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Abstract: This paper introduces Tensor-Organized Memory (TOM), a novel neuromorphic archi-
tecture inspired by the human brain’s structural and functional principles. Utilizing spike-timing-
dependent plasticity (STDP) and Hebbian rules, TOM exhibits cognitive behaviors similar to the
human brain. Compared to conventional architectures using a simplified leaky integrate-and-fire
(LIF) neuron model, TOM showcases robust performance, even in noisy conditions. TOM’s adapt-
ability and unique organizational structure, rooted in the Columnar-Organized Memory (COM)
framework, position it as a transformative digital memory processing solution. Innovative neural
architecture, advanced recognition mechanisms, and integration of synaptic plasticity rules enhance
TOM’s cognitive capabilities. We have compared the TOM architecture with a conventional floating-
point architecture, using a simplified LIF neuron model. We also implemented tests with varying
noise levels and partially erased messages to evaluate its robustness. Despite the slight degrada-
tion in performance with noisy messages beyond 30%, the TOM architecture exhibited appreciable
performance under less-than-ideal conditions. This exploration into the TOM architecture reveals
its potential as a framework for future neuromorphic systems. This study lays the groundwork
for future applications in implementing neuromorphic chips for high-performance intelligent edge
devices, thereby revolutionizing industries and enhancing user experiences within the power of
artificial intelligence.

Keywords: neuromorphic engineering; Tensor-Organized Memory (TOM); spike-timing-dependent
plasticity (STDP); Hebbian rules; leaky integrate-and-fire (LIF) neuron model; spiking neural
networks; memory storage and retrieval; noise tolerance; neuromorphic systems; intelligent systems

1. Introduction

In addition to the advancements in artificial intelligence and hardware technologies,
the field of neuromorphic engineering presents a promising avenue for unlocking the full
potential of brain-inspired architecture chips. By leveraging insights from neurobiology
and replicating the brain’s structure and organization in artificial systems, neuromorphic
engineering enables the development of novel computing architectures capable of running
spiking neural networks and achieving cognitive behaviors. By combining the power of
AI algorithms and high-performance hardware with brain-inspired architectures, organi-
zations can revolutionize industries and transform the way we live, work, and connect in
the context of artificial intelligence. Furthermore, the brain’s efficiency, characterized by
sparse coding, analog computation, and spike-based communication, can be harnessed in
neuromorphic systems, allowing for improved resource management, realistic interactions,
and seamless user experiences in digital twin applications and the metaverse. Moreover,
the capacity of associative memory, a crucial cognitive function of the brain, enables in-
dividuals to establish connections and draw inferences, facilitating the development of
intelligent systems within the digital twin and metaverse realms [1–3].
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Within the metaverse, innovations such as the octonion-based nonlinear echo state
network elevate speech emotion recognition and user experiences [4]. Beyond emotion
recognition, the metaverse’s transformative impact extends to medical diagnosis. Employ-
ing deep learning algorithms for digital twinning of dental issues creates virtual facilities
and medical services, fortified by blockchain integration [5]. These examples showcase how
neuromorphic engineering and machine learning fuel the metaverse’s evolution, shaping
interconnected industries and elevating user experiences.

Recently, the implementation of the metaverse on clouds has encountered challenges
related to long latency, security concerns, and centralized infrastructures. To address these
issues, designing scalable metaverse platforms on the edge layer has emerged as a practical
solution. However, the realization of edge-powered metaverse ecosystems depends heavily
on high-performance intelligent edge devices. Neuromorphic engineering, which employs
brain-inspired cognitive architectures to implement neuromorphic chips and tiny machine
learning (TinyML) technologies, holds promise in enhancing edge devices for such emerg-
ing ecosystems. In this context, a super-efficient TinyML processor specifically designed
for use in edge-enabled metaverse platforms has been developed and evaluated [6]. The
processor incorporates a winner-take-all (WTA) circuit, implemented through a simplified
leaky integrate-and-fire (LIF) neuron on an FPGA. The WTA architecture draws inspiration
from the mini-column structure in the human brain, showcasing the potential of neuro-
morphic principles in edge devices. By employing the simplified LIF neuron, the resource
consumption of the WTA architecture is significantly reduced, making it highly suitable for
the proposed edge devices.

Neuromorphic engineering is a rapidly growing field that combines multiple disci-
plines to replicate the complex structure and organization of the brain in artificial systems. It
utilizes insights from neurobiology to create integrated circuits that mimic the function and
structure of biological nervous systems [7]. By imitating the brain’s functional and struc-
tural features, neuromorphic engineering opens up exciting possibilities for developing
novel computing architectures capable of running spiking neural networks and achiev-
ing cognitive behaviors [8]. The brain maintains its efficiency through various methods,
including sparse coding, analog computation, and a spike-based communication system.
Additionally, its ability to perform tasks in parallel and its adaptability contribute to its
effectiveness in overcoming noise-related issues. In this regard, neuromorphic systems
facilitate the accessibility to brain-inspired architectures on a chip [9]. Associative mem-
ory, a crucial cognitive function of the brain, involves the capacity to learn and recall the
connections between different elements. It allows individuals to unconsciously establish
associations and draw inferences from diverse experiences or occurrences.

Several neural associative memory models and structures have been developed, in-
cluding the Hopfield neural network (HNN) [10] and the bidirectional associative memory
(BAM) [11]. These architectures serve as fundamental associative memory systems and
utilize binary neurons in their implementation. Nonetheless, the existing architectures men-
tioned above face limitations in terms of storage capacity. To address this, the clique-based
neural network (CBNN) [12] has emerged as an alternative solution, capable of efficiently
storing a significant amount of binary data using binary synapses and neurons. More-
over, recently introduced spiking associative memory architectures have demonstrated
substantial advancements in terms of both storage capacity and reliable retrieval of stored
information, outperforming HNN, BAM, and CBNN in these aspects [10–15].

Spiking neurons are fundamental units of computation in the brain that enable the
transmission and processing of information through electrical impulses called spikes [16].
These spiking neurons generate action potentials, or spikes, in response to specific stimuli
or inputs. These spikes are characteristic of neurons and play a crucial role in how the
brain functions. The firing dynamics of spiking neurons have been the subject of extensive
research, and various computational models have been developed to explain their behavior.
One of the best-known computational models for spiking neurons is the Hodgkin–Huxley
model. The Hodgkin–Huxley model is a mathematical representation that describes the
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firing dynamics of spiking neurons. It takes into account various biophysical properties of
neurons, such as the voltage-dependent conductance of ion channels [17]. The Hodgkin–
Huxley model is widely used because it accurately captures the complex dynamics of
spiking neurons and provides insights into how different factors, such as ion channel
conductance, influence the generation and propagation of action potentials [18].

The LIF model is another important computational model used to describe the behav-
ior of spiking neurons. It is a simpler model compared to the Hodgkin–Huxley model but
still captures essential characteristics of spiking neurons. The LIF neuron model assumes
that the membrane potential of a neuron integrates inputs from other neurons and external
stimuli over time [19]. Once the membrane potential reaches a certain threshold, the neuron
generates an action potential or spike. The LIF neuron model considers the leakage of
current across the neuronal membrane, which causes the membrane potential to decay
over time. This model is popular in computational neuroscience due to its simplicity and
computational effectiveness.

In this paper, a new neuromorphic architecture called TOM is presented. The proposed
architecture is compared to a conventional floating-point architecture to facilitate a compar-
ative analysis. To implement the WTA modules, a simplified LIF neuron model is utilized as
the core component [14,15]. To classify input patterns, the system employs multiple spiking
WTA neural networks, where N is greater than 1. Each individual WTA module identi-
fies the most stimulated neuron as the winner, subsequently eliciting spikes. The WTA’s
inherent feature facilitates the incorporation of sparse coding methodologies, wherein
only a limited subset of neurons is collectively activated within the COM system [13]. The
utilization of sparse coding in the COM architecture makes it well-suited for storing a vast
amount of data. Furthermore, the interconnection of WTA modules through lateral excitatory
synapses enhances the robust retrieval of stored information. The unique characteristics of the
COM architecture position it as an ideal candidate for integration into a neuromorphic system,
allowing it to leverage its distinctive attributes for effective implementation. The essential
aspects of our study can be summarized in the following manner:

• TOM Framework: Innovative architecture inspired by COM for efficient digital device
implementation.

• Innovative Neural Architecture: Introduction of DLBS architecture enhancing TOM
efficiency.

• Advanced Recognition Mechanism: XNOR gate utilization for improved pattern
recognition.

• Detailed Test and Evaluation: Comprehensive testing under varying conditions,
including high noise and message erasure.

• Integration of Synaptic Plasticity Rules: Incorporation of STDP and Hebbian rules
for enhanced cognitive capabilities.

2. Background and Motivation

The proposed features of the COM architecture have been previously discussed in [13].
Nonetheless, this paper provides a comprehensive review of the principles underlying the
implementation of the COM architecture, including the concepts of message memory and
message retrieval. Columnar-organized memory is a theoretical framework that proposes
an organizational structure for neural networks or brain regions involved in memory pro-
cessing. This organizational structure is inspired by the columnar organization observed in
certain regions of the brain, such as the neocortex [20]. In the columnar-organized memory
framework, neural networks or brain regions are organized into columns, which are vertical
arrangements of neurons with similar functional properties. These columns are believed to
play a crucial role in the storage and retrieval of information, as well as the formation of
associations between different elements of memory. Figure 1 illustrates the structure of
COM, consisting of multiple spiking WTA modules interconnected by lateral excitatory
synapses. A WTA module comprises three distinct components: an input layer, an output
layer, and lateral inhibitory connections that interconnect the output neurons via a reset sig-
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nal. The synaptic connections create a neural link connecting the neurons of the input layer
to those in the output layer of the WTA module. The output layer comprises a collection
of LIF neurons that are interconnected through inhibitory connections. Furthermore, the
separate WTA modules are interconnected by means of lateral excitatory synapses. During
the message memory process, modifications occur in the weight values of the synaptic
connections that transmit signals from the input to the output layers of a WTA module.
Additionally, adjustments are made to the lateral excitatory synapses.
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Figure 1. The architecture of the COM architecture [13] comprising the WTA modules. The blue lines
show the inhibitory connections, and the red lines indicate the excitatory connections between WTA
modules.

Sections 2.1 and 2.2 delve into detailed discussions on message memory and message
retrieval, respectively, providing comprehensive insights into these aspects.

2.1. Message Memory

The message M comprises a 2D array consisting of N pattern vectors (M = {p1, p2, p3,
. . ., pN.}). Each pattern p is a binary vector of length l, where the elements range from 0 to 1
(p = [x1, x2, x3, . . ., xl]). The number of pattern vectors N in the message matrix corresponds
to the number of WTA modules in the COM architecture. (Pattern p is the specific vector
associated with the ith WTA module, denoted as WTAi.) Additionally, the length of the
pattern l is established by considering the quantity of input neurons in the WTA’s input
layer (refer to Figure 1). The message memory process in the COM architecture comprises
two key steps, pattern storage and pattern association. During the pattern storage step,
each WTA module is trained using a pattern set consisting of N patterns (N corresponds to
the number of WTA modules). In Figure 2, three pattern sets (P1, P2, P3) are utilized to train
their respective WTA modules (WTA1,WTA2, WTA3). Each output neuron nk of a WTA
module is trained with its corresponding pattern pk from the pattern set P. Concerning this,
an STDP training algorithm is used to train the synaptic weights matrix of a WTA neural
network. The STDP rule is a training algorithm that adjusts synaptic weights W based on
the given patterns p in a spiking WTA [21]. The weight adjustment ∆w is determined by
the disparity between the spike times of the presynaptic and postsynaptic neurons [22].
The core equation of the STDP rule can be expressed as follows:

∆w =

{
θ+e−∆t/τ+ i f ∆t > 0
−θ−e∆t/τ− i f ∆t < 0,

(1)

where ∆t represents the temporal gap between the occurrence of presynaptic and postsy-
naptic spikes (∆t = tpost − tpre). The parameters of θ+ and θ− correspond to the upper
and lower limits of ∆w, while τ+ and τ− represent constants values. After the training
procedure, the final synaptic weights matrix of the WTA is analogous to the input pat-
terns. During the pattern association step, the COM structure stores each M message by
establishing connections through the intraneuronal excitatory connections. In order to
preserve a message matrix M = {p1, p2, p3, . . ., pN}, the output neuron associated with
a learned pattern in a WTA module (denoted as p ∈ M) is connected to another output
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neuron of a distinct WTA module representing a different pattern (denoted as pk 6= i ∈
M) via the lateral excitatory synapses [6]. The COM structure stores two hypothetical
messages (m1 and m2), as depicted in Figure 2. In this scenario, the neurons representing
the patterns of message m1 are interconnected through lateral excitatory synapses, thereby
establishing associations among them. Additionally, message m2 has been appropriately
stored, resulting in the formation of a clique. A clique refers to a group of N neurons, where
each neuron corresponds to a specific trained WTA. Figure 2 depicts two groups of neurons
represented as cliques which consist of c1 = {A, b, δ} and c2 = {C, a, β}.
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Figure 2. The storage and retrieval process of messages in a TOM architecture with three incorporated
WTA networks. First, three sets of patterns are employed to train the corresponding WTA modules.
The TOM structure stores two messages, M1 and M2, by adapting the lateral excitatory connections.
The retrieval mechanism of the message M1 is achieved by applying a designated pattern, referred to
as m′, to the TOM.

2.2. Message Retrieval Process

During the process of message retrieval, the reactivation of a specific group is triggered
to recall a stored message mi. Essentially, the output neurons of WTA modules within a
clique possess inherent memory of recently learned patterns and their associations [21].
Each winning neuron represents a stored message m that closely resembles the input
message m’.

Figure 2 shows how COM recovers a hypothetical partially erased message m’ through
the message retrieval process and produces spikes. Subsequently, the winning neuron A
transmits these spike signals through the excitatory connections to other neurons within
the clique c = {A, b, δ}. This indicates that the activation of the neuron A leads to the
activation of the corresponding neurons b and δ. The set of activated neurons (A, b, and δ)
shows our original message (m1) before it was erased, which closely resembles the message
m′(Figure 3).
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3. Implementation Method

In this section, the hardware architecture of TOM is presented, which consists of three
design levels. In Level I, we introduce an optimized LIF neuron model and compare it
with a floating-point neuron architecture. In Level II, we propose and implement a WTA
architecture. Lastly, in the final level, we develop the TOM hardware architecture, utilizing
the WTA modules and excitatory synaptic connections.

3.1. Level I: LIF Neuron Hardware Architecture

At the first level, a neuron architecture is designed which has been optimized for imple-
menting on FPGA. The Euler method has been used in order to simplify Equation (1) [14]:

u[n] =
(

τm

τm + 1

)
u[n− 1] +

R
τm + 1

× I[n] (2)

Let us assume
(

τm
τm+1

)
= α, and R

τm+1 = β. Equation (2) can be written as follows:

u[n] = αu[n− 1] + βI[n], 0 <|α|≤ 1 (3)

where α depends on τ. The term β determines the amplitude of the neuron input. In
frequency-domain space, Equation (3) is shown as follows:

u[z] = αz−1u[z] + βI[z]
i f I[n] = δ[n] then H[z] = β

1−αz−1 z
(4)

where H[z] indicates the impulse response function of the LIF neuron. By using inverse
Z-Transform, h[n] is defined as

H[z] =
β

1− αz−1
z−1
↔ h[n] = βαnu[n] (5)
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Let us assume the step function as the input of neurons which is derived by corre-
sponding pixels in the input pattern (more information discussed at Section 4):

H[z] · u[z] = β

1−αz−1 × 1
1−z−1

s[n] = β 1−αn+1

1−α · u[n]
(6)

Consequently, the condition for choosing the threshold voltage in respect of maximum
neuron membrane potential is

y(+∞) =
β

1− α
, n > 0 (7)

By analyzing Equation (7), the maximum required bits to show membrane potential
can be determined. This equation consists of two parts, which are A = β

1−α and B = αn+1. If
it is possible to rewrite terms A and B as a multiple of 2, then:

A = 2m, B = 2−a(n+1), m, a ∈ {Z} > 0 (8)

Now Equation (8) can be rewritten as follows:

s[n] = 2m, B = 2−α(n+1) (9)

Since m and a are positive integer numbers, and Equation (3) is a monotonically
increasing function, to represent the difference between these two terms one N-bit register
is needed, in which N is α(nmax + 1). nmax is the time when a spike occurs that is determined
as follows:

s[n] = β
1− αn+1

1− α
≥ γ, n > 0 (10)

logα

[
1− γ

1− α

β

]
− 1 ≥ nmax (11)

where γ is the neuron spiking threshold. Figure 4 shows the neuron step response, which
is implemented using a single shift register. Figure 5 represents the architecture of a
single neuron unit. The neuron hardware utilizes only two flip-flops and one LUT that is
extremely optimized and appropriate to implement on FPGAs.
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Figure 5. A single neuron hardware architecture. P and W represent the input pattern and corre-
sponding weight matrix, respectively.

3.2. Level II: WTA Hardware Architecture

At the second level, a WTA module architecture is implemented. The introduced
LIF neuron at level 1 is dedicated to developing the first layer of the WTA. Additionally,
a new floating-point LIF neuron is represented to utilize in the second layer in order to
increase the accuracy of the WTA module. In order to implement the floating-point neuron,
two multipliers, one accumulator, one register, and one comparator unit are needed. By
dividing both sides of Equation (3) the number of multiplies can potentially be reduced
to one:

u[n]
β

=
α

β
u[n− 1] + I[n] (12)

By defining u[n]
β as unew[n] and α

β = η, the new form of Equation (12) leads to the
following result:

unew[n] = η·u[n− 1] + I[n], 0 <|η|≤ 1 (13)

By choosing γnew = γ
β and considering Equation (11), Equation (13) has the same

behavior and response as Equation (3), but the implementation of this new scaled equation
only needs one multiplier. This technique has reduced the number of the required multi-
pliers by a factor of two. The hardware architecture for the floating-point LIF neuron is
represented in Figure 6.
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Figure 6. Hardware architecture of the floating-point LIF neuron. The inhibitory connection block
shows how the winner neuron resets other neurons at the output layer. The z−2 term compensates
latency because of the comparator unit.

The WTA consists of two layers. The first layer utilizes 25 neurons to receive inputs.
The second layer performs as a classifier. This module is trained through the pattern storage
process. The outputs of neurons for the second layer are connected to each other through
inhibitory synaptic connections. The winner neuron resets other neurons’ membrane poten-
tial using a reset connection. The STDP learning algorithm is used to train WTA. It performs
in software by using the off-chip method. The synaptic weights matrix between these two
layers is fed to the network manually. Figure 7 shows the structure of a WTA module.
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Figure 7. The architecture of the proposed WTA neural network. Each class is trained through the
pattern storage procedure, which has been discussed in Section 2.

3.3. Level III: TOM Hardware Architecture

The hardware implementation of the LIF neuron and WTA module has been intro-
duced at the first and second levels of design. Our methodology involves the utilization
of the ex situ method to store a single message in the TOM structure. By implementing
the STDP algorithm in software, we calculate the feedforward synaptic weight vector that
establishes connections between the two layers of the WTA module. The retrieval of an
erased message in the COM structure is primarily facilitated by the excitatory connections.
To serve as an excitatory connection in TOM, we propose a multi-input OR gate. The
architecture of TOM is illustrated in Figure 8.
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how COM operates to retrieve an erased message.

Each message consists of a combination of patterns. In order to retrieve a correct set of
patterns which relate together to form a message, these patterns should connect together
through the message retrieval process. Therefore, an OR gate connects each set of patterns
together to activate each other through this route. For example, let us consider the m1
message which is shown in Figure 3. If an erased message like m′ fed to the network, then,
to retrieve this message an OR gate should be organized to connect each class of message
m1 together. Consequently, each pattern of the erased message can restore the rest of its
associated patterns only by using an OR gate.
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3.4. A Novel COM Architecture Based on Digital Logic

In this section, a novel architecture which is named digital-logic-based system (DLBS)
is introduced. This is an effort to implement an efficient TOM architecture by using previous
experiences. The throughput and latency of the proposed hardware structure are extremely
improved. Let us take a closer look at the defining equation of the LIF neuron model:

spike1[n] = (pi·wi)·∑+∞
k=0 δ[n− kN1] (14)

where spike1[n] shows the spike times of the input layer, and N1 = nmax + 1, respectively.
(pi·wi) shows the AND operation of input with the first synaptic weight matrix. Consid-
ering x[n]2 as the output of the first layer and input of the second layer interchangeably,
we obtain:

x2[n] = ∑+∞
k=0 ∑n1−1

i=0 (p1,i·W1,i·W2,i)·δ[n− KN1] (15)

where p1,i is the input of the first layer and W1,i, W2,i determine the first and second layers’
corresponding synaptic weights. n1 shows the number of neurons at the input layer. The
intensity and amplitude of the total white pixels in our pattern are determined by S1,j
as follows:

S1,j = ∑n1−1
i=0 (p1,i·W1,i·W2,i) (16)

By convolving the impulse response of the LIF neuron model Equation (5) with
Equation (15), we obtain:

y2[n] = β2αn
2 u ∗ S1,j∑+∞

k=0 δ[n− KN1] (17)

y2[n] = β2S1,j
αn

2 − α−N1
2

1− α−N1
2

≥ γ, 0 < α2 < 1 (18)

Once again, γ determines the threshold value of the neurons. Utilizing Equation (18)
to determine nmax leads to the following result:

nmax = N2 − 1 ≤ logα2

γ2

(
1− αN1

2

)
β2S2

+ α−N1
2

 (19)

The obtained Equation (19) illustrates that the output neuron of the second layer is an
impulse train with nmax period. The derivative of this equation with regards to the S2 is:

∂N2

∂S2
=

−β2γ2

(
1− α−N1

2

)
β2γ2S2

(
1− α−N1

2

)
+ α−N1

2 β2S2

(20)

Equation (20) shows that the spike frequency of the output neurons directly relates to
the amplitude of the S term. Consequently, S2 can be used as a hyperparameter to recognize
the winner neuron in WTA. In the previous architecture, the AND gate is utilized to
recognize white pixels in patterns and ignore black pixels. This means that the black pixels
do not participate in the process of recognizing a particular pattern. In this architecture,
the input patterns and synaptic weights of the first layer are passed through an XNOR
gate. XNOR gates have the ability to distinguish the white pixels from black pixels in
the patterns. Therefore, to recognize a pattern, not only is the location of its white pixels
essential, but also black pixels are not ignored and take part in the recognition process. This
method enhances network accuracy by a factor of two. The high-level diagram of this new
architecture is shown in Figure 9.
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Figure 9. The high-level diagram of the novel architecture.

4. Test Procedure

To evaluate the effectiveness of the proposed columnar-organized memory architec-
ture, a test procedure can be implemented. It is essential to note that our dataset has been
generated using Python code, and Gaussian noise has been applied to it using our custom
script developed in Python. Furthermore, the message retrieval process is also conducted
in Python to validate the accuracy, F1-score, and loss of our proposed models. The test pro-
cedure involves several steps. First, a dataset is prepared that includes a variety of inputs
and corresponding desired outputs. The inputs can represent different types of information
or stimuli, and the desired outputs can be the expected responses or actions associated
with those inputs. The prepared dataset is then used to train the TOM architecture. This
training process involves adjusting the synaptic weights and parameters of the spiking
neurons in order to optimize the performance of the architecture for storing and retrieving
information.

Once the training process is complete, the effectiveness of the architecture can be
evaluated through testing. During the testing phase, various inputs are presented to the
columnar-organized memory architecture and the corresponding outputs or responses
generated by the architecture are compared to the desired outputs. This allows for an
assessment of the accuracy and reliability of the memory storage and retrieval processes
within the columnar-organized memory architecture. Our dataset consists of 25 English
alphabets and it is used to train our WTA modules. Each module consists of a combination
of four alphabets to test TOM architecture. Our test procedure is divided into two parts.
First, one of the combinations is missing and we use the TOM architecture to retrieve the
original message. In the second part of the test, each message has two random elements lost
in their architecture. Each test procedure iterates for 100 epochs in each module (Figure 10).
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The process of adding noise is as follows: a Gaussian grayscale noise has been added
to the dataset with a percentage between 0% and 50%. Each message in two separated
parts has some lost element as shown in Figure 11. The loss effect can show the power of
reconstruction of a TOM architecture inspired by COM.
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which is transmitted into the TOM module as the input.

5. Results and Discussion

In this section, we present the simulation outcomes and engage in a comprehensive
discussion regarding them. The TOM architecture incorporates the principles of STDP, a
fundamental mechanism of synaptic plasticity in neural systems, as well as Hebbian rules.
The STDP influences synaptic strength based on the precise timing of neuronal spikes.
When a presynaptic neuron fires before a postsynaptic neuron, the synaptic connection
between them is potentiated, while firing shortly after weakens the connection. Hebbian
rules reinforce synaptic connections when the presynaptic and postsynaptic neurons are
active simultaneously, promoting the formation of functional circuits.

By incorporating STDP and Hebbian rules into the training process of the TOM archi-
tecture, the system can adapt and refine its synaptic connections based on the precise timing
and correlation of neuronal activity. This enables the TOM architecture to learn and encode
information efficiently, facilitating the categorization and processing of input patterns.

These rules are used to calculate the synaptic weights, which determine the strength
or efficacy of synapses. After the weights are calculated, they are loaded into the TOM
registers. In this case, the synaptic weights determined by STDP and Hebbian rules are
calculated and saved into the weight registers, allowing the TOM architecture to learn and
adapt accordingly. As a result, the TOM architecture is prepared to effectively handle and
retrieve messages.

The simulation results validated the successful implementation and proficient op-
eration of the proposed TOM architecture throughout all design stages, including the
proposed neuron, WTA module, and the overall TOM system. When subjected to message
retrieval tasks using noise levels ranging from 0% to 30% and partially erased messages,
the average message retrieval rates for the simulations were approximately 0.9 and 0.8,
respectively. This result demonstrates the robustness of the TOM architecture and its ability
to perform adequately under less-than-ideal conditions. However, the retrieval process of
noisy messages with more than 30% noise, as well as partially erased messages, did show
some degradation in performance (as shown in Figure 12).



Computers 2023, 12, 189 13 of 16Computers 2023, 12, x FOR PEER REVIEW 13 of 16 
 

 

Figure 12. The result of the comparison between WTA and TOM architecture in terms of message loss
and retrieval of the original message. Each test is divided into two parts. One set of results concerns
the “Novel” architecture and the other one the “Normal” architecture. The F1-score and loss have
been estimated using our observed value for the accuracy part in different tests. (In order to have
smoother plots, a moving average filter has been applied to the F1-score and loss estimation plot).



Computers 2023, 12, 189 14 of 16

Our experiments in three different test settings with different levels of noise on the
TOM show that both the “Novel” and “Normal” designs perform better than the WTA
module. The F1-score helps us evaluate the balance between precision and recall in classifi-
cation tasks, while the loss metric quantifies the disparity between predicted outputs and
actual target values, giving us valuable insights into overall predictive accuracy. These ob-
servations are especially significant in high-noise scenarios, where our architecture shows a
substantial improvement. Moreover, our message retrieval capability remains robust even
when a portion of the pattern is lost.

The suggested designs for the TOM neural network encompass both conventional
and innovative neural network architectures, and they are entirely novel. There is no prior
record of these approaches being put into practice within digital systems. Consequently,
there is no existing implementation that qualifies for a comparison with our own, either
in terms of functionality or performance. This implementation paves the way for a new
era in the development of neurological systems on digital platforms, such as FPGA. This
advancement holds significant potential for the implementation of neuromorphic and
spiking neural network architectures, drawing inspiration from neuroscience and the
human brain.

As mentioned earlier, both the “Novel” and “Normal” architectures outperform the
WTA module. To compare these two architectures, we’ve included Figure 13. As can be
seen in the plots, the “Novel” architecture continues to outperform, enhancing our TOM
implementation concept further. When we compare them using metrics like the F1-score
and loss, the “Novel” architecture consistently performs better, and it also has the potential
to use fewer digital resources in its implementation, For instance, by the results obtained
from a single test case where no messages of the pattern have been erased it can inferred
that the Novel architecture perform drastically better in different scenarios compare to the
Normal architecture. The introduction of this Novel architecture improves the represented
TOM architecture and make it applicable to utilize in digital systems (Figure 13).
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Figure 13. (a) illustrates the F1-score estimation comparison of the “Normal” and “Novel” architec-
tures on the chart. (b) shows the loss estimation comparison of these two architectures in the same
scenario which is “No message erased”. (Please consider that, in this analysis, we have used the
moving average technique on the result obtained as accuracy to estimate the f1-score and loss).

6. Conclusions

This research provides a promising glimpse into the future of neuromorphic engineer-
ing. We have delved into the potential of the TOM architecture, observing how remarkably
it integrates neural and synaptic principles. Our simulation results are compelling, showing
the TOM framework’s resilience under less-than-optimal conditions and demonstrating
its ability to adapt and optimize message retrieval, even in noisy environments. Although
performance degradation was observed under noise levels exceeding 30% or with partially
erased messages, we anticipate that further refinement of the TOM architecture may miti-
gate these limitations. This study has shed light on the critical role that STDP and Hebbian
learning principles, and also our proposed retrieval architecture play in neuromorphic
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computing, guiding the way for future advancements in this field. As we strive to repli-
cate brain-like functionalities in artificial systems, the application of the TOM architecture
in neuromorphic chips for intelligent edge devices holds significant promise. There are
exciting implications for the ever-evolving metaverse, suggesting new opportunities for
high-performance computation and authentic user experiences that this architecture could
foster in the near future. Our research represents a pioneering step toward advancing
neurological systems on digital platforms, such as FPGA, with potential applications in
neuromorphic and spiking neural network architectures inspired by neuroscience and the
human brain. Further exploration and research into the TOM architecture will continue to
shape the future of neuromorphic engineering.
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