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Abstract: Artificial intelligence and machine learning have become a necessary part of modern living
along with the increased adoption of new computational devices. Because machine learning and
artificial intelligence can detect malware better than traditional signature detection, the development
of new and novel malware aiming to bypass detection has caused a challenge where models may
experience concept drift. However, as new malware samples appear, the detection performance drops.
Our work aims to discuss the performance degradation of machine learning-based malware detectors
with time, also called concept drift. To achieve this goal, we develop a Python-based framework,
namely Rapidrift, capable of analysing the concept drift at a more granular level. We also created
two new malware datasets, TRITIUM and INFRENO, from different sources and threat profiles to
conduct a deeper analysis of the concept drift problem. To test the effectiveness of Rapidrift, various
fundamental methods that could reduce the effects of concept drift were experimentally explored.

Keywords: malware; machine learning; PE malware; Rapidrift; inferno; tritium; windows malware;
malware dataset

1. Introduction

The increased adoption of Internet of Things (IoT) devices and the introduction of
artificial intelligence (AI) to people’s everyday lives has created an unbreakable bond. Ma-
chine learning (ML) solutions are continuously being integrated into devices and software
solutions, making them more popular than they have ever been in the past. However, this
increased attention has also attracted malicious parties who take advantage of the existing
threat landscape to serve their cause. Computational infrastructures around the globe are
susceptible to attacks. Recently, a cyber-attack on a major Yorkshire Coast Company has
been thwarted by officers from North Yorkshire Police [1], while a cyber-attack has hit
twelve Norwegian government ministries [2].

Malicious applications or malware have become popular with new technological
artefacts, frameworks, and applications. Malware is a class of programs developed and
propagated to gain illicit access to systems, exfiltrate information, and perform other
tasks without the user’s consent. The delivery of payloads could occur through various
techniques such as VBA, APK files, PE files, HTA files, PDF, and others. Moreover, some
malware uses uncommon file types to attack [3].

The increasing variety of methods to deliver malicious payloads makes it harder
to prepare datasets for training machine learning/deep learning models. The difference
in feature representation is the reason behind such limitations. For instance, features
used in Windows malware cannot be applied to Android or PDF-based malware. Such
inconsistencies require the development of different datasets for each use case.

In the malware threat landscape, it is common for classifiers to degrade with time as
new malware samples emerge. This phenomenon is called concept drift and is a commonly
observed problem in malware detection. The development of malware that takes advantage
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of new weaknesses or targets a particular demography of users demands updating the
model with new data, retraining the model, or training new models with the latest malware
samples. Since 2017, more benchmark malware datasets have been released to aid machine
learning-based malware detection research. These datasets were evaluated using different
methods and constraints.

Presumably, each dataset contains malware from various threat actors from different
timelines (with some common malware families too). One of the critical issues in this
domain is that data distribution varies rapidly, and there needs to be a standardised
method to tackle or retain acceptable detection rates with time. Additionally, various types
of biases affect the quality of experiments and produce impressive results in unrealistic
configurations. Current research provides broader solutions, such as those [4], to improve
detection against multiple malware types not restricted to Windows PE files. However,
testing these solutions without extensive experimentation for each malware domain is
complex due to different feature sets being used for every file type. Some feature sets
might better represent the maliciousness of the file better than the other. The diverse
variety of malware combined with its rapidly evolving nature is a challenge for machine
learning-based malware detection.

In the scope of our work, fundamental methods used in machine learning solutions
to improve classification quality are suggested and evaluated. We focus on Windows-
based PE malware and how traditional threat intelligence could enhance machine learning
approaches.

The contributions of our work can be summarised as follows:

1. We develop a Python-based framework to rapidly evaluate and build malware classi-
fiers and analyse concept drift at a more granular level, namely Rapidrift.

2. We introduce two new novel malware datasets, TRITIUM, which is based on real-
world data and INFERNO, which was developed with popular cybersecurity tools
that allow the creation/modification of malicious payloads.

3. We experimentally evaluate the effectiveness of our methods using the framework
and discuss the outcomes.

The rest of the paper is structured as follows. Section 2 briefly describes the related
work in machine learning and malware detection, while Section 3 details our methodologi-
cal approach. Section 4 explains the dataset creation while presenting our experimental
design. Section 5 discusses the outcomes of our experiments, while Section 6 concludes
while providing some pointers for future work.

2. Related Work

Various research has addressed the application of machine learning for malware
classification problems. Multiple components constitute a machine learning solution, each
tuned to achieve a specific objective. These components are discussed in the context of
malware classification.

2.1. Classification Objectives

For a given machine learning-based malware classifier, there are primarily two ob-
jectives: binary classification and multi-class classification. Binary classification is the
ability of the classifier to predict if a given binary is malware or benign. On the other hand,
multi-class classification aims to classify malware into various categories, such as worms,
ransomware, trojan, and others. However, the classification objective of this study would
be binary classification.

In a multi-class approach, many classes would directly contribute to increased mis-
classification. Ref. [5] supports this with a slightly higher accuracy score for binary classifi-
cation than multi-class. Moreover, the Blue Hexagon Open Dataset for Malware Analysis
(BODMAS) [6] discusses the same problem and how it magnifies when introducing novel
samples. The same study observed performance degradation with unseen malware families
in an “open world” scenario.
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2.2. Static and Dynamic Features

Malware features can be classified into static and dynamic features. Static features can
be extracted without executing the PE file, while dynamic features can only be retrieved by
observing the behaviour of the PE after execution. A few examples of both feature types
are shown in Table 1.

Table 1. Static and dynamic features.

Static Features Dynamic Features

Histograms API calls
Byte Entropy Registry modifications

Strings DNS queries
File size URLs accessed

PE Headers Files modified
DLL Imports

From a machine learning perspective, it would be ideal to have easily extractable
feature vectors and, at the same time, to better represent the malware sample through them.
A study [7] concluded that the accuracy of static malware analysis (99.36%) is slightly
higher than that of a dynamic malware analysis (94.64%). However, a specific combination
of both feature sets might improve accuracy. Extracting dynamic features is expensive in
terms of time and computing resources [6]. In addition, the behaviour of malware, i.e.,
dynamic features, cannot be documented entirely for several reasons and be extracted by
following standardised and straightforward methods. Malicious programs have evolved to
limit their activity when they detect the presence of sandbox or virtual machines [7]. Ref. [8]
discusses how malware does not consistently exhibit malicious behaviour. A common
observation here is the unpredictable behaviour of malware that might make dynamic
analysis methods less practical to be used as a feature set.

For the same reason, most existing PE datasets, including BODMAS, could be limited
to static features. Unlike the Microsoft malware classification challenge and EMBER [9]
datasets, BODMAS contains the original PE files and feature vectors. The availability of
the original PE files could be helpful in further research that might involve newer feature
selection/extraction methods or for possible breakthroughs in dynamic analysis.

2.3. Feature Selection and Extraction

Engineering a feature vector to represent and better differentiate between a malicious
and a benign binary is a different problem. A few studies [10–13] have addressed this by
evaluating other feature selection methods for malware. However, it would be convenient
to follow the same feature vector throughout different datasets for a fair comparison of
results. In this study, the feature vector used in the EMBER dataset was used consistently
for all the experiments. The study associated with EMBER has provided the code for feature
extraction from raw PE binaries. Other datasets, such as SOREL and BODMAS, released
after EMBER, follow the same feature format. The new datasets introduced in this study
were also consistent with the EMBER feature vector for fair experimentation.

2.4. Dataset Comparison

The quality of the dataset plays a crucial role in feature selection. A good feature set
would improve accuracy and reduce learning time [14]. Four commonly used datasets for
PE-based malware detection purposes in chronological order are the Microsoft malware
classification challenge [15], EMBER [9], SOREL [16] and BODMAS [6]. It is important
to note that some research articles refer to the Microsoft malware classification dataset as
the BIG-15 dataset. Of all the datasets shown in Table 2, EMBER has 300,000 unlabelled
samples.
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Table 2. Comparison of PE-based malware datasets used in machine learning.

Dataset Time-Range Total Sample Count Malicious Count Benign Count

BIG-15 2015 20,000 20,000 20,000
EMBER 2017–2018 1,100,000 400,000 400,000

SOREL-20M 2018–2020 19,389,877 9,470,626 9,919,251
BODMAS 2019–2020 134,435 57,293 77,142

BODMAS is relatively more recent than other datasets and has been used in this
study to maintain relevance to the evolving nature of malware. BODMAS is a milestone in
releasing Windows malware datasets containing accurate family information about each
sample. SOREL-20M would be a good candidate for evaluation. However, the dimensions
of the dataset and its respective metadata are enormous (close to 20 million samples). The
dataset size makes it challenging to train, test, and derive conclusions. An alternative
would be to utilise the pre-trained models available for evaluation.

2.5. Existing ML-Based Malware Classifiers

Many studies have previously developed various malware classifiers using machine
learning. Each has experimented with multiple combinations of malware datasets, machine
learning algorithms, and feature types, where most have an AUC score/accuracy rating
above 90%. However, certain experimental conditions lead to such results.

Factors such as smaller datasets, testing within the same dataset, and temporal and
spatial biases might not precisely represent an “open world” scenario that a classifier might
be subjected to in the future. A brief evaluation of current research about malware detection
and its performance and experimental conditions are summarised as follows.

All the studies in Table 3 have achieved an excellent AUC or accuracy rating, but
multiple caveats for each study have caused these results. These factors usually are older
dataset usage, relatively smaller sample size, evaluation metric, publicly inaccessible
datasets, and a closed-world approach, as discussed in the BODMAS dataset taken during
the testing phase.

Table 3. Existing studies on machine learning-based malware detection.

Study Dataset Samples Feature
Type(s)

Classifier
Used Metric Value

[10] EMBER 400,000 Static LightGBM Accuracy 92.7%
[6] BODMAS 57,293 Static LightGBM Accuracy 98%
[13] BIG-15 20,000 Static XGBoost Accuracy 99.77%
[12] BIG-15 20,000 Static CNN Accuracy 97.6%

[7] N/A 2200 Static and
dynamic GBDT AUC 99.36%

[17] N/A 7863 Static SVM AUC 98.19%

[5] N/A 984 Static and
dynamic SVM Accuracy 96.1%

The rapidly evolving nature of malware demands the consistent development of newer
datasets. Several studies use the BIG-15 dataset as a benchmark, resulting in higher accuracy
scores. These results might be less relevant to the current malware threat landscape. Smaller
sample sizes could reduce the quality of the resulting malware classifiers. Except for EMBER
and BODMAS datasets, all others have a sample count of less than 20,000. Some of these
studies are relatively older, and only certain conclusions might be applicable at this point.

Only two studies in Table 3 use AUC as their evaluation metric, but they have a smaller
sample size and a publicly inaccessible dataset. Refs. [5,17] have kept the dataset private
and have a sample count of less than 10,000. Commonly used classifiers against publicly
well-known datasets such as BIG-15, BODMAS, and EMBER are variants of gradient
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boosting algorithms such as XGBoost/LightGBM. In summary, using static features and
gradient-boosting algorithms are a common theme in the previously discussed studies.

2.6. Concept Drift and Performance Degradation

As newer malware strains and families appear, classifiers trained on older data tend to
misclassify more recent malware. This is referred to as concept drift and is usually observed
with time. Methods to counter such aberration in classification were initially discussed in
BODMAS.

Performance degradation is an effect of concept drift and is generally a function of
time. A recent study [18] suggests different transfer learning methods to counter perfor-
mance degradation with time. However, the dataset used is relatively minor, and there
is an emphasis on dynamic features. As discussed previously, the reliability and compu-
tational expense of extracting dynamic features are usually higher than static features. A
brief comparison of various studies that discuss about concept drift and malware dataset
evaluation are presented in Table 4.

Table 4. Comparison of Rapidrift with other studies and datasets.

Study Training Set
Count >50,000

Family
Analysis

Concept Drift
Analysis

Utilisation of
Multiple

PE Malware
Datasets

Testing with
Newer PE
Malware
Datasets

Ease of
Implementation

Standardised
and Improved

Dataset
Format

[9] 4 N/A
[6] 4 4 4 N/A

[16] 4 N/A
[15] N/A
[4] 4 4

[19] 4
RAPIDRIFT 4 4 4 4 4 4 4

(4—addressed in the study, N/A—Not applicable).

More extensive research on concept drift in the context of static malware analysis was
studied by TRANSCEND [4]. The critical factor that is being addressed here is improving
prediction confidence. They suggest a rejection-based framework to identify low-confidence
predictions and further evaluate those samples using other means, such as sandbox testing.
Concept drift is prominent across datasets, according to the results observed in BODMAS.

Another study called CADE [19] has performed better than TRANSCEND in novel
malware detection. CADE and TRANSCEND evaluate their solutions on multiple use cases,
such as Android malware, PE-based malware, and malicious logs from network intrusion
detection systems. Although, each of these cases utilise a single dataset for training and
testing, which might not effectively measure the usability of such solutions in an “open
world” scenario.

3. Methodology

In this section, as a core part of our methodological approach, we introduce Rapidrift.
This Python-based framework allows for easy manipulation of datasets based on malware’s
family, time of initial discovery and SHA digest values. The framework also serves to
train and evaluate machine learning models using LightGBM. A new dataset format was
introduced, combining malware features and associated metadata into a single data frame.
All these factors help add more context to the research and conduct granular analysis of a
classifier’s capabilities. Figure 1 is a visual representation of the improved dataset format
that contains both malware features and its associated metadata.



Computers 2023, 12, 195 6 of 16

Computers 2023, 12, x FOR PEER REVIEW 6 of 17 
 

3. Methodology 
In this section, as a core part of our methodological approach, we introduce Rapidrift. 

This Python-based framework allows for easy manipulation of datasets based on mal-
ware’s family, time of initial discovery and SHA digest values. The framework also serves 
to train and evaluate machine learning models using LightGBM. A new dataset format 
was introduced, combining malware features and associated metadata into a single data 
frame. All these factors help add more context to the research and conduct granular anal-
ysis of a classifier’s capabilities. Figure 1 is a visual representation of the improved dataset 
format that contains both malware features and its associated metadata. 

 
Figure 1. Rapidrift dataset format. 

The substantiation for creating such a framework is to make malware-based machine 
learning more accessible to new researchers. Temporal and spatial bias were eliminated 
carefully using the framework while conducting experiments. The framework is built 
with a variety of functions to create a dataset from raw PE files, manipulate the dataset, 
filter based on parameters, and evaluate the models. A class object (superframe) contain-
ing the dataset is loaded into memory and can be accessed via multiple functions to avoid 
reading from the disk every time. However, the limitation here is that huge datasets like 
SOREL cannot be directly used with this framework. A few of the functions available in 
the framework are described in Table 5. 
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The substantiation for creating such a framework is to make malware-based machine
learning more accessible to new researchers. Temporal and spatial bias were eliminated
carefully using the framework while conducting experiments. The framework is built with
a variety of functions to create a dataset from raw PE files, manipulate the dataset, filter
based on parameters, and evaluate the models. A class object (superframe) containing
the dataset is loaded into memory and can be accessed via multiple functions to avoid
reading from the disk every time. However, the limitation here is that huge datasets like
SOREL cannot be directly used with this framework. A few of the functions available in
the framework are described in Table 5.

Table 5. Example functions available in rapidrift framework.

Function Arguments Description

family_filter() Malware family name Returns samples belonging to a
certain malware family

time_filter() Start_time, end_time Returns samples within the given
time frame

family_rank() None Returns the malware family rank
based on frequency of occurrence

df_to_trainset() Training and testing
dataframes

Returns the X and Y arrays for
training the model using methods

other than GBDT

model_trainer() Training dataframe and model
path

Creates a GBDT model and saves
it to a file
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The experimentation procedures were executed on a computational platform equipped
with an Intel i7 12th generation central processing unit and 64 gigabytes of random-access
memory (RAM). Python version 3.6.8 was selected due to its compatibility with the requisite
dependencies of all employed libraries throughout the experiments.

3.1. Analysis and Mitigation of Concept Drift

A set of common issues that arise in machine learning-based malware detectors could
be due to the following:

• The time in which the malware sample was first observed;
• The emergence of newer malware families.
• Lack of sufficient samples in each family.
• Variance in the malware features that belong to a specific family;
• Highly customised malware that does not share features of any previously seen

malware families.

In summary, the two key reasons that potentially cause concept drift are as follows:

Case 1: Imbalanced learning of malware leading to biased predictions for only certain
malware;

Case 2: Emergence of new families/malware that shares lesser features with previously
used training data.

Hence, it is crucial to address both scenarios to reduce concept drift’s impact on
malware detection effectively. BODMAS discussed initial attempts to combat concept drift
under certain experimental conditions. Two different classifiers were used to measure its
performance against BODMAS data monthly. The first classifier is the EMBER baseline,
whose decision threshold was chosen at 0.1% FPR during the validation phase. The other
classifier was incrementally retrained with one month of BODMAS data with the EMBER
dataset and tested in the subsequent month; however, the decision threshold was modified
to retain 0.1% FPR.

According to BODMAS, incremental retraining effectively reduces concept drift’s
effects. But, adding new training data from another dataset to build a classifier requires
three tasks:

• Labelling data for retraining (open-world scenario);
• Retraining the model with new data;
• Changing the decision threshold.

Both labelling data and retraining the model with new data require computational
resources. However, labelling malware could be beneficial in developing Indicators of
Compromise (IOC) for threat-hunting purposes. The labelling of unknown samples is
a vital part of retraining. The final classification is based on the decision threshold that
decides whether a given sample is malicious. A comparison between the performance of
EMBER and BODMAS is shown in Figure 2.
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3.2. Confusion Matrix in the Context of Malware Detection

In any classification problem, the results of a model belong to four key categories that
fall within the confusion matrix. In the context of the malware classification problem, these
groups are clarified below:

a. True Positive (TP): a malware sample correctly classified as malware;
b. False Positive (FP): a benign sample misclassified as malware;
c. True Negative (TN): a benign sample correctly classified as not malware;
d. False Negative (FN): a malware sample misclassified as benign.

False positives determine the usability of the classifier, as an extremely high count of
false positives is undesirable. False negatives usually comprise evasive or novel malware
that tends to bypass the classifier.

3.3. Moving Decision Thresholds

The decision boundary decides the maliciousness of a given PE sample. Hence,
developing a strategy to determine the optimal threshold to detect malware is essential. The
baseline EMBER classifier was evaluated against the BODMAS dataset with two different
decision thresholds to demonstrate this experimentally. The thresholds have been changed
based on the results from the previous month (using it as validation data). However,
this time interval could be changed to any number of months depending on the cost of
retraining. The cost of retraining smaller datasets is relatively lower; hence, it is affordable
and facilitates the periodic movement of decision boundaries.

As the intention here is to address concept drift, the threshold is based on the maximum
possible difference between the TPR and FPR instead of minimising FPR to a constant.
However, both methods are evaluated to compare the classifier’s performance in both
classes. Results from two different threshold selection strategies are shown in Table 6.

Table 6. Results with different decision boundaries.

Decision Threshold
Strategy

Mean
F1 Score

Mean
FN

Mean
FP

0.1% FPR 0.961596 ± 0.04 305 ± 331 6 ± 8
argmax (TPR-FPR) 0.992728 ± 0.002 34 ± 26 29 ± 27

The results suggest that using FPR purely to select decision thresholds results in a
higher false-negative rate contributing to more malware evading the classifier. However,
a disproportionate amount of malware can be successfully captured when traded off
with slightly more false positives. These results explain the sensitivity of the classifier’s
behaviour when the decision threshold is altered. It is essential to emphasise selecting the
correct decision threshold, as retraining could prove to be a computationally expensive
process depending on the size of the dataset.

3.4. Incremental Retraining

BODMAS was cumulatively retrained with various proportions of new data from
the previous month. From the previous month, 10%, 25%, and 50% of new data were
tested against the next month. The range of months tested was 2019-10 to 2020-09. Around
12,000 samples from previous months were used as a base for retraining. The results shown
in Figure 3 and Table 7 show a steady improvement in the classifiers’ performance with
more training data.
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Table 7. Results of retraining with different training proportions.

Random
Sampling Rate

Mean
F1 Score

Mean
FN

Mean
FP

10% train 0.985589 ± 0.023 89 ± 143 32 ± 37
25% train 0.989863 ± 0.008 60 ± 81 25 ± 31
50% train 0.992285 ± 0.008 43 ± 65 21 ± 26

3.5. Probability Calibration

Considering the effect of selecting decision thresholds periodically on the classifier’s
performance, it is crucial to ensure the reliability of such values. Probability calibration
methods attempt to match the predicted probabilities of a classifier with the true values.
An ideally calibrated model would have comparable predicted probabilities with reality. By
default, the predicted probabilities of LightGBM are discrete, where almost every sample
has a unique probability, hence resulting in a probability distribution that is highly extensive
and uninterpretable. Calibrating the classifier’s results would result in a more constrained
distribution with only specific possible probabilities. There are a variety of techniques
used for probability calibration tasks. However, the scope of this study is restricted to
Platt, Isotonic, and Spline. The results of probability calibration are shown in Figure 4 and
Table 8.

Table 8. Results of different probability calibration methods.

Calibration Method F1 Score Log Loss

Uncalibrated 0.99602 0.022363
Platt 0.99633 0.020509

Isotonic 0.99712 0.009490
Spline 0.99701 0.012282

By calibrating the probabilities, it can be observed that all three methods have im-
proved F1 scores and reduced log loss values. This suggests that probability calibration
could help improve the classifier’s performance. Unlike retraining, calibration does not re-
quire heavy use of computational resources but improves the overall quality of predictions.

In summary, as demonstrated in Figure 5, these components combined would increase
the quality of malware detection by reducing the false negatives significantly at the cost
of slightly more false positives. Almost all functions in the figure have been included as a
part of the Rapidrift framework.
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4. Introduction to New Datasets—TRITIUM and INFERNO

Two new datasets are introduced to evaluate concept drift in current malware and the
performance of classifiers built on relatively older datasets. These two datasets (refer to
Supplementary Materials) have different threat profiles as the malware samples have been
aggregated from various sources. The TRITIUM dataset contains 23,256 samples, of which
12,471 are malicious and 10,785 are benign. This dataset constitutes 22 unique malware
families to facilitate the research of concept drift within a given malware group. The dataset
was sourced from MalwareBazaar, an open-source threat intelligence provider.

From an adversarial standpoint, a malware classifier might not be able to detect
customised or targeted attacks effectively. A new dataset called INFERNO was developed
to verify the classifier’s applicability in such scenarios. This specific category of malware
is usually created with tools that allow the creation/modification of malicious payloads,
such as Metasploit, CobaltStrike, Empire, Jlaive, UACBypass, and other offensive tools and
obfuscators. Red teamers and adversaries commonly use these tools to bypass endpoint
protection and execute malicious code. Both datasets were evaluated using the previously
discussed classifiers EMBER, SOREL, and BODMAS.

4.1. Testing with Dataset Combinations

One of the previous experiments has proven the effectiveness of incremental retraining.
In this experiment, two different datasets were combined to identify if they outperformed
the classifiers trained separately by each of those datasets. Two classifiers trained with
BODMAS and EMBER independently and another classifier trained with a combination
of both datasets were evaluated against TRITIUM. The results are shown in Table 9 and
Figure 6.

Table 9. Classifier performance with combined datasets.

Classifier Mean F1 Score Mean FN Mean FP

EMBER 0.987457 ± 0.008 10 ± 8 11 ± 18
BODMAS 0.973429 ± 0.01 31 ± 29 20 ± 50

EMBER and
BODMAS 0.984426 ± 0.009 13 ± 12 10 ± 19
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Surprisingly, EMBER performs better in calibrated and uncalibrated scenarios (un-
calibrated results omitted for brevity) against the TRITIUM dataset. On the other hand,
BODMAS contains more recent data but underperforms. Combined, BODMAS and EMBER
result in the least false-positive rates. Another observation is that calibrated probabilities
slightly increase the F1 scores in all three cases, highlighting the importance of probability
calibration.
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4.2. Testing with Novel Families from TRITIUM

As TRITIUM is relatively new, it contains novel malware families. The novelty makes it
an ideal candidate for concept drift evaluation, as no other datasets except BODMAS contain
accurate family information. BODMAS observes that most malware misclassifications are
attributed to new and unseen families. Three classifiers trained using BODMAS, SOREL,
and EMBER were tested against a novel version of the TRITIUM dataset.

The Rapidrift framework was used to filter the TRITIUM dataset to isolate malware
samples (around 7000) that have not appeared in BODMAS before. The exact process could
not be repeated with SOREL and EMBER as they lack accurate malware family information
(e.g., WannaCry, Emotet, and similar). This experiment intends to gauge the performance of
the malware classifier when left untrained to the point where the current threats are entirely
new. This should provide a realistic insight into the classifier’s detection capabilities in an
“open world” scenario. The results were evaluated based on the decision threshold set at
0.1% FPR, similar to the work demonstrated by BODMAS. Table 10 shows the performance
of three different classifiers against the novel version of the TRITIUM dataset.

Table 10. Classifier performance against a novel version of TRITIUM.

Classifier F1 Score AUC Score False Negatives

EMBER 0.90423 0.91250 1260
SOREL 0.81317 0.84241 2275

BODMAS 0.79891 0.83240 2420

The results are counterintuitive as the classifier trained with more samples or from the
most recent malware would be expected to perform well. But EMBER is better than the
other two individual classifiers regarding all three metrics. However, as this is a scenario
where classifiers are only exposed to novel malware, further analysis was conducted.
Certain malware families were found to have a lower number of false negatives when
tested against SOREL and BODMAS, although their overall performance was not as good
as EMBER.

It was found that “Lokibot info stealer” was one of the highly misclassified malware
families for SOREL and EMBER classifiers. But, BODMAS has less than 200 false negatives
for the same malware. On the other hand, EMBER produced less than 100 false negatives for
the “guloader” malware, while SOREL and BODMAS misclassified more than 350 samples
belonging to the same family. This suggests the classifier’s overall performance may not
be sufficient to judge its capabilities amongst certain malware families. By extension, no
specific classifier can effectively capture all malware variants, irrespective of the merits of
the training dataset used.

Hence, the probability scores from older classifiers should not be considered obsolete,
and the results from the most recent models cannot be trusted entirely. On a similar
note, the classifier’s quality cannot be determined purely by the volume of the training
dataset. SOREL was trained on 20 million samples but could not outperform the other two
classifiers. This might suggest that ensemble learning could produce quality predictions as
it encompasses the capabilities of multiple classifiers.

As the Guloader family was the most misclassified malware when tested against
BODMAS, incremental retraining for that specific family was conducted. This experiment
could indicate the number of samples required to effectively capture all the malware from
one family by retraining. There are 511 Guloader samples available in the TRITIUM dataset.
From Table 11 it is inferred that even fewer malware samples added in the retraining
process can create a significant impact on being able to detect more malware from the same
family.
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Table 11. Retraining with single malware family.

Number of Guloader Samples Added to
BODMAS False Negatives

0 486
1 351
2 291
3 143
10 0

There was a significant improvement in the results when BODMAS was retrained
with this new malware family. Ten random samples were sufficient to detect this malware
family fully. More tests were conducted by training BODMAS with one random Guloader
sample every time, and different results were observed. In some cases, more samples were
needed to detect this malware family fully, but specific scenarios required less than ten
samples to capture the same successfully.

These observations suggest the importance of sample quality that must be considered
during training or retraining machine learning models. A specific dataset containing too
many redundant samples could affect the quality of the resulting classifier. Fuzzy hashes
and import hashing are used in threat intelligence to detect patterns in malware, and the
same technique was applied to the Guloader family that was used to train and its related
testing set. About 25% of the tested samples shared similar Imphash and ssdeep values.
An alternative strategy for retraining/training is to ensure that the new samples do not
contain similar fuzzy hash or Imphash values. Such an approach might improve the quality
of training data and any future malware dataset created. Robust statistical measures such
as non-conformity used by TRANSCEND could be used as a retraining strategy despite its
focus on detecting drifting samples. Although it is computationally intensive, the scalability
of such methods has yet to be discussed in previous research.

These methods could be easily incorporated into the training phase by adding fuzzy
hash values to the metadata of malware samples. Later, the samples containing similar
hashes could be grouped into clusters to only select n samples from each cluster for training.
Such techniques not only improve the classifier’s quality but also reduce the volume of
the dataset. EMBER’s superior performance against the novel dataset could be due to
the quality of the training data. Additionally, if the testing dataset contains many similar
samples, it would overestimate the performance of the classifier’s true capabilities.

4.3. Testing against the INFERNO Dataset

Compared to other datasets discussed previously, INFERNO uses a different source
of malware. INFERNO was tested against BODMAS, SOREL, and EMBER. The family
information for the results was not reported as they are discrete for every sample (filenames
were used). The reported result is calculated based on the decision threshold at 0.1% FPR,
corresponding to one false positive. Table 12 shows the performance of three different
classifiers against the INFERNO dataset.

Table 12. Classifier performance against INFERNO.

Classifier F1 Score AUC Score False Negatives

EMBER 0.95889 0.96049 112
SOREL 0.95814 0.95979 114

BODMAS 0.90513 0.91329 247

The results are similar to the previous experiment, where the overall performance of
EMBER is better than the other two classifiers. BODMAS generated twice the number of
false negatives compared to EMBER and SOREL.
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5. Discussion

A general limitation for any machine learning-based malware classification solution
would be to surpass existing malware detection approaches. It is crucial to understand that
machine learning is a computationally intensive process. Hence, it is expected to improve
the quality of binary malware classification, such as detecting novel malware as opposed to
traditional methods.

Imphash and fuzzy hashing algorithms are commonly used in threat intelligence [20]
to capture slightly modified or similar malware. Another study [21] demonstrates how
combining fuzzy hashing methods can achieve F1 scores of up to 94% with limited resources
(the study used 6 GB RAM and four CPUs). Although the F1 score is lower than the results
achieved in this study, it is quite significant considering the relatively low computational
intensity and time taken.

Furthermore, refs. [4,22] suggest using a nonconformal evaluation (p-value as a simi-
larity metric) to detect drifting malware and flag low-confidence predictions. However, the
approximate time taken for their conformal evaluator is 46.1 CPU hours. This suggests that
data comparison, resource, and time constraints are fundamental problems in malware
classification, especially in novelty detection. In brief, the computational cost of retraining
models or creating new models should be less than that of implementing other solutions
such as CADE and TRANSCEND. However, the comparison between the cost of retraining
and their proposed solutions are yet to be evaluated. On the other hand, the solution(s)
suggested here can easily be implemented during the training process itself.

Current research focuses on obtaining and training using malware samples with almost
no pre-processing. For instance, the UCSB-20 dataset contains packed malware samples
only in its dataset and would not perform well when tested against generic malware
and was also experimentally proven by BODMAS. A better strategy would be to group
potentially packed samples using some form of automation and expose them to a classifier
trained using UCSB-20 or a similar dataset. PE architecture could be an essential sub-
domain to research, considering the wide range of programming languages that malware
authors use. Languages such as C/C++ that are low-level might have different feature
vector values compared with NET, which requires a framework to run successfully.

All three commonly used benchmark malware datasets, EMBER, SOREL and BOD-
MAS, use the same hyperparameters to build their models. The dimensions of the dataset
vary drastically and using the same hyperparameters without any tuning might cause
a loss in performance. Ref. [23] evaluated the EMBER dataset and another custom-built
dataset by tuning hyperparameters for LightGBM. The same study discusses how it is
computationally intensive to obtain a well-tuned hyperparameter combination. Hence,
a lack of hyperparameter tuning could affect the quality of classifiers. However, with
retraining practices, it would be hard to regularly tune the hyperparameters every time to
produce optimum performance.

Another limitation of this study would be to use certain feature subsets in the training
phase and assess its performance. When there are lesser number of features that effectively
determine a malware sample, it could potentially reduce the time to retrain or build new
models.

6. Conclusions

Various methods to improve the relevance of classifiers with newer malware were
discussed. Optimising the decision threshold to consider false-positive and true-positive
rates has improved the detection quality. Probability calibration using an Isotonic regressor
also demonstrated better results without significant computational overhead. The overall
performance of EMBER surpasses other models, such as SOREL and BODMAS, against the
new TRITIUM dataset. But, in some instances, the underperforming classifiers could detect
specific malware families better than EMBER.

Two new datasets with different threat profiles were created to test the resilience
of classifiers trained using existing datasets, and their results were critically analysed.
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A Python utility was developed to assist researchers in quickly evaluating and training
malware classifiers using various constraints. Adopting the dataset and metadata format
suggested by BODMAS and this study would help add more context to malware detection.
The proposed methods also help elongate the relevance of classifiers with time.

Previous experiments revealed that the classifier’s quality can only partially be decided
on the timeline and size of the dataset. Each classifier could be capable of detecting certain
types of malware. Hence, discarding a classifier based on age or size might cause more
long-term misclassifications. In such situations, using stacked ensemble methods could
improve performance. On the other hand, transfer learning overcomes the limitations of
incremental retraining, where the models cannot be updated with new data periodically.

Supplementary Materials: The following supporting information can be downloaded as follows:
INFERNO dataset—https://github.com/4dsec/inferno, TRITIUM dataset—https://github.com/
4dsec/tritium.
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