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Abstract: A personal camera fingerprint can be created from images in social media by using Photo
Response Non-Uniformity (PRNU) noise, which is used to identify whether an unknown picture
belongs to them. Social media has become ubiquitous in recent years and many of us regularly
share photos of our daily lives online. However, due to the ease of creating a PRNU-based camera
fingerprint, the privacy leakage problem is taken more seriously. To address this issue, a security
scheme based on Boneh–Goh–Nissim (BGN) encryption was proposed in 2021. While effective,
the BGN encryption incurs a high run-time computational overhead due to its power computation.
Therefore, we devised a new scheme to address this issue, employing polynomial encryption and
pixel confusion methods, resulting in a computation time that is over ten times faster than BGN
encryption. This eliminates the need to only send critical pixels to a Third-Party Expert in the previous
method. Furthermore, our scheme does not require decryption, as polynomial encryption and pixel
confusion do not alter the correlation value. Consequently, the scheme we presented surpasses
previous methods in both theoretical analysis and experimental performance, being faster and
more capable.

Keywords: low-complexity computation; PRNU-based camera attribution; secret sharing; privacy;
camera fingerprint

1. Introduction

In recent years, the widespread adoption of social media, where many of us regularly
share photos of our daily lives online, has introduced a significant cybersecurity concern.
This issue revolves around the ease of security leakage related to Photo Response Non-
Uniformity (PRNU) [1–5] noise, a digital fingerprint derived from the cameras used to
capture these images. This personal camera fingerprint can be generated from images on
social media and is employed to determine whether an unknown picture belongs to the
individual. Due to the simplicity of creating a PRNU-based camera fingerprint, the issue of
privacy leakage is now being viewed with heightened seriousness [6,7].

PRNU is a form of patterned noise that arises from imperfections during the manu-
facturing of Complementary Metal–Oxide-Semiconductor (CMOS) sensors [8,9]. When
CMOS sensors are created, the presence of contaminants affects how responsive the sensor
is to light, ultimately resulting in lower-quality images in cameras. What is unique is that
each camera’s CMOS sensor generates its own distinct PRNU noise pattern. By utilizing
the PRNU noise identification technique, individuals can easily determine the owner of an
anonymous image. This noise-based identification method, for example, can be used to
verify the source of evidence related to illegal activities such as child pornography. Below,
we provide more details on this case:

A notable celebrity is involved in a high-profile child pornography case. During
the trial, the celebrity’s name should be kept confidential. Somehow, when matching
the suspect’s camera fingerprint with child pornography images, the third-party expert
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accidentally leaks the suspect’s camera fingerprint to a journalist. Due to the widespread
pictures that was uploaded online, the journalist identified the suspect by comparing it
to camera fingerprints generated by every possible high-profile celebrity. The celebrity’s
name was then published in major news, damaging his reputation and career, even though
he was later proven innocent. This incident highlights the importance of researching a safe
PRNU-based camera attribution scheme.

Although these cases may be difficult to believe, the absence of protection for the judg-
ment scheme based on PRNU camera fingerprints remains a significant concern. In January
2021, a security solution (e-PRNU) applying Boneh–Goh–Nissim (BGN) encryption was
introduced to address this issue [10]. However, BGN encryption comes with a substantial
computational overhead due to its power computation. In June 2021, another approach
called SSS-PRNU, based on Shamir Secret Sharing [11,12], was presented with a lower
computational overhead. Nevertheless, the SSS-PRNU scheme [13] suffers from a privacy
leakage problem, which compromises its effectiveness.

In order to resolve the shortcomings of the previous schemes, we develop a low-
complexity privacy-preserving PRNU-based camera attribution scheme, called the L-PRNU
scheme, that utilizes polynomial encryption and pixel confusion. This new scheme offers a
computation time that is more than ten times faster than the e-PRNU scheme and avoids
any privacy leakage concerns. In L-PRNU, while keeping the previous scheme’s advantage,
we made some improvements to overcome the problem that earlier models met. The
following are the key contributions we made:

1. Low computational overhead;

Switching from the BGN encryption method to polynomial encryption in the L-PRNU
scheme significantly reduces the time spent on encryption compared to the e-PRNU scheme.

2. No need for decryption;

Due to the use of a polynomial equation as the encryption method in L-PRNU, the true
correlation number, which determines the picture’s ownership, can be calculated without
the necessity of decryption. Saves huge computational power and time compared to the
previous scheme.

3. Privacy-preserving.

The scheme combines privacy techniques like pixel shuffling and polynomial encryp-
tion to protect sensitive data. These methods deter collusion among experts and make it
difficult to reveal the true correlation value or reconstruct the camera fingerprint. The data
are transformed into an indecipherable format while transferring. Pixel shuffling further
obscures the images, making unauthorized access nearly impossible. These safeguards
protect camera owners’ identities and prevent unauthorized data disclosure.

In addition to the three main points mentioned earlier, we offer flexibility in the
selection of third-party experts. Ideally, you should choose three different organizations or
three separate environments for enhanced security. Increasing the number of third-party
experts can further enhance security in the scenario. Additionally, a higher number of
third-party experts can lead to reduced computational time.

The remainder of this paper is structured as follows. Section 2 presents the background
of the PRNU-based source camera attribution method, and the related work—e-PRNU
scheme, and Section 3 describes the architecture of the proposed scheme. The results of
the experiment and the analysis of different schemes’ computations are given in Sections 4
and 5. Finally, Section 6 presents the conclusion. Further information will be presented
after Section 6.

2. Background and Related Work

This section presents some important research related to the main method of this paper.
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2.1. Background
PRNU-Based Source Camera Attribution [1–5]

During the manufacturing process of camera sensors, minor variations can result in
Photo Response Non-Uniformity (PRNU), which is a unique pattern noise specific to each
camera. This characteristic allows for the extraction and identification of PRNU-based noise
from images taken by different cameras. The camera image output I can be represented
as follows:

I = I0 + I0X + ϕ (1)

Here, I0 represents the noise-free image, X denotes the PRNU noise, and ϕ represents
the random noise. By utilizing a wavelet denoising filter f [14], we can easily obtain the
noise-free image I0. To mitigate the impact of random noise ϕ on the camera fingerprint, the
camera fingerprint F can be estimated by combining the N extracted PRNU noise images
using the formula F = ∑(I− f (I))

N . To determine the source of an unknown image I′, we can
extract a PRNU noise F′ using the aforementioned algorithm: F′ = I′ − f (I′). Subsequently,
we take the camera fingerprint F by calculating the correlation coefficient of F′ and F, where
it is possible to ascertain whether the owner of I′ matches the owner of the images in
the collection.

r
(

F, F′
)
=

∑n
i=1
(

Fi − F
)(

Fi
′ − F′

)
√

∑n
i=1
(

Fi − F
)2
√

∑n
i=1

(
Fi
′ − F′

)2
(2)

where n is the total pixels of the noise image F′ (=the total pixels of the fingerprint F), Fi is a
pixel in F, Fi

′ is the corresponding pixel in F′, F′ = ∑ F′i /n is the average pixel value of F′,
and F = ∑ Fi/n is the average pixel value of the camera fingerprint F. If r(F, F′) exceeds
a specific threshold, which confirms that both F and F′ originated from the same camera
sensor. The threshold value may vary depending on the specific camera sensor being used.

2.2. Related Work
e-PRNU [10,15]

In 2021, Mohanty et al. introduced a privacy-preserving approach based on the Boneh–
Goh–Nissim (BGN) encryption scheme. With the majority of camera attribution tasks
outsourced to a third-party entity by law enforcement agencies, the need for complex or
computationally intensive tasks is eliminated. The system is divided into five entities, as
illustrated in Figure 1. This system is also referenced by the other literatures, such as Jena
et al. who introduced SSS-PRNU [13].

1. Fingerprint Source: This entity, an organization affiliated with law enforcement, ex-
tracts camera fingerprints from a set of known images. It is assumed to be trustworthy
and secure. To link the fingerprints with online photos, the fingerprints are encrypted
using BGN encryption and transmitted to the Third-Party Expert fingerprint storage.
The encryption key is provided by the KMA;

2. Third-Party Expert: This entity stores all the encrypted fingerprints received from
the Fingerprint Source. Privacy leakage is a concern, so this entity should not have
knowledge of the fingerprint owners. The Third-Party Expert requires ample storage
space and sufficient computing power to handle high-computation tasks. According
to the paper, this entity can be a public cloud service like Amazon or Google;

3. Match Maker: Representing a trusted organization such as a law enforcement au-
thority or judge, the Match Maker aims to match a given picture with a known set
of pictures. While the Fingerprint Source manages the known set of pictures, the
Match Maker extracts the noise from the picture and encrypts the fingerprint using
BGN encryption, similar to the Fingerprint Source. Ultimately, the Match Maker or
judge will make a judgment using the threshold and the value provided by the Match
Maker Server;
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4. Match Maker Server: This entity operates under the control of the Match Maker
and is considered secure. Its role is to decrypt the first part correlation sent by
the Third-Party Expert. Additionally, the Match Maker Server performs the second
part of the correlation to obtain the actual correlation value. The Match Maker
Server requires some computational ability for decryption but does not need to solve
complex problems;

5. KMA: This trusted entity is responsible for generating the public and private keys
CID, CID’ used in BGN encryption.

Figure 1. The Methodology of e-PRNU.

Since BGN encryption is homomorphic with respect to additions and multiplications,
the correlation in the PRNU-Based Source camera attribution can be divided into two parts
without affecting the final correlation value. The correlation is split as follows:

First part correlation: This involves collecting two encrypted fingerprints, one known
E(F) and the other unknown E(F′). The Third-Party Expert calculates three partial correla-
tion values: E(A), E(B), and E(C) using the following equations:

E(A) = ∑n
i=1

(
E(Fi)− E

(
F
))(

E
(

Fi
′)− E

(
F′
))

, (3)

E(B) = ∑n
i=1

(
E(Fi)− E

(
F
))2, (4)

E(C) = ∑n
i=1

(
E
(

Fi
′)− E

(
F′
))2

. (5)

The Third-Party Expert sends the three encrypted partial correlation values E(A), E(B),
and E(C) to the Match Maker Server.

Second part correlation: The Third-Party Expert receives the three encrypted partial
correlation values (E(A), E(B), and E(C)) and decrypts them to obtain A, B, and C, for

A =
n
∑

i=1

(
Fi − F

)(
Fi
′ − F′

)
, B =

n
∑

i=1

(
Fi − F

)2, and C =
n
∑

i=1

(
Fi
′ − F′

)2
. Utilizing the homomor-

phic property of BGN encryption, dividing A, B, and C enables the derivation of the actual
correlation value.

r
(

F, F′
)
=

A√
BC

(6)
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3. Materials and Methods
3.1. Main Scheme

L-PRNU is a system that calculates the camera fingerprint using a known query and
an unknown source image. By matching these two crucial elements within the L-PRNU
system, privacy breaches are prevented. The following section will provide a detailed
explanation of the L-PRNU scheme, as illustrated in Figure 2.

Figure 2. The Methodology of the Proposed L-PRNU.

3.1.1. System Model

1. Fingerprint Source: This entity is considered to be a trustable entity. It is responsible to
create a key K and (at least) three disorder keys, Ka, Kb, and Kc, so that the Match Maker
can encrypt the unknown photo in the same way. While the Match Maker extracts
the PRNU noise from the unknown photo, the Fingerprint makes the fingerprint
out of the known set of photos. In addition, it encrypts the fingerprint into three
encrypted photos.

2. Third-Party Expert: The Third-Party Expert consists of multiple organizations or cloud
services with powerful computational capabilities, but it is not inherently trusted. Its
task involves generating partial correlations from 2 × 3 encrypted photos received
from the Fingerprint Source and the Match Maker. Once the partial correlation
numbers are calculated, they are sent to the Match Maker Server. This role can be
assigned to different organizations or a single organization.

3. Match Maker Server: The Match Maker Server and the Match Maker both operate
within the jurisdiction of law enforcement authorities. While the Third-Party Expert
handles most of the computation, the Match Maker Server combines the 21 partial
correlation numbers with the final correlation. Due to the relatively low complexity of
the encryption, solving this problem requires only occasional computational power.
Once the combination process is completed, the Match Maker Server provides the
final correlation back to the Match Maker.

4. Match Maker: This entity represents the law enforcement authority or the judge. The
Match Maker uses the key K and three disorder keys, Ka, Kb, and Kc, provided by the
Fingerprint Source to encrypt the unknown evidence into three encrypted photos. At
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the conclusion of the entire scheme, the Match Maker combines the final correlation
with the camera’s threshold to make the ultimate judgment.

3.1.2. The Process

• Fingerprint Source:

1. A set of known images that came from the same camera will be collected. All
the images will be denoised and extracted into a camera fingerprint F.

2. Fingerprint Source uses the key K to encrypt the camera fingerprint into three
encrypted photos A, B, and C.

3. The encrypted photos will be confused via three disorder keys Ka, Kb, and Kc.
Making Ka(A), Ka(B), Kb(B), Kb(C), Kc(C), and Kc(A). Obtaining six photos
that are encrypted and disarranged.

4. Distribute the encrypted photos to the Third-Party Expert according to the
Division algorithm.

5. Fingerprint Source passes the key K and three disorder keys Ka, Kb, and Kc to
Match Make via a secret channel.

• Match Maker:

6. Extract the PRNU noise picture F′ from an unknown evidence image and
encrypt it with K into three encrypt photos A′, B′, and C′.

7. Disarrange the three encrypted PRNU noise pictures into six confusion images
with three disorder keys Ka, Kb, and Kc: Ka(A′), Ka(B′), Kb(B′), Kb(C′), Kc(C′),
and Kc(A′).

8. Distribute the encrypted images to the Third-Party Expert according to the
Division algorithm.

• Third-Party Expert:

9. Each of the nodes of the Third-Party Expert will receive the encrypted im-
ages that their task assigns. While some are from the Fingerprint Source, the
others are from the Match Maker. Each node will receive the mission that
they are assigned, noting that they will not know which images (A, or B, or C)
they received.

10. Occurs after each node finishes making the partial correlation number accord-
ing to equation (8). They will send the numbers to the Match Maker Server.

• Match Maker Server:

11. After receiving all the partial correlation numbers, the Match Maker will com-
bine them into the real correlation coefficient with the combine algorithm.

12. The Match Maker Server will send the real correlation coefficient back to the
Match Maker

• Match Maker:

13. The final decision is made by the Match Maker based on the final correlation
value received from the Match Maker server. If the correlation value is equal to
or above the camera sensor’s PRNU threshold, the unknown image is proved
to be taken from the suspected camera or else not.

3.2. Solution Details

Supposing there is a scenario where we need to determine whether an unidentified
photo belongs to a specific individual. The PRNU-Based Source camera attribution method
requires a collection of images provided by that individual. Initially, the Fingerprint Source
creates a camera fingerprint F using the set of provided images. Then, the Fingerprint
Source generates a value K to encrypt the camera fingerprint F. Multiplying K with each
pixel p and dividing the result by d = 256 twice yields a polynomial equation as follows:

p× K = (a× d + b)× d + c (7)
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Here, p represents each pixel in the camera fingerprint F, K is a randomly generated
key used to encrypt each pixel within the range of 2 to 216 − 1, and d is the value by which
we intend to divide. To ensure that a, b, and c remain within the range of 0 to 255 and can
represent an image, d is set to 256 (However, if we are willing to transmit a numerical array
instead of an image, d can be set to a larger value.) By converting each pixel p in the camera
fingerprint F into a polynomial, we obtain three encrypted images A, B, and C formed by a,
b, and c, respectively.

Assuming the presence of three third-party experts, before transmitting these three
images to each expert, the Fingerprint Source confuses each pair of the encrypted image
((A, B), (B, C), and (A, C)) with a disorder key (If the number of third-party experts are
more than three, the number of disorder keys can be more than three.) In this case,
(A, B) is confused with Ka, (B, C), with Kb, and (C, A) with Kc. Using the disorder algorithm,
Third-Party Experts can calculate partial values, but they cannot reconstruct the original
camera fingerprint by colluding with other experts or guessing the true value of F. There is
only one Third-Party Expert.

Next, the division algorithm is employed to send the three confused images to the
Third-Party Experts. Simultaneously, the Match Maker extracts the PRNU noise F′ from
the unknown photo. Using the same encryption key K with (7) provided by the Finger-
print Source, the PRNU noise F′ is encrypted into three encrypted images A′, B′, and C′.
Subsequently, these three encrypted images are also encrypted via the disorder keys Ka,
Kb, and Kc and the resulting pairs will be transmitted to the Third-Party Experts using the
division algorithm.

Note that, although the Fingerprint Source shuffles the positions of the pixels, be-
cause the Match Maker shuffles them in the same manner, the true correlation coefficient
remains unchanged.

Each Third-Party Expert receives a set of up to four encrypted images. They need to
compute all combinations of each pair of encrypted images, including computing with itself.
For example, if one receives Ka(A), Ka(A′), Ka(B), and Ka(B′) as the images, the expert has
to calculate the combinations Pr(Ka(A), Ka(A)), Pr(Ka(A), Ka(A′)), Pr(Ka(A′), Ka(A′)),
Pr(Ka(A), Ka(B)), Pr(Ka(A′), Ka(B)), Pr(Ka(A), Ka(B′)), and Pr(Ka(A′), Ka(B′)). The
partial correlation function is represented as follows, where αi (βi, respectively) means each
pixel on α (β, respectively):

Pr(α, β) = ∑n
i=1(αi − α)×

(
βi − β

)
(8)

Once the Third-Party Experts complete their calculations, they send the partial correla-
tion numbers to the Match Maker server. The Match Maker server collects all the partial
correlation numbers and combines them using a combine algorithm to obtain P, Q, and
R. Having P, Q, and R allows the Match Maker server to reconstruct the true correlation
coefficient using the equation P√

QR . Finally, the Match Maker server sends the real correla-
tion coefficient back to the Match Maker. The Match Maker then determines whether the
unknown photo belongs to the specific individual based on a camera sensor threshold. If
the correlation coefficient exceeds the threshold, it indicates a match with the same camera;
otherwise, it does not.

3.2.1. Algorithm 1: Disorder Algorithm

To begin, the Fingerprint Source generates a disorder key—a permutation function—
whose domain comprises all pixel positions of the input photo. This key rearranges the
pixels in the input photo, effectively transforming it into a confusion photo. That is, each
pixel is relocated to a random position within the photo. For instance, Ka(A) will transform
photo A into a confusion photo.

When this same disorder key Ka is sent to the Match Maker server, it can rearrange
another photo A′ using the same method to be Ka(A′). Two pixels located at the same
position of A and A′ will be respectively arranged to another same position in Ka(A) and
Ka(A′). Users can decide the permutation function by themselves. The following is an
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example of a permutation function for the disorder algorithm. Where the position range of
all pixels in one m × n image is (0, 0) to (m − 1, n − 1), and gcd (a, b) represents the greatest
common divisor of a and b.

Algorithm 1 Disorder algorithm

Input: an image A with size m × n, the permutation key K with gcd (K, mn) = 1.
Output: the rearrange image K(A).
Step1. For any pixel (i, j) of A, do Step 2–3.
Step2. Let Q = K(n(i − 1) + j) mod mn.
Step3. Let the value of pixel (
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, Q mod n) of K(A) be the value of pixel (i, j) of A.

Note that the usage of the permutation function guarantees that the partial correlation
remains unaffected by this disorder process.

3.2.2. Algorithm 2: Division Algorithm

Continuing from the encryption process described in (7), the original camera finger-
print image Y is transformed into three images: A, B, and C. To fully grasp the entire
procedure, we need to refer back to the encryption algorithm outlined in (7). Each pixel in
the original image is multiplied by a factor of K. By substituting F, F′ with KF, KF′, we can
compute the new correlation using the following equation:

r
(
KF, KF′

)
=

K2P√
K2Q× K2R

=
P√
QR

= r
(

F, F′
)

(9)

Since all of P, Q, and R are multiplied by the same value K, the correlation remains
unchanged after the encryption process described in (7). Similarly, by substituting F and
F′ with A× d2 + B× d + C and A′ × d2 + B′ × d + C′, respectively, we can observe that
the correlation coefficient is composed of smaller computations involving the difference
between pixels and their average values. This leads us to the partial correlation function
Pr(α, β) as Formula (8). The complete correlation coefficient is then split into 21 numbers
ri = Pr(α, β), as Table 1 shows, where γ = a, b, or c according to the color of the background.
For example, r14 = Pr(Kc(A), Kc(C)) = Pr(Kc(C), Kc(A)).

Table 1. Values and Indexes of Partial Correlation Function Pr(α, β).

α

β
Kγ (A) Kγ (B) Kγ (C) Kγ (A′) Kγ (B′) Kγ (C′)

Kγ (A) r10 r12 r14 r1 r2 r3
Kγ (B) r12 r11 r13 r4 r5 r6
Kγ (C) r14 r13 r15 r7 r8 r9
Kγ (A′) r1 r4 r7 r16 r18 r20
Kγ (B′) r2 r5 r8 r18 r17 r19
Kγ (C′) r3 r6 r9 r20 r19 r21

These 21 partial correlation numbers will be assigned to the three Three-Party Experts
to complete evenly. To ensure privacy, the first Third-Party Expert receives images Ka(A),
Ka(A′), Ka(B), Ka(B′) that have been confused via the disorder key Ka. The images received
by the second Third-Party Expert have been confused via the disorder key Kb, for the
images Kb(B), Kb(B′), Kb(C), Kb(C′); while the last Third-Party Expert receives the confused
images Kc(A), Kc(A′), Kc(C), Kc(C′) that have been confused via the disorder key Kc. Each
Third-Party Expert is not provided with combinations of A, B, and C or A′, B′, and C′,
and each image is confused with a distinct disorder key. As in Table 1, assigning the
partial correlations with the same color of the background to the same expert is one of
the assignment methods. The process of the Division algorithm for the fingerprint source
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and match maker should be as follows ((4) and (8) in Figure 2) when there are three
Three-Party Experts:

Algorithm 2 Division

Step1. The entity that receives three images A, B, C that are encrypted.
Step2. The entity computes Ka(A), Kc(A), Ka(A′), Kc(A′), Ka(B), Kb(B), Ka(B′), Kb(B′), Kb(C),
Kc(C), Kb(C′), Kc(C′) via Algorithm 1 with disorder keys Ka, Kb, and Kc.
Step3. The entity sends images Ka(A), Ka(A′), Ka(B), Ka(B′) to the first Third-Party Expert;
Kb(B), Kb(B′), Kb(C), Kb(C′) to the second Third-Party Expert; Kc(A), Kc(A′), Kc(C), Kc(C′) to the
third Third-Party Expert.

The experts will only receive images with ids, of which they will not know which part
of image they are calculating. After the computation process Pr(α, β) as Formula (8), the
experts will send the partial numbers back to the Match Maker Server to end their mission.

3.2.3. Algorithm 3: Combine Algorithm

After obtaining the 21 partial correlation numbers, according to Formulas (7) and
(8), Table 1, and the definitions of P, Q, R, the value of P, Q, R can be restored via the
equations below:

P = d4 × r1 + d3 × r2 + d2 × r3 + d3 × r4 + d2 × r5 + d× r6 + d2 × r7 + d× r8 + r9 (10)

Q = d4 × r10 + d2 × r11 + 2× d3 × r12 + 2× d× r13 + 2× d2 × r14 + r15 (11)

R = d4 × r16 + d2 × r17 + 2× d3 × r18 + 2× d× r19 + 2× d2 × r20 + r21 (12)

The Match Maker Server will receive 21 numbers of partial numbers that were calcu-
lated from the third-party experts. Using Formula (10)–(12), the Match Maker Server will
reconstruct P, Q, R. Finally, the Match Maker Server obtains the final correlation number
via Formula (9). The following are the pseudo-code of the algorithm:

Algorithm 3 Combine algorithm

Step1. Collect all the partial numbers r1–r21 from the third-party expert.
Step2. Calculate P, Q, and R with Formula (10)–(12).
Step3. Reconstruct the origin correlation number r(F, F′) = P√

QR .

4. Results

It is crucial to take into account both the performance and security aspects of the L-
PRNU scheme. In this section, we present an analysis that goes beyond these fundamental
components.

4.1. Computation Analysis

In order to assess the performance of the L-PRNU scheme, we deployed a specific
configuration consisting of one node for the Fingerprint Source, three nodes for the Third-
Party Expert, one node for the Match Maker, and one node for the Match Maker Server. Each
node was equipped with an Intel(R) Xeon(R) CPU featuring two cores clocked at 2.20 GHz
and 12 GB RAM. To replicate real-world conditions, all entities were isolated in separate
containers, simulating the actual environment. The L-PRNU code was implemented using
Python 3.10 and executed on the Google Colab platform. For testing purposes, an image
with a resolution of 720 × 720 pixels was utilized.

Regarding the computation complexity within the L-PRNU scheme, the encryption
algorithm (division and disorder) employed by the Fingerprint Source and the Match Maker
entailed one multiplication, two divisions, and three permutation functions that disordered
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the encrypted photos. Since decryption was not necessary, the decryption computation
complexity was negligible. In the case of the Third-Party Expert, the complexity of the
partial correlation calculation involved two subtractions, one multiplication per pixel, and
a n − 1 (n represents the total pixel of a photo) addition, plus one division to calculate the
total pixel average of F and F′. Lastly, the combined algorithm implemented within the
Match Maker Server comprised a total of 19 multiplications, one division, one square root,
and 18 additions.

When we compare the computational complexity to that of the e-PRNU scheme, it
becomes apparent that the encryption algorithm in the L-PRNU scheme is relatively simpler.
In the e-PRNU encryption process, there is a single round-off operation, three exponen-
tiations, and two multiplications for each pixel. In contrast, the decryption algorithm
in the e-PRNU scheme is considerably more computationally demanding, necessitating
12 exponentiations, three discrete logarithmic calculations, and one division operation for
each pixel. This computational intensity in the e-PRNU scheme has led to the adoption of
a strategy in which only the critical pixels are processed, rather than the entire image, in
order to manage the substantial computational time involved.

To evaluate the performance of the L-PRNU scheme, we conducted comparative
tests with the e-PRNU scheme using different picture sizes (see Table 2). In the case of a
100 × 100 resolution, L-PRNU showcased considerably faster testing times, ranging from
4.448 s in a single node of the Third-Party Expert to 1.482 s in three nodes. On the con-
trary, e-PRNU exhibited much longer testing times, with the highest recorded time being
404.17 s in a single node of the Third-Party Expert and 102.58 s in four nodes. When it came
to a 720 × 720 resolution, L-PRNU once again outperformed e-PRNU, with testing times
ranging from 21.903 s in three nodes of the Third-Party Expert to 65.709 s in a single node.
In contrast, e-PRNU took an excessive amount of time to complete the test, indicating an
impractical performance.

Table 2. The Comparison of Computation time in The Third-Party Expert entity between L-PRNU
and e-PRNU.

Picture Size
Testing Scheme

L-PRNU e-PRNU

100 × 100
4.448 s (#1 node) 404.17 s (#1 node)
1.482 s (#3 nodes) 102.58 s (#4 nodes)
0.847 s (#6 nodes) 26.60 s (#16 nodes)

720 × 720
65.709 s (#1 node)
21.903 s (#3 nodes) >11 min
12.516 s (#6 nodes)

In addition, the L-PRNU scheme offers the advantage of not requiring decryption
and utilizes polynomial encryption. As a result, both the Match Maker Server and Match
Maker entities exhibit faster computation times when compared to the e-PRNU scheme
(see Table 3).

Table 3. The Comparison of Computation Time of the Other Entities between L-PRNU and e-PRNU.

Entity Computation Tasks L-PRNU e-PRNU

Match
Maker server

Decrypt and
Second Part of

Correlation
0.012 s 23.05 s

Match Maker
Encrypt and
PRNU Noise
Calculation

6.986 s 42.73 s
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In summary, the performance analysis indicates that the L-PRNU scheme relies on
basic mathematical operations, avoiding complex exponential calculations like e-PRNU.
Consequently, L-PRNU achieves significantly lower computation times, making it a more
efficient solution for PRNU-based camera attribution tasks.

4.2. Security Analysis

In this subsection, we provide a thorough examination of the security aspects of the
L-PRNU scheme from various perspectives. These security considerations are discussed in
detail below.

1. Privacy Preservation: The L-PRNU scheme employs multiple techniques, such as the
shuffling of pixel positions and polynomial encryption, to ensure the preservation of
privacy. These measures prevent collusion among third-party experts and make it
extremely challenging to infer the true correlation value or reconstruct the original
camera fingerprint. By encrypting the camera fingerprint and PRNU noise images
using polynomial encryption, the sensitive data is transformed into an unintelligible
form that can only be deciphered with the specific decryption key K (ranging from 2
to 216− 1), which is difficult to guess. Additionally, the scheme introduces shuffling to
further obfuscate the images, making it virtually impossible for unauthorized parties
to gain access to the original content. These privacy-preserving techniques are crucial
in safeguarding the identities of camera owners and preventing the unauthorized
disclosure of their personal information.

2. Homomorphic Property: The scheme leverages the homomorphic property of en-
cryption, specifically in the BGN encryption used in previous schemes. The homo-
morphic property allows for dividing the correlation calculation into some parts
without affecting the final correlation value. This property ensures that the encryption
does not compromise the integrity or accuracy of the correlation calculations while
maintaining privacy.

3. Different Disorder Keys: The scheme utilizes disorder keys to further enhance security.
The encryption images are confused with distinct disorder keys, making it difficult for
Third-Party Experts to correlate the encrypted images and reveal sensitive information
about the camera fingerprint or PRNU noise, even if all Third-Party Experts colluded.
This additional layer of pixel confusion adds complexity to potential attacks and
enhances the security of the scheme.

4. Secure Entities: The scheme defines various entities involved in the process, such as
the Fingerprint Source, Third-Party Experts, Match Maker, and Match Maker Server.
These entities have specific roles and responsibilities in the scheme, ensuring that the
sensitive data is handled by trusted and secure parties. The proper management and
authentication of these entities are essential for maintaining the overall security of
the scheme.

5. Highly Secure Key Management: In the L-PRNU scheme, all the keys (K, Ka, Kb, Kc) are
exclusively transferred between trusted entities (Fingerprint Source and Match Maker).
Furthermore, the scheme does not necessitate decryption, eliminating any potential
risks associated with key leakage during the decryption process. This ensures the
confidentiality and integrity of the keys, further bolstering the overall security of
the scheme.

Overall, the L-PRNU scheme presents a comprehensive and effective approach to
address the security and privacy concerns associated with PRNU-based camera attribution.
Via the integration of encryption, pixel confusion, secure entities, and a strong focus on key
management, the scheme establishes a robust security framework.

5. Discussion

In this paper, we have tackled the pressing concern of privacy breaches related to
the creation of personal camera fingerprints derived from images shared on social media.
Initially, we discuss the introduction of the e-PRNU security solution in January 2021, which
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made use of Boneh–Goh–Nissim (BGN) encryption. Although this approach was effective,
it suffered from a substantial computational overhead. In response to this challenge, we
introduce our groundbreaking L-PRNU scheme, which utilizes polynomial encryption and
pixel obfuscation techniques. This novel scheme not only achieves computation times more
than ten times faster than e-PRNU, but it also eliminates the need for decryption, thereby
enhancing its practicality. Furthermore, our approach places a strong emphasis on preserv-
ing privacy by incorporating methods such as pixel shuffling and polynomial encryption,
rendering it exceedingly difficult to discern the true correlation value or reconstruct the
camera fingerprint. This scheme presents several notable advantages compared to previous
methodologies.

• First and foremost, our innovative approach achieves a remarkable computation time
reduction, exceeding ten times the speed of the existing e-PRNU scheme. With our
polynomial encryption method, it significant accelerates the previously burdensome
runtime computational overhead associated with BGN encryption in e-PRNU.

• Moreover, compared with the BGN decryption in the e-PRNU scheme, our scheme
dispenses the need for decryption, thanks to the application of polynomial encryption
and pixel disorder, which leave the correlation value unaltered. This breakthrough
obviates the necessity to transmit critical pixels to a third party, a requirement of
previous methods. By maintaining the original image format during transmission, we
uphold the data integrity and preserve the visual information.

• Furthermore, as we enhance the computation speed, we continue to prioritize privacy
preservation. Our approach places significant importance on safeguarding privacy
by implementing pixel position shuffling. This not only discourages collaboration
among external experts but also significantly hinders any efforts to determine the
actual correlation value or reconstruct the original camera fingerprint. These crucial
contributions collectively bolster the security and effectiveness of our L-PRNU scheme
in addressing the privacy issues linked to personal camera fingerprints obtained from
social media images.

In order to clearly see the advantages of the proposed scheme, Figure 3 shows the
calculation time of the third-party expert entity between L-PRNU and e-PRNU in Table 2
for 100 × 100 images. It is easy to see from this figure that the time saved by the proposed
scheme is close to a hundred times, which makes the proposed scheme more practical than
the previous method.

Figure 3. The Computation time in The Third-Party Expert entity between L-PRNU and e-PRNU for
100 × 100 image.
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6. Conclusions

In conclusion, our comprehensive analysis unequivocally highlights the exceptional
performance and security features of the L-PRNU scheme. The depth of our evaluation goes
beyond the fundamental components, providing a nuanced understanding of its strengths.
In the realm of performance, the L-PRNU scheme exhibits a remarkable advantage over its
predecessor, e-PRNU. With significantly reduced computation times exceeding tenfold in
some cases, it effectively eliminates the burdensome computational overhead associated
with previous encryption methods. Moreover, its ingenious use of polynomial encryption
and pixel obfuscation obviates the need for decryption, preserving the data integrity and
streamlining the process. From a security perspective, the L-PRNU scheme employs a
multifaceted approach that fortifies privacy preservation. The integration of pixel shuffling,
polynomial encryption, and the use of distinct disorder keys creates formidable barriers
against collusion and unauthorized access to sensitive data. The scheme’s secure entity
framework and meticulous key management further enhance its security, ensuring that
trusted parties handle critical information.

Our scheme offers a comprehensive, efficient, and highly secure solution for PRNU-
based camera attribution, effectively mitigating privacy risks associated with social media
images. While our current security measures are robust, we acknowledge the ever-evolving
technological landscape and the potential for emerging privacy vulnerabilities. Therefore,
future research should focus on continuous improvements to encryption methods and
practical implementations, ensuring the ongoing protection of individual privacy in the
digital age. The L-PRNU scheme stands as a significant advancement in the field of camera
attribution, addressing both the performance and security concerns with unparalleled
effectiveness and sophistication.
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