2342 35 35 2 49 0.17
87 9 5 11 10 13 0 2 1 8 6 14 12 4 7 3 15 52 7,928,514 38,524 52 19,390 36 34 2 49 0.59
88 15 2 12 11 14 13 9 5 1 3 8 7 0 10 6 4 65 422,768,851 85,817 67 42,265 49 43 2 65 1.14
89 11 1 7 4 10 13 3 8 9 14 0 15 6 5 2 12 54 29,171,607 50,303 54 23,800 40 38 2 55 0.71
90 5 4 7 1 11 12 14 15 10 13 8 6 2 0 9 3 50 649,591 15,343 52 7592 36 36 4 52 0.36
91 9 7 5 2 14 15 12 10 11 3 6 1 8 13 0 4 57 91,220,187 36,250 57 17,644 43 41 0 57 0.56
92 3 2 7 9 0 15 12 4 6 11 5 14 8 13 10 1 57 68,307,452 35,707 57 17,553 39 37 2 53 0.65
93 13 9 14 6 12 8 1 2 3 4 0 7 5 10 11 15 46 350,208 72,971 50 35,114 36 34 0 47 0.95
94 5 7 11 8 0 14 9 13 10 12 3 15 6 1 4 2 53 390,368 4655 59 2158 45 45 0 60 0.15
95 4 3 6 13 7 15 9 0 10 5 8 11 2 12 1 14 50 1,517,920 14,900 54 6986 42 34 2 55 0.39
96 1 7 15 14 2 6 4 9 12 11 13 3 0 8 5 10 49 1,157,734 9322 51 4642 37 35 2 51 0.26
97 9 14 5 7 8 15 1 2 10 4 13 6 12 0 11 3 44 166,566 7933 44 3829 32 32 2 45 0.24
98 0 11 3 12 5 2 1 9 8 10 14 15 7 4 13 6 54 41,564,669 72,441 56 35,008 38 34 0 49 0.95
99 7 15 4 0 10 9 2 5 12 11 13 6 1 3 14 8 57 18,038,550 145,912 59 69,971 43 39 0 56 1.52

100 11 4 0 8 6 10 5 13 12 7 14 3 1 2 9 15 54 17,778,222 112,634 56 53,227 40 38 2 55 1.35
SUM 5307 3,759,631,814 4,841,970 5501 2,353,978 3957 3705 212 5404 64

Average 53.07 37,596,318 48,420 55.01 23,540 40 37 2 54.04 0.64
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The state-of-the-art heuristics that have been designed for solving the Fifteen Puzzle
instances are based on machine learning or deep learning techniques [56–58]. They have
achieved good results, but these algorithms used a training dataset that contains millions of
difficult Fifteen Puzzle states with their optimal solution costs, which were calculated using
the IDA* [56] algorithm with the 7–8 PDB heuristic. As we mentioned before, 7–8 PDB
is the most efficient heuristic for solving the Fifteen Puzzle problems, but this heuristic
requires a huge amount of space for storing the entries (57,657,600 entries for seven tiles
and 518,918,400 entries for eight tiles) [59], which takes up 575 MB [18] to 4.5 GBs [56]
of memory depending on the techniques which have been used for storing the entries.
Moreover, the training dataset needed by these heuristics, also requires a lot of space.
Additionally, these heuristics may not achieve a good result for every Fifteen Puzzle state,
since they heavily depend on the size and proportion of the training dataset, and there are
about 1013 solvable Fifteen Puzzle states, which is an enormous figure. Another weakness
of these heuristics is the large amount of time that they require to process [56,57], which
mainly depends on the size of the training dataset. On the other hand, the heuristics
used in this study are those which can be calculated during the search and each puzzle
state is taken into account. Additionally, they do not need databases or tables to store the
precomputation results (except 25 KB, which is only used for calculating the WD heuristic
value for the sake of speeding up the search). To the best our knowledge, the approach we
have used has not been used for a long time in research, since it generates a lot of states,
which causes the A* algorithm to run out of memory since it needs to keep all the generated
nodes in memory, and IDA* needs hours to solve most of the Fifteen Puzzle problems.
Here, we have used these heuristics in a way that can significantly reduce the generated
states without exhausting the memory or taking a long time to solve the Fifteen Puzzle
problems. In spite of this, in Table 7, we still compare our results with a focal discrepancy
search (FDS) and focal search (FS). These two searches use a learned heuristic DeepCubeA,
which was trained over 1.5 million Fifteen Puzzle problems, and for the evaluation, Korf’s
100 instances were used [57,58]. Table 7 shows that only BA* with HH and FDS can solve
the 100 instances. The FDS and FS expanded fewer nodes compared to the results of BA*
with HH. The average solution cost that is obtained by BA* with HH is nearer to the average
optimal cost, which is 53.1 moves, than that of FDS. FS obtained the best average cost, but
this search is only able to solve 83% of the puzzle instances. As mentioned before, one of
the weaknesses of the heuristics that depend on the dataset is speed, as Table 7 shows that,
in terms of runtime, our proposed algorithm significantly outperforms both FDS and FS.
We believe that our proposed algorithm has obtained a good result, since we have used
heuristics that can be calculated during the search without requiring a huge amount of
space to store precomputation results. Moreover, the approach we have used expands
an average of 23,540 nodes, which is small, while in the past it expanded an average of
millions of nodes.

Table 7. Results for the Fifteen Puzzle with the algorithms FS, FDS, and BA* with HH.

Coverage Expansions (avg) Cost (avg) Average Time (seconds)

BA* with HH 100% 23,540 55.01 0.64

FS (h nn) 83% 10,414 54.57 >100

FDS (best) 100% 1478 55.47 >10

FDS (rank) 100% 6542 55.45 >10

6. Conclusions

In this paper, we proposed a bidirectional A* (BA*) search algorithm with three
heuristics, WD, LC, and MD, where the heuristics are combined in a way that guides
the algorithm efficiently toward the solution and expands fewer states. It is clear that
our implementation of the BA* algorithm does not find the optimal solution for most of
the Fifteen Puzzle problem instances, but the solutions are very close to optimal length.
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Additionally, we proved, using empirical evidence, that the BA* heuristic search algorithm
is more efficient than the UA* heuristic search algorithm in terms of state expansions.

Accordingly, designing a heuristic function to accurately choose the next state while
exploring the space is challenging due to the huge size of the Fifteen Puzzle; it has 1013 states.
To evaluate the performance and efficiency of HH with the BA* algorithm, we made some
comparisons, especially in terms of optimality and space complexity. We showed that HH
with the BA* algorithm produces acceptable results and hugely reduces the search space.

In future work, hybridizing heuristic (HH) should be used to increase the effectiveness
of metaheuristic algorithms in solving the Fifteen Puzzle, since HH requires a very small
amount of space, and it is effective for estimating the complexity of puzzle problems.
Therefore, we recommend using the novel metaheuristic algorithms such as FDO [60],
LPB [61], and ANA [62] for the Fifteen Puzzle instead of the ABC algorithm, since these
metaheuristic algorithms work toward optimality.

However, there are some limitations of the algorithm proposed in this paper that need
to be considered. First, overestimating the actual path cost from the current state to the
goal state for some of the Fifteen Puzzle instances, as s shown in the last column in Table 6,
leads to non-optimal solutions. Future work can focus on reducing the overestimation,
which is somewhat small. Second, all the states generated by the proposed algorithm while
traversing are stored in memory and some of them are highly likely not to be expanded.
It would be helpful to specify those states that will never be expanded and discard them
to reduce memory consumption. Third, in this paper, we have not tried to speed up the
heuristics (except for WD, but there can be other ways to further increase the speed of
this heuristic calculation value). However, each one of the heuristics that is used in this
paper can be speeded up. In future work, to decrease the time complexity, the number of
generated nodes and the time taken to calculate the heuristic per node must be reduced.
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