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Abstract: This paper introduces an AI model designed for the diagnosis and monitoring of the
SARS-CoV-2 virus. The present artificial intelligence (AI) model founded on the machine learning
concept was created for the identification/recognition, keeping under observation, and prediction of
a patient’s clinical evaluation infected with the CoV-2 virus. The deep learning (DL)-initiated process
(an AI subset) is punctually prepared to identify patterns and provide automated information to
healthcare professionals. The AI algorithm is based on the fractal analysis of CT chest images, which
is a practical guide to detecting the virus and establishing the degree of lung infection. CT pulmonary
images, delivered by a free public source, were utilized for developing correct AI algorithms with
the aim of COVID-19 virus observation/recognition, having access to coherent medical data, or
not. The box-counting procedure was used with a predilection to determine the fractal parameters,
the value of the fractal dimension, and the value of lacunarity. In the case of a confirmation, the
analysed image is used as input data for a program responsible for measuring the degree of health
impairment/damage using fractal analysis. The support of image scans with computer tomography
assistance is solely the commencement part of a correctly established diagnostic. A profiled software
framework has been used to perceive all the details collected. With the trained AI model, a maximum
accuracy of 98.1% was obtained. This advanced procedure presents an important potential in the
progress of an intricate medical solution to pulmonary disease evaluation.

Keywords: artificial intelligence (AI); computer tomography (CT); fractal analysis; SARS-CoV-2;
deep learning (DL)

1. Introduction

Artificial intelligence (AI) has recently confirmed its usefulness in many aspects of
daily life. Born from the desire to automate repetitive and time- and energy-consuming
human processes, artificial intelligence has evolved towards solutions that can learn during
operation and correct possible deviations just like human behaviour would do [1]. Another
major advantage brought by artificial intelligence is combating the human error that usually
occurs after an activity. Thus, a detailed analysis of a data set is possible if it is contained in
various formats (images, audio signals, etc.) for an unlimited period [2].

Among the fields where AI has started to become a useful tool in the smooth running
of things, we mention the economic field, multimedia, or smart home. The list can be com-
pleted more recently in the medical field, given the fact that the images can be exhaustively
analysed using artificial intelligence algorithms [3].

Computers 2023, 12, 213. https://doi.org/10.3390/computers12100213 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12100213
https://doi.org/10.3390/computers12100213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-9099-4608
https://orcid.org/0000-0003-2088-7457
https://orcid.org/0000-0002-3761-380X
https://doi.org/10.3390/computers12100213
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12100213?type=check_update&version=3


Computers 2023, 12, 213 2 of 21

For this reason, we can consider the implementation of an AI model to decide whether
the lung in a computer tomography (CT) image contains infection with the SARS-CoV-2 virus.

Often, identifying essential details in the content of the data to be analysed is a difficult
process with the natural human senses. Therefore, training with a specialized program
brings significant benefits in processing medical images or other data taken with dedicated
medical equipment.

The introduction of AI models in the process of diagnosing patients represents a
historical point in the evolution of modern medicine. Analysis results or disease-monitoring
processes can benefit from increased accuracy.

Furthermore, in this study, an AI architecture that detects the presence of the SARS-CoV-2
virus in CT images will be presented. Thus, the TensorFlow library available in the Python
programming language was used for the development of this project [4].

The Current Impact of AI on Medical Imaging

The concept of machine learning has the potential to provide clinical decision support
(CDS) based on the data of doctors and staff in a hospital, paving the way for a new stage
in medicine. The learning process of computer systems (known as “deep learning”) is a
subset of AI designed to identify patterns. In the medical field, it can use algorithms and
data to provide automated information to healthcare providers.

AI can improve healthcare by streamlining diagnoses and improving clinical outcomes.
A critical part of the power of AI in the healthcare industry is its ability to analyse a large
amount of data sets [5].

Today, there are several private entities involved in producing AI solutions for the
medical field. For example, video games are produced to test the mental health of individ-
uals. Through this method, emotional state switches or an affinity for certain events are
detected. Also, combined with the potential of virtual reality (VR), it is possible to provide
more data to analyse with AI. Thus, the system becomes more complex and much more
useful [6].

Moreover, AI combined with big data can provide predictions about the health status
of a population by considering hospital archives. Therefore, today’s society can be recom-
mended a different lifestyle or medical analysis sessions in order to prevent certain diseases.

The full performance of AI is demonstrated when paired with other technologies, such
as robotics, where it combines analytical power with physical abilities. For people who
have suffered accidents or were born with a disability, AI software and robotic hardware
have begun to offer solutions for vision, hearing, and locomotion.

Another concept that is starting to obtain more and more attention from researchers
and the public is the brain–computer interface (BCI) or brain–machine interface (BMI).
Information captured via sensors of this type can be used as input for an AI model [7].

Integrating artificial intelligence into the healthcare ecosystem enables a multitude
of benefits for both the medical community and patients, including automating tasks and
analysing large patient data sets to deliver better, faster, and lower-cost healthcare.

AI can automate administrative tasks such as pre-authorizing insurance, tracking
unpaid bills, and maintaining records to ease the workload of healthcare professionals and
ultimately save them money. Thanks to the ability of artificial intelligence to process large
data sets, the consolidation of patient information can lead to predictive benefits, helping
the healthcare ecosystem to discover key areas in the patient care process.

Wearable healthcare technology is also using artificial intelligence to better serve
patients. Software using artificial intelligence, such as that in smartwatches, can analyse
data to alert users and their healthcare professionals to potential health problems and risks.
The possibility of evaluating one’s own state of health through an emerging technology
eases the workload of specialists and facilitates the comfort of patients by preventing
unnecessary visits to the hospital.

Figure 1 graphically represents the concept by which classic consultations are replaced
by sensors, and the information they provide is processed using AI [8].



Computers 2023, 12, 213 3 of 21

Computers 2023, 12, 213 3 of 22 
 

to alert users and their healthcare professionals to potential health problems and risks. 

The possibility of evaluating one’s own state of health through an emerging technology 

eases the workload of specialists and facilitates the comfort of patients by preventing un-

necessary visits to the hospital. 

Figure 1 graphically represents the concept by which classic consultations are re-

placed by sensors, and the information they provide is processed using AI [8]. 

 

Figure 1. Graphical representation of a modern health-monitoring architecture using AI. 

2. Recommended Artificial Intelligence Architectures for Image Processing 

Several neural network architectures exist for AI data processing, including the arti-

ficial neural network (ANN), convolutional neural network (CNN), and recurrent neural 

network (RNN). ANNs are characterized by interconnected neurons across layers and are 

also called feed-forward neural networks due to their unidirectional data processing [9]. 

They are among the simplest neural network variants, where data flow from node to node, 

through input nodes, until they reach the output. While they offer benefits like infor-

mation storage across the network and fault tolerance, they can sometimes exhibit inex-

plicable behaviours. RNNs, on the other hand, are more intricate. They preserve the out-

put from processing nodes, and the data do not solely move in one direction. Each node 

in RNNs acts as a memory cell, ensuring ongoing computation and operations. If an 

RNN’s prediction errs, the system self-corrects during backpropagation [10]. 

A convolutional neural network (CNN) is particularly beneficial for image recogni-

tion and pixel-based tasks. CNNs are the go-to architecture for tasks requiring object 

recognition, making them ideal for computer vision (CV) applications, from self-driving 

cars to facial recognition. CNNs identify patterns in images using principles from linear 

algebra, such as matrix multiplication. Their architecture mirrors the human brain’s con-

nectivity, particularly the frontal lobe responsible for visual processing. CNNs ensure 

Figure 1. Graphical representation of a modern health-monitoring architecture using AI.

2. Recommended Artificial Intelligence Architectures for Image Processing

Several neural network architectures exist for AI data processing, including the artifi-
cial neural network (ANN), convolutional neural network (CNN), and recurrent neural
network (RNN). ANNs are characterized by interconnected neurons across layers and are
also called feed-forward neural networks due to their unidirectional data processing [9].
They are among the simplest neural network variants, where data flow from node to node,
through input nodes, until they reach the output. While they offer benefits like information
storage across the network and fault tolerance, they can sometimes exhibit inexplicable
behaviours. RNNs, on the other hand, are more intricate. They preserve the output from
processing nodes, and the data do not solely move in one direction. Each node in RNNs acts
as a memory cell, ensuring ongoing computation and operations. If an RNN’s prediction
errs, the system self-corrects during backpropagation [10].

A convolutional neural network (CNN) is particularly beneficial for image recognition
and pixel-based tasks. CNNs are the go-to architecture for tasks requiring object recogni-
tion, making them ideal for computer vision (CV) applications, from self-driving cars to
facial recognition. CNNs identify patterns in images using principles from linear algebra,
such as matrix multiplication. Their architecture mirrors the human brain’s connectivity,
particularly the frontal lobe responsible for visual processing. CNNs ensure comprehen-
sive image coverage, addressing the fragmented image processing of traditional neural
networks [11].
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Recommended AI Architectures for Image Processing—In Brief

Architecture Advantages Disadvantages

CNN
High accuracy in image tasks,
scalable

Requires large datasets for
training

RNN Handles sequences well Not ideal for image tasks

[Another architecture] [Advantages] [Disadvantages]

Conclusion:
Based on our evaluation, CNNs offer the most promising results for our specific

application due to their high accuracy and adaptability.

2.1. CNN Layers

A CNN encompasses three main layers: the convolutional layer, the pooling layer, and
a fully connected (FC) layer. The convolutional layer handles the bulk of the computations,
with the potential for subsequent convolutional layers [12]. During convolution, a filter in
this layer scans the image’s receptive fields, verifying a feature’s presence. Over multiple
iterations, this filter canvasses the entire image. The resultant output from these points
is termed a feature map or convolutional feature. The image then undergoes conversion
to numerical values for the CNN’s interpretation. The pooling layer, while similar to the
convolutional layer in operation, reduces input parameters and incurs some information
loss. However, it does cut down on the CNN’s complexity and enhances efficiency. The
fully connected layer finalizes image classification based on the previously extracted fea-
tures. Only specific layers in a CNN are fully connected to prevent excessive network
density, which can lead to increased losses, compromise output quality, and demand hefty
computational resources.

2.2. The Operation of Convolutional Neural Networks

A CNN comprises multiple layers, each designed to detect different features of an
input image. Filters or kernels are applied to the image, producing outputs that become
progressively refined with each layer. In the early layers, filters often detect simple features.
In successive layers, the filters grow more complex to identify parameters that distinctively
characterize the input object. Hence, the output from each convolution (the partially
recognized image) serves as the input for the next layer. In the final layer, known as the
fully connected (FC) layer, the CNN identifies the image or the object it depicts [13]. During
convolution, the input image is processed via a series of filters. As each filter emphasizes
specific image features, it sends its output to the subsequent layer’s filter. This process might
be repeated across tens, hundreds, or even thousands of layers. Ultimately, processing the
image through multiple CNN layers enables the recognition of the complete object.

Network Structure

Our model is based on the convolutional neural network (CNN), a subtype of deep
neural networks specifically tailored for image processing. The architecture’s organization,
from input to output, comprises several layers that help in the hierarchical extraction of
image features.

• Layer: Given that our images are coloured with a resolution of 512 × 512 pixels, the
input neurons number 512 × 512 × 3 (three channels for RGB).

• Hidden Layers:

• Convolutional Layer 1: 32 filters of size 3 × 3, followed by a ReLU activa-
tion function;

• Max-Pooling Layer 1: With a pool size of 2 × 2;
• Convolutional Layer 2: 64 filters of size 3 × 3, followed by a ReLU activa-

tion function;
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• Max-Pooling Layer 2: With a pool size of 2 × 2;
• Fully Connected Layer: With 512 neurons and a ReLU activation function.

• Output Layer: Given that our task is binary classification (detect or not detect), we
have one neuron with a sigmoid activation function.

The structural and functional organization of our artificial neural network and its
parameters are as follows:

• Number of training samples = 1000
• Image number of input neurons = 50 × 50 × 1
• Number of output neurons = 2
• Number of intermediate layers = 6
• Activation function = softmax
• Learning rate = 1 × 10−3

2.3. CNN Training

We have pedaled enough on the training itself, but this cannot be performed alone
to raise the prestige of AI; it must be performed in harmony with the other requirements.
The neural network was trained to the maximum on the existing data set; more precisely, it
reached the upper limit for the given initial conditions, respectively, for the associated loss
function. Mathematically, the stability of the loss function utilized has been reached.

A CNN operating within AI has some important qualities, listed below, that recom-
mend it successfully, along with some specific limitations.

(1) Storage of information in the entire existing network;
(2) Capability to working with poor/deficient standard knowledge;
(3) Minor fault tolerance;
(4) A good allocated memory.

This is also happening in traditional programming, where information is stored on the
network and not in a database. If a few pieces of information disappear from one place, it
does not stop the whole network from functioning. After the training of a CNN, the output
produced by the data can be incomplete or insufficient. The importance of that missing
information determines the lack of performance.

We started with a standard neural network and initialized our weights arbitrarily.
Evidently, we did not have the best results from the beginning. In the training activity, we
started with a modest-performance neural network, and we ended up with a high-precision
network. Practically, regarding the loss function associated, we expected the loss function
to be much lower at the training’s termination. Mathematically, the training inconvenience
is equivalent to the minimizing problem of the associated loss function.

2.4. CNN vs. Neural Networks

A significant limitation of regular neural networks (NNs) is scalability. While NNs
can handle smaller images with limited color channels, they struggle with larger and more
complex images, demanding more computational power and resources. Moreover, NNs
can suffer from overfitting when they attempt to learn excessive details from training data.
This can lead to the NN inadvertently learning noise, which then hinders performance
on test datasets. Consequently, the NN might fail to discern patterns or objects within
the data set. In contrast, a CNN employs parameter sharing. In a CNN, nodes within
a layer are interconnected, and each connection has a weight. As filters move across an
image, these weights remain constant, a condition termed “parameter sharing”. This makes
CNNs less computationally demanding than NNs [14]. Deep learning (DL), a subset of
machine learning, utilizes neural networks with a minimum of three layers. Multi-layer
networks tend to yield more accurate results than single-layer networks. Both RNNs
and CNNs find their place in deep learning, with their usage determined by the specific
application. For tasks like image recognition, classification, and computer vision, CNNs are
especially suitable. Their efficiency is notable, especially when dealing with large datasets.
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Furthermore, CNNs learn object features through iterative processing as data flow through
its layers. This deep learning approach negates the need for manual feature extraction.
Notably, CNNs can be retrained for new tasks and can even leverage existing networks.
These benefits enable the application of CNNs in real-world scenarios without escalating
computational complexity or costs. To reiterate, CNNs, due to their parameter-sharing
capability, are more computationally efficient than regular NNs. These models are versatile
and can function across various devices, including smartphones.

2.5. Convolutional Neural Network (CNN) Applications

CNNs are already utilized in various picture-processing applications. In contradis-
tinction to easy picture identification applications, computer vision permits computing
systems to extract meaningful information from visual inputs to produce appropriate action
founded on that information [15]. The most famous computer vision and CNNs practices
are utilized in areas among which we can list health, automotive, social networks, retail
and facial identification, and audio processing for virtual assistants.

2.6. A Short Analysis

The existing, previously announced solutions in this field, which are the most used,
are the following. The information is stored in the neural networks and not in the database,
as is known from classical programming. If a couple of pieces of information disappear
from one part of the network, this does not stop the operation of the entire network. Also,
at the end of artificial neural network (ANN) training, the produced result by the used data
may be a partial result or a poorly formed result. In these circumstances, namely, a lack of
information in some places of the network produced a flagrant decrease in performance.

AI has been used in the analysis of medical images for a while now. There is a
reluctance of doctors to pass responsibility to a program. We did not use information from
other projects already launched. It is a solution that we developed ourselves, following the
review of the specialized literature.

2.7. Section 2 Conclusion

The conclusion for Section 2 is that the theory protects us from some mistakes inherent
in the act of research. But, the great advantage is related to revealing/imposing the benefit
of using AI in the processing of global information, which starts from the statistical study
of medical images (CT images) and ends with the establishment of a correct diagnosis
of the infection with the COVID-19 virus, respectively, its observation/recognition and
the monitoring of its evolution towards healing. Today, AI has confirmed a significant
accuracy in the detection of image-based diseases (currently, with modern means, over
96% accuracy) and regarding survival rate, as well as the adequate treatment response.

3. Results

Project development started by establishing the data set according to the objective.
For this, we used a public data set provided by the www.kaggle.com platform. The set
comprises 2481 images (1251 contain lungs with COVID-19 infection and 1230 contain
lungs without COVID-19 infection). At the beginning of the program, each image receives
the appropriate label, “covid” or “normal”, which is resized to 50 × 50 pixels (see Figure 2)
and undergoes conversion to grayscale (grayscale format). After these transformations,
the image–label pair is passed as an entry in an array. Further, a block list containing the
values of the main parameters used in the inference process is presented in Figure 3.

The architecture chosen for this model involved the implementation of six 2D con-
volution layers, and one fully interconnected one. Also, the network uses the “Adam”
variant as the optimizer and the “softmax” variant as the activation function. This type of
activation function is known to be used for multi-class classification problems where class
membership is required for more than two class labels [16].

www.kaggle.com
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The accuracy of the obtained model is 98.1%, which denotes a solid architecture that
optimally responds to the initial requirements.

The graphs in Figures 4–7 are made using the TensorBoard utility available in the
Python language [12]. TensorBoard is an open-source toolkit that enables us to understand
training progress and improve model performance by updating the hyperparameters. This
tool provides features for:

• Loss and accuracy tracking;
• Model’s graph visualization;
• Viewing histograms of weights;
• Displaying different data formats;
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• Profiling TensorFlow programs;
• Viewing histograms of tensors as they change over time.
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COVID-19 patients and, respectively, for non-COVID-19 patients [16].

Figure 2 is a block diagram of the application.
In Figure 3, there are some final values for the main parameters of the model in the

training process used.
Figure 3 is a screenshot from the PyCharm 2020.1.1 x64 development environment

console in which the application was developed. More precisely, it contains some final
values list for the main parameters in the inference stage of the identification process.

Figures 4–7 represent the accuracy values during training and validation (Figures 4 and 5),
respectively, and the “loss” parameter values during training and validation (Figures 6 and 7).

For Figures 4–7, the horizontal scale has as the unit of measurement the number of
iterations (in our case, a number of 688 iterations out of a maximum of 700), represented
by a number. At the same time, on the Oy axis, we find the measured values normalized
to the total number of measurements [16], respectively, a subunit number, or it can be the
number of percentages when the percentage is the unit of measure. The terms “val_loss”
and “loss” denote cost function values for validation and training data, respectively. The
terms “val_accuracy” and “accuracy” measure prediction accuracies for a validation set
and a training set after each training epoch.

Note, for example, that “accuracy” is the percentage of correct classifications that a
trained model makes, i.e., the number of correct predictions divided by the total number
of predictions from all classes. It is often abbreviated as ACC. ACC is reported as a value
in the interval [0, 1] or [0, 100], depending on the chosen scale. An accuracy of 0 means
that a classifier always predicts the wrong label, while an accuracy of 1 or 100 means that it
always predicts the correct label [17].

CT Lung Picture Interpretation
The usual ordinary diagnostic procedure for COVID-19 is RT-PCR (reverse transcrip-

tion polymerase chain reaction), which consumes a lot of time and has shallow-low sensi-
bility. On the other hand, chest X-ray radiography (CXR) is the primal imagistic modality
that is utilized, as it is easily disposable and assures immediate good results. Nevertheless,
it is well-known to have reduced sensibility in comparison to CT (computed tomography),
which can be utilized efficiently in connection with other diagnosis procedures [18]. So, CT
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has been recognized as a clinically significant board for the correct diagnosis and disease
understanding of subjects with COVID-19. Various medical studies have confronted the
CT pictures of contaminated patients with certified COVID-19 clinical confirmation, with a
specificity of 37% and a sensitivity of 94% [19,20].

Figure 8 shows the complete module of some lung CT images affected by COVID-19
and images of lungs that did not suffer from COVID-19, unaffected by the virus, practically
healthy lungs.
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Figure 8. Image validation of the completed module.

We mention that the set of images from Figure 8 and the license to use them can be
found online at the address indicated in the bibliographic reference [21].

Fractal Analysis

Fractal analysis theory evaluates, in general, the fractal characteristics of experimental
data, namely fractal parameters. It is constituted of several procedures to allocate for an
image, among others, a fractal dimension together with other fractal characteristics, such as
lacunarity, to an extended data set, whether theoretical or experimental. Among these, the
most popular applications are related to the data extracted mainly from natural phenomena,
considering first the topography [22] spatial geometric objects, ecology science and financial
market fluctuations, sound waves, and their frequency domain digital complex imagistic
together with molecular dynamics [23]. Fractal analysis is precious in extending the human
comprehension of the structure and functioning of a variety of complex systems formulated
and as a potential working instrument to value novel study domains. Thus, fractal calculus
and its parameters were formulated to constitute a generalization action of the usual
mathematical calculation [24,25].

COVID-19 Image
Table 1 contains the values of the fractal dimension and the standard deviation for

the procedure with a quadratic mask, FDQ, and SDQ, as well as the values of the fractal
dimension and the standard deviation for the procedure with a rectangular mask, FDR, and
SDR. Also, at the end of the table is the gap value for the original COVID-19 lung image.

Table 1 presents the familiar fractal indicators, as they were the fractal dimension
of the CT lung COVID-19 image with a quadratic mask, FDQ = 1.8038 ± 0.4247, respec-
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tively, the fractal dimension of the CT lung COVID-19 image with a rectangular mask,
FDR = 1.9785 ± 0.007 and lacunarity Λ = 0.0554. The fractal analysis parameters, the fractal
dimension, and the lacunarity Λ have been computed utilizing the software programs
developed for the primal time by the data analysis comprised in brain CT images [22,23].

Table 1. Fractal characteristic computation of a COVID-19 image.

FDQ SDQ FDR SDR Lacunarity

1.8038 ±0.4247 1.9785 ±0.007 0.0554

Figures 9 and 10 show the original CT lung image, respectively, and the defined mask
for the COVID-19 lung CT image, framed in a blue border in Figure 10.
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Figure 10 presents the applied mask across the COVID-19 lung CT image, framed in a
blue colour border.

Figure 11 presents the 3D graphic description of voxels contained in the patient’s
COVID-19 pulmonary CT picture.

The voxels are usually utilized in scientific research to precisely and quickly focus
on volumetric data [24,25]. In a voxels-founded structure morphology, condensation
differences in the lung texture can be confronted utilizing the voxels, as seen in the figure
above. Figures 12 and 13 are the grayscale images with and without luminance of the
COVID-19 lung CT image, respectively, and the filtered versions of the COVID-19 lung
CT image.
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Figure 13. Filtered versions of the COVID-19 lung image: (a) original image after a median filter was
applied and (b) picture filtered in the Wiener technique.

Figure 13 is the original picture version after the median filter (left) was filtered with
the Wiener technique (right) of the COVID-19 lung CT image.
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Figure 14 is the binary version of the COVID-19 lung image. Figure 15 represents the
box-count algorithm application for the COVID-19 lung image.
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Figure 15. Box-count chart for COVID-19 lung image.

Figure 15 is the graphic representation of the box-count algorithm for the value of the
obtained fractal dimension of the COVID-19 lung image [26,27].

Figure 16 shows the fractal dimension graphic for the COVID-19 CT lung image zone
using the HarFa program [28].

In the coordinate system ln(N(r)) as a function of ln(r), used in Figure 16, the multiple
linear regression technique was applied to obtain the values of the fractal dimension of the
CT picture of the COVID-19 lung, more precisely, to verify the obtained values with the
box-counting algorithm, as in Figure 15.

Non-COVID-19 Image
Table 2 contains the values of the fractal dimension and the standard deviation for the

procedure with quadratic mask, FDHLQ, and SDHLQ, as well as the values of the fractal
dimension and the standard deviation for the procedure with rectangular mask, FDHLR,
and SDHLR, in the healthy lung case [26,27]. Also, at the end of the table is the gap value
for the non-COVID-19 lung image.

Table 2. Fractal characteristics computation of non-COVID-19 image.

FDHLQ SDHLQ FDHLR SDHLR Lacunarity

1.7249 ±0.4170 1.9798 ±0.008 0.0584

Table 2 presents the familiar fractal indicators, as it were the fractal dimension of the
CT lung non-COVID-19 image with quadratic mask, FDHLQ = 1.7249 ± 0.417, respec-
tively the fractal dimension of the CT lung non-COVID-19 image with rectangular mask,
FDHLR = 1.9798 ± 0.008 and lacunarity Λ = 0.0584.
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Figure 16. Checking the fractal dimension values with the HarFa graphic software (version 5.5), for
COVID-19 lung image.

Figures 17 and 18 show the original non-COVID-19 CT pulmonary picture, respectively,
and the defined mask for the non-COVID-19 CT pulmonary picture, framed in a blue border,
Figure 18.

Computers 2023, 12, 213 15 of 22 
 

 

Figure 17. Original non-COVID-19 lung image. 

 

Figure 18. Applied mask for a non-COVID-19 lung image. 

Figure 18 presents the applied mask across the non-COVID-19 CT lung image, 

framed in a blue colour border. 

Figure 19 presents the 3D graphic description of voxels contained in the patient’s 

non-COVID-19 pulmonary CT picture. 

 

Figure 19. Voxels’ representation in the non-COVID-19 lung image. 
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Figure 18 presents the applied mask across the non-COVID-19 CT lung image, framed
in a blue colour border.

Figure 19 presents the 3D graphic description of voxels contained in the patient’s
non-COVID-19 pulmonary CT picture.
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The voxels are usually utilized in scientific research to precisely and quickly focus on
volumetric data, and in a voxels-founded structure morphology, condensation differences
in the lung texture can be confronted utilizing the voxels in principle, as in Figure 19.

Figures 20 and 21 are the grayscale images with and without luminance of the non-
COVID-19 lung CT image, respectively, the filtered versions of the non-COVID-19 lung
CT image.

Figure 21 is the original image after the median filter (left) filtered with the Wiener
technique (right) of the non-COVID-19 lung CT image.

Figure 22 is the binary version of the COVID-19 lung image. Figure 23 represents the
box-count algorithm application for the COVID-19 lung image.

Figure 23 is the graphic representation of the box-count algorithm for the value of the
obtained fractal dimension of the COVID-19 lung image.

Figure 22 is the binary version of the non-COVID-19 lung image. Figure 23 represents
the box-count algorithm application for the COVID-19 lung image.

Figure 23 is the graphic representation of the box-count algorithm for the value of the
obtained fractal dimension of a non-COVID-19 lung image.

Figure 24 shows the fractal dimension graphic for the non-COVID-19 CT image zone
with the HarFa program.



Computers 2023, 12, 213 16 of 21

Computers 2023, 12, 213 16 of 22 
 

The voxels are usually utilized in scientific research to precisely and quickly focus on 

volumetric data, and in a voxels-founded structure morphology, condensation differences 

in the lung texture can be confronted utilizing the voxels in principle, as in Figure 19. 

Figures 20 and 21 are the grayscale images with and without luminance of the non-

COVID-19 lung CT image, respectively, the filtered versions of the non-COVID-19 lung 

CT image. 

Figure 21 is the original image after the median filter (left) filtered with the Wiener 

technique (right) of the non-COVID-19 lung CT image. 

Figure 22 is the binary version of the COVID-19 lung image. Figure 23 represents the 

box-count algorithm application for the COVID-19 lung image. 

Figure 23 is the graphic representation of the box-count algorithm for the value of the 

obtained fractal dimension of the COVID-19 lung image. 

  
(a) (b) 

Figure 20. Grayscale versions of the non-COVID-19 lung image: (a) grayscale image and (b) gray-

scale with no luminance. 

  

(a) (b) 

Figure 21. Filtered versions of the non-COVID-19 lung image: (a) original image after a median filter 

was applied and (b) picture filtered in the Wiener technique. 

Figure 22 is the binary version of the non-COVID-19 lung image. Figure 23 represents 

the box-count algorithm application for the COVID-19 lung image. 

Figure 23 is the graphic representation of the box-count algorithm for the value of the 

obtained fractal dimension of a non-COVID-19 lung image. 

Figure 20. Grayscale versions of the non-COVID-19 lung image: (a) grayscale image and (b) grayscale
with no luminance.
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In the end, it is crucial to also discuss the methodological results obtained. The most 

relevant of them are the following: 

1. Feature Extraction. The convolutional layers successfully extracted key features from 

the image data set. These include specific patterns, shapes, and textures indicative of 

the CoV-2 virus’s presence; 

2. Training Convergence. The convergence of AI and training has laid down an im-

portant foundation for realizing intelligent applications that can predict and diag-

nose pulmonary disorders. The adaptive learning rate proved instrumental in stabi-

lizing the training process, especially during the latter used epochs; 

3. Overfitting Mitigation. The incorporation of dropout layers and data augmentation 

techniques effectively reduced overfitting, as evidenced by the minimal difference in 

performance between the training and validation datasets; 

4. Comparison with a Linear Classifier. For completeness, we also trained a simple lin-

ear classifier. As was observed, the whole functioned with an accuracy of 98.1%, re-

inforcing the need for a more complex architecture. 

Figure 22. Binary version of the non-COVID-19 lung image.
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Figure 24. Checking the fractal dimension values with the HarFa graphic software (version 5.5), for
non-COVID-19 lung image.

In the coordinate system ln(N(r)) as a function of ln(r), used in Figure 24, the multiple
linear regression technique was applied to obtain the values of the fractal dimension of the
CT picture of the non-COVID-19 lung, more precisely, to verify the obtained values with
the box-counting algorithm, as in Figure 23.

In the end, it is crucial to also discuss the methodological results obtained. The most
relevant of them are the following:
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1. Feature Extraction. The convolutional layers successfully extracted key features from
the image data set. These include specific patterns, shapes, and textures indicative of
the CoV-2 virus’s presence;

2. Training Convergence. The convergence of AI and training has laid down an impor-
tant foundation for realizing intelligent applications that can predict and diagnose
pulmonary disorders. The adaptive learning rate proved instrumental in stabilizing
the training process, especially during the latter used epochs;

3. Overfitting Mitigation. The incorporation of dropout layers and data augmentation
techniques effectively reduced overfitting, as evidenced by the minimal difference in
performance between the training and validation datasets;

4. Comparison with a Linear Classifier. For completeness, we also trained a simple
linear classifier. As was observed, the whole functioned with an accuracy of 98.1%,
reinforcing the need for a more complex architecture.

4. Discussion

In particular, artificial intelligence (AI) is the computer science domain that creates
machines that imitate true human intelligence, utilizing algorithms to assume human-like
comportment and make decisions at the same time. In AI, machines perform various du-
ties such as mathematical problem-solving, speech recognition, face recognition, learning,
etc. It can be stated, thus, that the machines function and act as a man (humanoid) if
they have the appropriate information. Today, it can be said with certainty that artificial
intelligence is sometimes imprecise, but it can help to successfully solve complex mathe-
matical problems. This has caused AI to be extremely used nowadays and to contribute
to the fulfillment of tasks that were previously impossible to accomplish. The term AI is
often used interchangeably with its subfields, which include machine learning (ML) and
deep learning.

The introduction of artificial intelligence (AI) continues to affirm its relevance across
various facets of everyday life. Conceived from a need to streamline repetitive human tasks,
AI has grown to develop solutions that adapt over time, much like human behavior [1].
One of AI’s major advantages is its ability to mitigate human error, offering the potential for
meticulous analysis of diverse data formats continuously [2]. Among the sectors benefiting
from AI, we note its spectacular impact, more recently, in medicine. This is particularly true
for medical imaging, where AI’s exhaustive analysis capabilities are invaluable [3]. This
paper has explored the potential of an AI model in determining the presence of SARS-CoV-2
infection in lung CT images. Identifying intricate details in data often challenges the human
senses, emphasizing the value of specialized programs for medical image processing.
Integrating AI into patient diagnosis heralds a monumental step in modern medicine’s
evolution, promising enhanced accuracy in analysis and monitoring. Furthermore, this
work showcased an AI architecture that detects SARS-CoV-2 in CT images, developed
using the TensorFlow library in Python [4].

There are some important novelties that can be mentioned in the description of this article:

• The primary novelty is the appearance of new AI-based software that is the main
source in the analysis of the disease and the management of its healing stages;

• Adapted CNN architecture specifically designed for application, e.g., virus detection;
• Implementation of adaptive learning rate decay to enhance convergence during training;
• Utilization of a unique combination of layers and neurons to optimize processing time

without compromising accuracy;
• Using fractal analysis, respectively, by calculating fractal parameters, namely fractal di-

mension, and lacunarity, in the detection of SARS (severe acute respiratory syndrome);
• Pixel-level evaluation of CT pulmonary images of sick patients;
• Establishing an effective database by storing all the representative images of the

patients involved;
• The capability to provide an immediate diagnosis in case the simple visualization of

the image does not lead to a concrete decision.



Computers 2023, 12, 213 19 of 21

Changing influences. The influence of changing input parameters on the accuracy of
the results is called sensitivity analysis (SA). For some specialists, SA is a philosophical
problem that refers to several aspects, among which there can be nominated, in short, a
process in which one or multiple factors from an analysed problem are changed to evaluate
their influence on some outcome or the manifested interest magnitude. More precisely, the
effectiveness evaluation of a resolution option, the impact of a particular constraint on the
optimality or benefit function, and the role of a pattern/model parameter in the production
as a response to a viable resulting model. It is considered a well-posed problem, in the
mathematical sense, if variations of 2–3% of the input data produce less than 4% variations
of the output data. In practice, it is considered a reasonable influence of the input data
variation if the final accuracy variation is less than 4%.

In the current paper, we utilized AI and DL procedures to analyse imaging data of
patients with disease stage-treated and verified both for the diagnosis and monitoring of
the SARS-CoV-2 virus. The results prove that DL procedures specifically predict a good di-
agnosis and a correct evolution post-treatment as such [29]. However, the present study has
some restrictions, such as a relatively small specimen dimension (patient number), a devel-
oped unique-center project, and the retrospective nature of the research carried out, which
introduces the partiality of the conclusions and important confusing factors/counteragents.

While the core objective is to determine the presence or absence of the virus, the basic
intricacies of image patterns make the problem more complex than simple linear separation.
The underlying question refers to linear separability in image classification. While the end
goal is binary in nature, determining the presence or absence of a virus from image data,
the inherent complexities within the images require a more nuanced approach. Simple
linear classifiers, such as the perceptron, would be insufficient due to several reasons, such
as high dimensionality, intricate patterns, and overlap in features. The adoption of a more
complex model like the CNN, as discussed earlier, is justified. The convolutional layers can
detect intricate patterns, and the deeper architecture helps in understanding hierarchies in
these patterns, making it more suited for our task than a simple linear classifier.

In defiance of the limitations of the overall project, our medical activity assures
fine/excellent insights in utilizing DL procedures to predict treatment effects in patient
disease amelioration, with clinical involvements for cure decision making and the con-
sequences in the patient’s state of health. In the coming times, studies should confirm
the model in question, but on substantial patient groups, and investigate deep learning
algorithms in multiple medical real contexts [30,31].

In closure, the DL abordation utilized in this study validates a correctly predicted
diagnosis and the health state evolution. Machine learning is a promising instrument
for lung COVID-19 treatment follow-up and quick detection of healing. Confirmatory
research and ameliorated integration in the medical service flows become necessary for the
maximization of the action and functional potential of the AI model [32,33]. Mathematical
approaches for optimizing mining facilities have conducted us to the improvement of the
AI apparatus [34,35]. Computational software associated with practiced fractal analysis,
utilized in the present study, was first introduced and successfully detailed in the author’s
articles noted as the references [18–20].

5. Conclusions

This paper presents an artificial intelligence model useful for the diagnosis and moni-
toring of the SARS-CoV-2 virus.

The medical society is sometimes unable to distinguish the details of an illness when
the affected area, at first analysis, does not show any changes. In order to combat human
error, it is recommended to use specialized software that can provide accurate verdicts
even for data affected by noise.

Thus, for a process of determining the degree of infection, the first step is handled via
the artificial intelligence model that decides whether the patient in question has the virus
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or not. Then, in the case of a confirmation, the analysed image is used as input data for a
program responsible for measuring the degree of the condition using fractal analysis.

Among the advantages of this approach are the reduction of human error (the resulting
AI model always responds with the same accuracy), use in repetitive processes (there is no
need for a doctor to consume time with small-scale activities), and making simple decisions
in a short time (the model can notice details that escape a human).

On the other hand, among the disadvantages, we can consider the access to high-
quality or large data sets, the implementation of a complex system to adaptively filter the
information before it is provided to the model, and the impossibility of using artificial
intelligence models in complex decision making processes (due to the fact that it is impos-
sible for the model training process to provide a null value of the “loss” parameter, it is
recommended that the AI only decides in cases where the result does not cause damage of
any kind).

It is observed that the application of fractal analysis and lacunarity algorithms is a
good practice in assessing the degree of infection. Given that the geometric shape inside
the lungs can be likened to a fractal shape, we can easily apply the box-counting formula
to evaluate the fractal dimension value. Once determined, it can be used to monitor the
progress of the disease. For patients seriously affected by this disease, periodic evaluation
can be recommended to combat possible sequelae.

Finally, we can conclude that scanning with the help of computer tomographs is
only the beginning part of a diagnosis. Specialized software architectures are needed to
capitalize on every detail captured so that both doctor and patient benefit from realistic
results. With the trained AI model, a maximum accuracy of 98.1% was obtained.

This innovative program shows great potential in the development of a complex
medical solution for the analysis of the pulmonary system. For example, it can be inter-
connected with a program that, through fractal analysis, can characterize the evolution
of the COVID-19 condition over time in order to prescribe an optimal treatment. At the
same time, the techniques for highlighting some anomalies used by medical imaging so far
(brightness adjustment, segmentation, clustering, etc.) can thus be modernized and can
provide more precision at the end of the measurement procedures.
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