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Abstract: Cervical cancer affects more than half a million women worldwide each year and causes
over 300,000 deaths. The main goals of this paper are to study the effect of applying feature selection
methods with stacking models for the prediction of cervical cancer, propose stacking ensemble
learning that combines different models with meta-learners to predict cervical cancer, and explore
the black-box of the stacking model with the best-optimized features using explainable artificial
intelligence (XAI). A cervical cancer dataset from the machine learning repository (UCI) that is
highly imbalanced and contains missing values is used. Therefore, SMOTE-Tomek was used to
combine under-sampling and over-sampling to handle imbalanced data, and pre-processing steps are
implemented to hold missing values. Bayesian optimization optimizes models and selects the best
model architecture. Chi-square scores, recursive feature removal, and tree-based feature selection
are three feature selection techniques that are applied to the dataset For determining the factors that
are most crucial for predicting cervical cancer, the stacking model is extended to multiple levels:
Level 1 (multiple base learners) and Level 2 (meta-learner). At Level 1, stacking (training and testing
stacking) is employed for combining the output of multi-base models, while training stacking is used
to train meta-learner models at level 2. Testing stacking is used to evaluate meta-learner models.
The results showed that based on the selected features from recursive feature elimination (RFE), the
stacking model has higher accuracy, precision, recall, f1-score, and AUC. Furthermore, To assure the
efficiency, efficacy, and reliability of the produced model, local and global explanations are provided.

Keywords: cervical cancer; stacking ensemble; explainable AI (XAI)

1. Introduction

The World Health Organization in 2020 estimated that there were 604,000 new cervical
cancer (CC) cases, and it was the fourth most common malignancy among women. Nearly
ninety percent of the 342,000 deaths from cervical cancer in 2020 were from low- and
middle-income countries. Cervical cancer is six times more likely in HIV-positive women
than in HIV-negative women [1]. In low- and middle-income nations, these preventative
measures are not widely accessible, and cervical cancer is typically not discovered until it
has advanced and symptoms appear. Additionally, access to cancer surgery, radiation, and
chemotherapy for malignant lesions may be restricted in these countries, which raises the
mortality rate from cervical cancer. Effective interventions at different times of life could
help lower the high death rate from cervical cancer worldwide (the standard age rate for
women in 2020 is 13.3 per 100,000) [1]. Cervical cancer disease can be diagnosed based on
a variety of features. Cervical cancer can be cured if detected early and treated promptly.
Doctors may need help to diagnose it quickly and accurately. As a result, it is critical to use
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computerized technology in cervical cancer disease diagnostics to help doctors diagnose
patients more quickly and precisely.

Artificial intelligence (AI) is revolutionizing the diagnosis and therapy of diseases [2].
AI systems can also observe patients over time, giving doctors helpful information about
possible therapies and allowing more accurate treatments. Overall, AI technology can
transform cervical cancer treatment and detection, delivering more efficient and superior
care for people who are ill.

While developing a predictive model [3], feature selection approaches reduce the
amount of input variables. A crucial stage in machine learning (ML) is feature selection
algorithms, whereby we determine what are the most essential features from a database to
be included in a model [4,5]. Filter methods use statistical measures to rank the features
based on their relevance to the target variable [6]. Wrapper approaches evaluate the utility
of features through evaluation of the classifier’s performance [7].

In order to improve overall performance and prediction accuracy, ensemble machine
learning which utilizes multiple models could be used [8]. Combining numerous individual
models is the fundamental idea behind ensemble learning. Ensemble learning comes in
a variety of forms: stacking [9], boosting [10] and stacking, and bagging [11]. Stacking
is a learning technique that integrates multiple models using a meta-model to enhance
prediction accuracy and robustness. There are multiple forms of stacking, which include
homogeneous stacking, which employs base models of the same type [12]. Contrarily,
heterogeneous stacking employs models of several types as its foundation models [12].

In the ML field, an essential compromise exists between the difficulty level and the
efficacy of the built models. While basic models such as linear regression offer greater
interpretability and ease of explanation, complex DL and ML models [13] need more trans-
parency. Consequently, the ability to provide a clear and understandable explanation for
these complex models becomes crucial in establishing trust in their outcomes. The motiva-
tion of explainability is the lack of transparency exhibited by complex models, commonly
known as black-box models, which affects trust in the model’s performance and outcomes.
The concept of explainability, also known as explainable AI (XAI), aims to enhance the
reliability, interpretability, and understanding of model predictions. Explainability can
be approached at two primary levels: global and local. Global explainability pertains to
explaining the overall decision-making process across all data points [14]. On the other
hand, local explainability focuses on explaining individual instances, providing a more
precise and accurate explanation. The main goals of this paper are to study the effect of ap-
plying feature selection methods with stacking models for the prediction of cervical cancer,
proposing stacking ensemble learning that combines different models with meta-learners to
predict cervical cancer, explore the black-box of the stacking model with the best-optimized
features using explainable artificial intelligence (XAI).

Our work encompasses the following key contributions:

• Examining the impact of combining feature selection techniques alongside machine
learning models towards cervical cancer prediction.

• Proposing stacking ensemble learning that combines different ML with meta-learner
with SMOTETomek method to predict cervical cancer.

• Assessing the effectiveness of the provided model and evaluating it against different
ensemble models and conventional ML models applying different evaluation matrices.

• When compared to other models, the performance of the suggested model gave better
performed with REF.

• Enhancing the proposed approach through using techniques to deliver a comprehen-
sible explanation.

The remainder of the paper is structured as follows: Section 2 analyzes the related
literature to inform about previous work and recent models established to predict cervical
cancer. Section 3 outlines the methodology and how our research was conducted. Section 4
describes the results. Finally, Section 6 summarizes and provides concluding remarks on
the research.
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2. Related Work

In [2], the authors used RFE and the least absolute shrinkage and selection operator
(LASSO) to determine the most significant attributes for cervical cancer prediction. SMOTE-
Tomek handled unbalanced data. In the results, the best performance was recorded by DT
with RFE.

To predict cervical cancer, the authors of [15] employed machine learning algorithms
comprised of DT, LR, SVM, and KNN boosting. RF and boosting received the best per-
formance ratings. Also, the authors used various statistical analyses on the data, such as
computational complexity analysis (CCA), exploratory cervical data analysis (ECDA), and
empirical consequence reports (ECP). Based on the Risk Factors dataset, the authors of [16]
utilized an improved DT classifier to categorize patients with cervical cancer. No feature
selection strategy was used on the proposed DT classifier for categorizing cervical cancer
patients in order to choose an ideal collection of features. The authors of [17] investigated
the impact of using various over-sampling, under-sampling, and over-and-under-sampling
techniques to handle imbalanced data. Methods for selecting features using filters and
wrappers were utilized. The findings indicate that DT had the best accuracy. In [18], the
authors classified the cervical cancer diagnostic dataset as healthy or cancerous using KNN,
C4.5 DT, NB, RF, and MLP. The data were subjected to data imputation to address missing
values and an over-sampling technique called SMOTE to address the imbalanced dataset.
The authors of [19] employed feature transformation techniques, like the sine function, log,
and Z-score, together with RF and RT, on their datasets. The modified datasets were sub-
jected to a variety of feature selection techniques in order to recognize and rank noteworthy
risk variables.

In [20], datasets have been classified using the Softmax classification using the stacked
autoencoder deep learning technique. Models such as SVM, DT, kNN, rotation forest, and
feed forward NN use stacked autoencoder to study the softmax classification’s classification
results. The voting classifier integrated three prediction classifiers, DT, LG, and RF, in [21].
In addition to using the PCA approach to remove dimensions that have no impact on the
model’s accuracy, the SMOTE was used to solve the issue of an unbalanced dataset. In [22],
the authors used an RF model with SMOTE and two feature reduction methods, recursive
feature elimination and PCA. In [23], the authors applied ML on data with 23 attributes,
which were collected from Shohada Hospital Tehran, Iran, during 2017–2018.

There are studies that applied imbalanced strategies to handle imbalanced classifica-
tion issues. Wang et al.’s [24] proposal of a data expansion approach based on the idea of
the normal distribution was an attempt to address the classification problem of imbalanced
datasets. By applying a linear interpolation method based on the normal distribution
between the minority sample points and the minority center, the approach enhances the mi-
nority data while avoiding the marginalization problem. The results suggest that increasing
the five imbalanced datasets in this manner may lead to more accurate classification than
applying the original SMOTE method’s requirements. Due to the presence of multiclass
data with unbalanced distributions in the majority of Industrial Internet of Things (IIoT)
datasets, The deterioration in the ML-based IDS model’s accuracy for identifying attacks
was addressed by Le et al. [25]. In order to solve this issue, the authors proposed an
intrusion detection system (IDS) for IIoT imbalanced datasets using the (XGBoost) model.
According to the instance difficulty, Yu et al. [26] suggested that the instance-level re-
balancing technique dynamically modifies the sample probabilities for the distribution of
classes and unlabeled subclass instances. The authors described the instance difficulty as a
measurement based on the instance’s learning rate, which was motivated by the human
learning process.

Some studies applied ensemble learning. For example, Jiang et al. [27] presented an
ensemble XAI model to produce a more trustworthy factor importance ranking approach.
The ensemble XAI model used the SHAP values and model performances to illustrate how
multiple machine-learning models certified for six datasets performed efficiently, providing
a more accurate factor ranking. Large IoT-based IDS datasets could be used, according to
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Le et al. [28], to explain the predictions derived from machine learning (ML) models and
boost IDS’s performance for detecting attacks. The decision tree (DT) and random forest
(RF) classifiers used were assessed on the two datasets, NF-BoT-IoT-v2 and NF-ToN-IoT-v2.
To explain and understand the categorization decisions, authors implemented Shapley ad-
ditive explanations (SHAP) alongside the explainable AI (XAI) technique. Chakir et al. [29]
developed models for empirical evaluation involving homogeneous and heterogeneous
ensemble techniques enabling web-based threat detection in Industry 5.0. The authors
produced a heterogeneous ensemble comprising three best-performing ML algorithms
using max voting and stacking methods.

3. Methodology

Figure 1 shows the main steps of prediction cervical cancer. Data processing is critical
for ML analysis that includes filling missing values, dataset encoding, and min-max nor-
malization. SMOTE-Tomek is used to handle the imbalance of the dataset and Bayesian
optimization (BO) to optimize ML models. ML refers to ensemble models.

3.1. Data Description

We used from UC Irvine Machine Learning Repository (UCI) that was collected from
‘Caracas University Hospital’ in Caracas, Venezuela [30]. Data on 858 patients includes
demographics, habits, and historical medical records and 36 features. Table 1 shows
Features name and Abbreviation for cervical cancer dataset.

3.2. Data Processing

Data processing is critical for ML analysis to guarantee data quality and reduce noise,
outliers, and class imbalance [31].

• Filling missing values in the cervical cancer dataset is crucial for the accuracy and
reliability of ML models [32]. Methods include mode, mean, and median imputation.
Mean imputation substitutes the mean value of the corresponding feature for missing
data, and median imputation substitutes missing values with the median value. We
remove features with 70% missing values, reduce the number of features from 36 to
32, and remove rows with more than 50% null values; the number of rows reduces
from 858 to 763. Then, we applied median for filling missing values for numerical
features and the mode for filling in missing values for categorical features.

• Dataset encoding converts non-numerical or categorical data into a numerical format.
Encoding labels involves assigning a number value to each category of categorical data.

• We used min-max normalization, which scales the features to a fixed range.

3.3. Optimization Models

Optimization is determining the best combination of hyperparameters. It also finds the
best model architecture and training parameters to maximize the model’s performance on
validation and testing datasets. By combining training sets and cross-validation procedures,
Bayesian optimization (BO) is used to optimize ML models. The optimal collection of hy-
perparameters in Bayesian optimization is denoted by x∗, as illustrated by the formula [33]:

x∗ = arg min
c∈χ

f (x) (1)

where f (x) is the objective function and c represents any value in the domain of χ.
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Figure 1. The main steps for predicting cervical cancer.
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Table 1. Features name and abbreviation for cervical cancer dataset.

Features Name Abbreviation

Smokes Smokes

Hormonal Contraceptives HC

IUD IUD

STDs STDs

STDs:condylomatosis CON

STDs:vaginal condylomatosis VC

STDs:vulvo-perineal condylomatosis VPC

STDs:syphilis SYP

STDs:pelvic inflammatory disease PID

STDs:genital herpes GH

STDs:molluscum contagiosum MC

STDs:HIV HIV

STDs:Hepatitis B HB

STDs:HPV STDs:HPV

Dx:Cancer Dx:Cancer

Dx:CIN Dx:CIN

Dx:HPV Dx:HPV

Dx Dx

Hinselmann Hinselmann

Schiller Schiller

Citology Citology

Biopsy Biopsy

Age Age

Number of sexual partners NSP

First sexual intercourse FSI

Num of pregnancies NPRE

Smokes (years) SY

Smokes (packs/year) SmokesPY

Hormonal Contraceptives (years) HC

IUD (years) IUD (years)

STDs (number) STDs (number)

STDs: Number of diagnosis ND

Smokes Smokes

Hormonal Contraceptives HC

IUD IUD

STDs STDs

Bayesian optimization (BO) is a model-based sequential optimization technique that
efficiently optimizes costly black-box operations. The BO method involves defining the
search space, selecting a surrogate model [34], determining an acquisition function, ini-
tializing the surrogate model, iterating the optimization loop, evaluating the objective
function, updating the surrogate model, checking termination criteria, and returning the
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optimized solution. To explore the search space successfully, BO uses the surrogate and
acquisition function [35]. Cross-validation (CV) uses to evaluate model performance and
fine-tune hyperparameters. It involves several key steps. The dataset is split into k folds to
ensure an appropriate distribution of samples. The model is then trained on k-1 folds, with
one fold reserved for validation. This procedure is carried out k times. Each fold serves
as a validation dataset. Using metric, such as accuracy and performance of the model is
evaluated. These metrics are averaged across all k folds to estimate the overall performance.
Finally, a separate test dataset is used to check the model has not overfit the training data.

3.4. Class-Imbalanced Resampling Techniques

Class imbalance is a typical problem in ML when there are far fewer members of
one class than the other(s). Because ML models are inclined towards the majority class,
this imbalance might have a negative impact on their performance [36]. In random over-
sampling, this method replicates examples from the minority class at random until the
required balance is reached [37]. SMOTE (synthetic minority over-sampling technique)
creates and builds minority class samples by finding current minority class samples that
are close together in feature space and then interpolates between them [38]. It chooses an
instance, finds its KNN, and builds new instances along the line segments that connect them.
SMOTE aids in overcoming the overfitting issues associated with random over-sampling.
In our work, SMOTE-Tomek takes advantage of the synthetic minority over-sampling
technique (SMOTE) to over-sample, and Tomek Link to under-sample [39,40].

3.5. Feature Selection Methods

Feature selection methods are an essential step in ML that selects the most significant
features from a database to use in a model. Figure 2 shows feature selection techniques [4,5]:

Figure 2. Feature selection techniques.



Computers 2023, 12, 200 8 of 22

3.5.1. Filter Approach

The filter technique ranks the features according to the degree to which they are
relevant to the target variable using statistical measurements. [6]. It includes the chi-square
test [41] and mutual information [42]. In our study, we applied the chi-square test to
select essential features. With the use of statistics, the chi-square test (Chi2) assesses the
correlation between features and the target then selects the ideal number of features with
the best chi-square scores. It ranks the features based on the best chi-square scores [41].

3.5.2. Wrapper Approach

Wrapper methods assess features’ usefulness by evaluating the classifier’s perfor-
mance. The selected feature subsets serve as estimators of the model’s performance, pro-
viding an indication of its predictive capability. Based on the observed model performance,
the feature selection algorithm iteratively adjusts the feature subset by adding or removing
features to converge upon the optimal feature subset [7]. Recursive feature elimination
(RFE) [7] and forward/backward selection [43] are examples of the wrapper methods.

RFE is a feature selection algorithm that leverages an ML model to assess the impor-
tance of each feature within a given dataset. RFE operates through the following steps [7]:

• Initially, the ML model is trained using the complete set of features available in
the dataset.

• Importance scores are calculated for each feature based on the feature importance
attribute. These scores quantify the relative significance of each feature concerning the
model’s predictive performance.

• The feature with the lowest importance score is eliminated from the feature set.
• A new model is then trained using the remaining features.
• Steps 2–4 are iteratively repeated until the optimal number of features is selected.
• RFE can be used with any ML model that provides feature importance scores, such as

DT, SVM, and LR.

3.5.3. Embedded Approach

The embedded approach employs a combination of ensemble and hybrid learning
techniques to facilitate the process of feature selection. It operates by dynamically selecting
the most optimal features throughout the learning phase. This selection is made strategi-
cally to maximize computational efficiency. By leveraging a collective decision-making
mechanism, this approach outperforms both the filter and wrapper methods in terms of
computational cost and classification accuracy [44]. Several embedded methods for feature
selection are available, including random forest (RF), which generates several decision trees
and aggregates their predictions to provide ultimate predictions. The bootstrap sampling
method is used to build each decision tree in the RF, which randomly chooses a subset
of features for each split. As a result of the random feature selection, the trees become
more diverse and overfitting becomes diminished. The output of random forest is the class
chosen by the majority of trees [45].

3.6. Class-Imbalanced Resampling Techniques

Class imbalance is a typical problem in ML when the number of instances in one class
is much smaller than the number of instances in the other class(es). Because ML models are
inclined towards the majority class, this imbalance might have a negative impact on their
performance. To address this issue, different class unbalanced resampling strategies for
rebalancing the dataset and improving model performance have been devised [36].

3.7. Machine Learning Models

Different ML techniques are used:

• Logistic Regression (LR) refers to a statistical technique that estimates outcomes according
to a collection of input features. It is a generalized linear model that employs a logistic
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function (sigmoid function) to model the relationship between input features and the
probability of result [46].

• Support Vector Machines (SVMs) operate by locating the hyperplane that effectively
separates the data into two classes. The hyperplane is selected to maximize the
margin, which refers to the distance between the closest points from each class and
the hyperplane. The decision boundary is defined as the set of points that lie on the
hyperplane. The data is transformed into a higher dimensional space using kernel
functions [47].

• Decision Tree (DT) works by dividing the data into groups depending on the char-
acteristics values. The objective is to build a tree that effectively separates the data
into several classes or predicts the target variable. Every node in the tree indicates
a feature, and the branches represent the potential values of the feature. The leaves
represent the class label or the predicted values [48].

• Random Forest is an ensemble technique which employs many decision trees for
improving the model’s accuracy and robustness. Using a randomly selected subset of
features and data, it functions by creating a forest of decision trees. The predictions of
all trees in the forest are combined to make the final prediction [49].

3.8. Ensemble Learning Models

Ensemble learning is an ML technique that merges many models to increase overall
performance and prediction accuracy [8]. The basic concept behind ensemble learning is the
merging of many individual models. Here are some popular ensemble learning methods:

• Bagging is the process of simultaneously training multiple models on different subsets
of the training data then combining their predictions to generate the final prediction [9].
Multiple models are independently trained on distinct subsets of the training data,
and their predictions are merged to get the best possible outcome [9]. Bagging mini-
mizes prediction variance. It averages predictions from numerous models trained on
different data subsets.

• Boosting, a sequential training technique, involves sequentially training multiple
models. Each model is trained to rectify the errors made by the preceding models [50].
The fundamental foundation of boosting lies in the amalgamation of weak models,
which serves as the cornerstone of this technique. Through this combination, a robust
and accurate ensemble model is generated. The primary advantage of boosting resides
in its ability to mitigate prediction bias by iteratively adjusting the weights assigned
to misclassified instances; boosting emphasizes challenging or misclassified samples
during subsequent rounds of model training. This adaptive approach enables the
ensemble model to enhance performance and progressively achieve more precise
predictions [50].

3.9. Proposed Stacking Ensemble Model

Stacking is a learning technique integrating multiple models using a meta-model to
enhance performance and robustness. The stacking technique uses the training data to train
many base models, which then feed their predictions into a meta-model for generating
the final prediction. There are several kinds of stacking, involving homogeneous stacking,
which is used with templates of the same type as base models [12]. Heterogeneous stacking
uses different types of models as base models [12]. The suggested stacking ensemble model
in this work operates on two levels, as shown in Figure 3: Level 1 (multiple base learners)
and Level 2 (meta-learner). Level 1: Stacking of several model outputs (training and testing
stacking). Training stacking employed in Level 2 to train meta-learners (SVM, LR, and RF).
Testing stacking metrics are used to evaluate meta-learners (SVM, LR, and RF).
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Figure 3. The proposed stacking model for predicting cervical cancer.

3.10. Explainable Artificial Intelligence XAI

XAI is an emerging field that aims to develop ML models. It can provide transparent
and interpretable explanations for their predictions [51]. The two primary levels of the
concept of explainability are local and global. Global explainability refers to the final
decision made after considering all data points. It provides a global fidelity causal analysis.
But it is limited in that it only discusses the significance of the instance level. But local
explainability can explain all samples, providing a more accurate explanation [51].

XAI techniques are Shapley additive explanations that use Shapley values to explain
various model outputs [52]. SHAP can be used with any black-box model. It works well
when applied to certain model classes, such as tree ensembles, because of these models’
inherent structure and properties. This efficiency allows for more tractable and practi-
cal computation of the Shapley values, facilitating the interpretation and understanding
of model predictions. SHAP can be employed for global and local interpretability pur-
poses [53].

3.11. Evaluating Models

Models are evaluated with many methods:

• Accuracy, precision, recall, and F1-score among are the more frequently employed met-
rics to measure classification performance. These metrics calculations are explained
by Equations (1) to (4).
True negative (TN) indicate that the individual is healthy and the test is negative,
whereas true positive (TP) indicate if the individual is sick and the test is positive. A
false positive (FP) happens when a test results in a positive result while the subject is
healthy. A false negative (FN) occurs when a test yields a negative result despite the
fact that the person was sick.

Accuracy =
TP + TN

TP + FP + TN + FN
. (2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1-score =
2 · precision · recall
precision + recall

(5)
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• A receiver operating characteristic curve (ROC curve) provides a graph which depicts
the efficacy of a classification model over all classification levels. The true-positive
rate and false-positive rate [54] are plotted on this curve. Because the true-positive
rate (TPR) is a synonym for recall, it is defined as follows:

TPR =
TP

TP + FN
(6)

The following is how the false-positive rate (FPR) is determined:

FPR =
FP

FP + TN
(7)

An ROC curve is generated while plotting both TPR and FPR at various categorization
levels. More items are classified as positive when the classification threshold is
lowered, which raises the number of both false positives and true positives. A typical
ROC curve is depicted in the following figure [54]. The acronym AUC stands for “area
under the ROC curve”. It measures the complete two-dimensional region below the
entire ROC curve, from (0,0) to (1,1), distinguishing between classes measured by this
parameter. Models with a higher AUC are better at predicting values [54].

4. Experiment Results

This subsection investigates the results of applying feature selection methods, the per-
formance of ML and ensemble learning, and the proposed stacking models with selected
features.

4.1. Experimental Setup

ML and stacking models were implemented using Scikit-learn [55]. SHAP explain-
ers [56] was used to interpret the model that provides local and global explanations.
Matplotlib.pyplot [57] library was used to plot ROC curve. SMOTE-Tomek [40] was used to
combine under-sampling and over-sampling to handle imbalanced data A stratified sampling
method was used to divide the dataset into two parts: 70% training and 30% testing. ML
models are optimized and trained using the training set. Evaluation metrics are used to
evaluate ML models, comparing stacking models to several ML models, including bagging,
boosting, and voting ensemble models as well as RF, LR, DT, SVM, and NB. The results of
each feature selection technique used to choose the 15 best features are presented. Results
of models being applied to features chosen via REF, Chi2, and based-tree feature selection
are shown.

4.2. Feature Selection Results

The experiments explore the essential features of applying feature selection methods
to the cervical cancer dataset.

4.2.1. Feature Scores Based on Chi2

In Figure 4, the scores for each feature are shown after applying Chi2 to the dataset.
We can see that Schiller is the most crucial feature, with 150.36 scores. Hinselmann and
Citology have the second important features at 70.550 and 60.490, respectively. Dx, IUD.
ND, VC, and HC.1 feature with scores between 4 and 3. HC, NPRE, Age, SmokesPY, FSI,
IUD (years), and NSP are the lowest impacted features with scores below 1. ML models
were applied to the 15 highest features.
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Figure 4. Feature scores based on Chi2.

4.2.2. Importance of Selected Features by Based Tree

As shown in the Figure 5, features based on based trees are ranked in importance.
We can see that Schiller is the most crucial feature, with 0.293634763 importance. NPRE
and Hinselmann have the second important features at 0.098876738 and 0.081442887,
respectively. HIV, VC, PID, HB, STDs:HPV, and MC are the lowest impacted features with
importance below 0.00003. ML models were applied to the 15 highest features.

Figure 5. Importance of selected features by based tree.

4.2.3. The Ranking of Selected Features According to RFE

Figure 6 shows the ranking of features according to REF. There are 15 top features
ranked 1 by REF, including SY, STDs (number), STDs, SmokesPY, Smokes, Schiller. The
worst features are STDs:HPV and HB, which are ranked 7. ML models were applied to the
15 highest features.
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Figure 6. The ranking of selected features according to RFE.

4.3. ML Results

This section presents the results of ML models.

Results of Chi2 for Models with Selected Features

This subsection investigates the performance of ML and ensemble learning, as well as
the proposed stacking models with selected features using the Chi2 algorithm.

All models are evaluated based on several metrics as shown in Table 2. The following
can be observed: Regrading ML, LR and NB recorded similar performance (accuracy = 90.11,
precision = 90.40, recall = 90.11, and F1-score = 90.10). The performance of the RF has
improved by 2% above LR and NB. RF showed the best performance (accuracy = 92.66,
precision = 92.85, recall = 92.66, and F1-score = 92.65).

Table 2. Results of Chi2 for models with selected features.

Approaches Models Accuracy Precision Recall F1-Score

ML models

RF 92.66 92.85 92.66 92.65

LR 90.11 90.40 90.11 90.10

DT 91.81 91.92 91.81 91.80

SVM 90.96 90.98 90.96 90.96

NB 90.11 90.40 90.11 90.10

Ensemble models

AdaBoost 90.68 90.84 90.68 90.67

Bagging 94.07 94.14 94.07 94.07

Voting 92.09 92.23 92.09 92.08

Stacking 96.05 96.07 96.05 96.04

Based on a comparison of ensemble models, AdaBoost showed the worst performance
(accuracy = 90.68, precision = 90.84, recall = 90.68, and F1-score = 90.67). The proposed
stacking model performed the best performance (accuracy = 96.05, precision = 96.07,
recall = 96.05, and F1-score = 96.04) compared to other models.

The findings depicted in Figure 7 provide a comprehensive overview of the ROC
curve and AUC obtained from the ML models and ensemble models, utilizing Chi2 feature
selection methods. The stacking model emerges as the top performer, exhibiting an out-
standing AUC of 96.045. Following closely, the bagging model achieved second the highest
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AUC at 94.068. In contrast, the DT and NB model demonstrates the lowest AUC among the
evaluated models, reaching 90.113. The stacking model is the most accurate, surpassing the
models in classification accuracy.

Figure 7. ROC of REF chi2 models with selected features.

4.4. Results of REF for Models with Selected Features

The effectiveness of ML and ensemble learning is examined in this subsection, along
with the suggested stacking of models using particular features using the REF algorithm.
As stated in Table 3, a number of measures are used to evaluate each model.

Table 3. Results of REF for models with selected features

Approaches Models Accuracy Precision Recall F1-Score

ML models

RF 98.87 98.87 98.87 98.87

LR 89.83 89.08 89.83 89.81

DT 94.92 94.92 94.92 94.92

SVM 92.09 92.18 92.09 92.09

NB 90.11 90.40 90.11 90.10

Ensemble models

AdaBoost 94.63 94.65 94.63 94.63

Bagging 97.46 97.53 97.46 97.46

voting 94.92 94.92 94.92 94.92

Stacking 99.44 99.44 99.44 99.44

The following can be observed: Regrading ML, LR recorded the lowest performance
(accuracy = 89.83, precision = 89.08, recall = 89.83, and F1-score = 89.81). The performance of
the RF has improved by 8% above LR. RF showed the best performance (accuracy = 98.87,
precision = 98.87, recall = 98.87, and F1-score = 98.87).

Based on a comparison of ensemble models, AdaBoost showed the worst performance
(accuracy = 94.63, precision = 94.65, recall = 94.63, and F1-score = 94.63). The proposed
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stacking model performed the best performance (accuracy = 99.44, precision = 99.44,
recall = 99.44, and F1-score = 99.44) compared to other models.

The findings depicted in Figure 8 provide a comprehensive overview of the ROC
curve and AUC obtained from the ML models and ensemble models, utilizing REF feature
selection methods. The stacking model emerges as the top performer, exhibiting an out-
standing AUC of 99.435. Following closely, the RF model achieved second the highest AUC
at 98.870. In contrast, the LR model demonstrates the lowest AUC among the evaluated
models, reaching 89.831. The stacking model is the most accurate, surpassing the models in
classification accuracy.

Figure 8. ROC of REF for models with selected features.

Results of Tree-Based Models with Selected Features

This subsection investigates the performance of ML and ensemble learning, as well as
the proposed stacking models with selected features using tree-based models.

All models are evaluated based on several metrics as shown in Table 4. The following
can be observed: Regrading ML, LR and NB recorded a minor similar performance (accu-
racy = 90.15, precision = 90.30, recall = 90.15, and F1-score = 90.30). The performance of RF
has improved by 5% above LR and NB. RF showed the best performance (accuracy = 97.74,
precision = 97.75, recall = 97.74, and F1-score = 97.74).

Table 4. Results of three-based for models with selected features.

Approaches Models Accuracy Precision Recall F1-Score

ML models

RF 98.87 98.87 98.87 98.87

LR 89.83 89.08 89.83 89.81

DT 94.92 94.92 94.92 94.92

SVM 92.09 92.18 92.09 92.09

NB 90.11 90.40 90.11 90.10
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Table 4. Cont.

Approaches Models Accuracy Precision Recall F1-Score

Ensemble models

AdaBoost 94.63 94.65 94.63 94.63

Bagging 97.46 97.53 97.46 97.46

voting 94.92 94.92 94.92 94.92

Stacking 99.44 99.44 99.44 99.44

Based on a comparison of ensemble models, voting showed the lowest performance
(accuracy = 94.35, precision = 94.36, recall = 94.63, and F1-score = 94.63). The proposed
stacking model performed the best performance (accuracy = 98.31, precision = 98.31,
recall = 98.31, and F1-score = 98.31).

The findings depicted in Figure 9 provide a comprehensive overview of the ROC
curve and AUC obtained from the ML models and ensemble models, utilizing tree-based
feature selection methods. The stacking model emerges as the top performer, exhibiting an
outstanding AUC of 98.305. Following closely, the RF model achieved second the highest
AUC at 97.740. In contrast, the LR and NB models demonstrate the lowest AUC among the
evaluated models, reaching 90.113. The stacking model is the most accurate, surpassing the
models in classification accuracy.

Figure 9. ROC of tree-based models with selected features.

5. Discussion
5.1. The Best Models

In this paper, we investigate the performance of ML models, the ensemble model, and
the proposed stacking model with chi2, REF, and tree-based methods for feature selection.
From Figure 10, it is clear that the stacking model using REF achieves the best results in
comparison to chi2 and tree-based models. Stacking with chi2 was the least efficient model.
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Figure 10. The best models.

5.2. Explainable Artificial Intelligence (XAI)

This section addresses global explainable (dataset level) and local explainable (instance
level) output decisions. We use SHAP explainers to interpret the model provides local
and global explanations. The experimental results prove that the stacking model with REF
feature selection has the highest performance. We use SHAP explainers to interpret the
model. The SHAP summary plot of the developed model is shown in the Figure 11. Several
significant features of the entire dataset are important to the decision-making process, as
shown in Figure 11. Each feature is represented by a horizontal line to show how it affects
the output: blue means it causes the model to move in the lower direction, and red means
it moves in the upper direction. YES or NO determination is significantly influenced by
Schiller. Age, FSI, HC, and Hinselmann are considered the second essential features. STDs
and DX are the lowest features that impact model decisions. Additionally, the Figure 12
shows the mean impact of each feature. Each bar represents the importance of a feature,
and its length corresponds to the feature’s name on the X-axis. We can see that the Schiller
feature most significantly impacts model decisions.

Local explainability methods seek to clarify how the AI model arrived at a specific
cause or prediction in response to a given input. This enables people to comprehend and
trust the AI system’s decisions. Local explainable explains why the model arrived at a
particular decision for a specific sample. Therefore, we used the SHAP force plot to present
the local explainability for two causes for class 0 and class 1, as shown in Figure 13A,B.
The plots show the base_value based on the whole dataset, predict_proba_value, which
indicates the probability according to the specific cause, feature values shown on the left,
and feature contributions indicated through arrows. A probability is calculated for each
instance by adding the base value and the contribution of each feature.

For example, instance with class 0 is shown in Figure 13A, which presents the force
plot of cause for class 0 to present the features that are contributed for this model prediction.
Based on the model’s average over the entire dataset, the predicted value’s base value is
2.205, and predict_proba is −1.87. The arrows represent the value of the features (NSP = 1,
SmokesPY = 12, Age = 10, Schiller = 0, Smokes = 1, NPRE = 1, HC = 1). Features with
a big arrow have a significant impact, while features with a short arrow have a smaller
impact. Features with red arrows contribute to higher scores, and blue arrows contribute to
lower scores. For example, a cause with class 1 is shown in Figure 13B due to the features
contributing to the model prediction. Based on the model’s average over the entire dataset,
the predicted value’s base value is 0.2049, and predict_proba is 9.14. The arrows represent
the value of the features (NSP = 1, NPRE = 3, FSI = 17, Age = 32, Schiller = 1, HC = 1).
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Figure 11. Global explanation of stacking model according to SHAP explainer.

Figure 12. SHAP summary plot according to mean SHAP values.
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Figure 13. Force plot for specific instance. (A) instance with class 0, (B) instance with class 1.

5.3. Model Results Comparison with the Literature

Table 5 compares the proposed model with other models. The authors in [2] applied
DT with REF and registered an accuracy of 98.72. RF recorded 99 accuracies in [15]. In [18],
DT with wrapper feature selection approach recorded 97.5. In [18], the accuracy of RF was
registered at 96.4. RF with different feature selection methods recorded an accuracy of 98.33.
In [21], the authors used a voting model with PCA that recorded 97.44 accuracy. In [22], the
authors used an RF model with PCA that recorded 96.06 accuracy. Our work recorded the
highest accuracy with 99.44 for applying stacking with REF; also, our work provided local
and global explanations of the developed model to ensure its efficiency, effectiveness, and
trustworthiness.

Table 5. Comparing the proposed model with other models.

Papers Models Feature Selection Methods Performance

[2] DT REF Accuracy = 98.7

[15] RF — Accuracy = 99

[17] DT wrapper Accuracy = 97.5

[18] RF Accuracy = 96.4

[19] RF FST Accuracy = 98.33

[21] Voting PCA Accuracy = 97.44

[22] RF PCA Accuracy = 96.06

Our work Stacking REF Accuracy = 99.44

6. Conclusions

The main goals of this paper are to study the effect of applying feature selection
methods with stacking models for the prediction of cervical cancer, proposing stacking
ensemble learning that combines different models with meta-learners to predict cervical
cancer. The min steps of prediction cervical cancer include pre-processing step, feature
selection methods, handling imbalanced data, optimization models, and training models.
A cervical cancer dataset from UCI that is highly imbalanced and contains missing values
is used. The pre-processing of data steps consists of removing columns that have 70%
missing values, filling missing values by mean for numerical data and mode for categorical
data, and dataset encoding. SMOTE-Tomek was used to handle imbalanced data. REF,
chi2, and tree-based feature extraction methods were used to extract the most important
features that affect cervical cancer prediction. Stacking models are extended to multiple
levels: Level 1 (multiple base learners) and Level 2 (meta-learner). In Level 1: the output
of multi-base models is combined in stacking (training stacking and testing stacking). In
level 2, training stacking is used to train meta-learner (SVM, LR, and RF). Testing stacking
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is used to evaluate meta-learner (SVM, LR, and RF) using different evaluation metrics.
Bayesian optimization optimizes models and selects the best model architecture. Based on
the selected features from RFE, the stacking model has higher accuracy, precision, recall,
f1-score, and AUC, 99.44, 99.44, 99.44, and 99.44, respectively. To ensure that the model is
efficient, effective, and trustworthy, we provide local and global explanations. The main
limitation is an unbalanced dataset can lead to biased models that perform poorly on the
minority class. The model is trained on a dataset that comprises a majority class and a
minority class, which could lead to inaccurate predictions for the minority class due to the
model favoring the majority class. Minority classes are challenging to learn since fewer
examples exist for training. Therefore, the model may not capture the underlying patterns
in minority class data. Overfitting may occur when models are trained on imbalanced data.
As a result, new, unseen data may not generalize as well. To address these limitations, we
used SMOTE-Tomek to handle unbalanced data, and various evaluation matrixes, such
as precision, recall, and F1-score, and stacking models are used to improve predictive
performance, model diversity, and reduce overfitting. In future work, the proposed model
will be validated using different datasets and diseases to ensure its generalization abilities.
In addition to structured data, they will use unstructured data from datasets such as clinical
notes and images. We aim to gain valuable information and improve our model’s overall
performance. To ensure the model’s generalizability, we plan to aggregate more data. In
addition, we will analyze the model from the perspective of computing complexity. In
addition, the developed model will be deployed in a real clinical environment to evaluate
its performance.
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