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Abstract: Digital breast tomosynthesis (DBT) stands out as a highly robust screening technique
capable of enhancing the rate at which breast cancer is detected. It also addresses certain limitations
that are inherent to mammography. Nonetheless, the process of manually examining numerous
DBT slices per case is notably time-intensive. To address this, computer-aided detection (CAD)
systems based on deep learning have emerged, aiming to automatically identify breast tumors within
DBT images. However, the current CAD systems are hindered by a variety of challenges. These
challenges encompass the diversity observed in breast density, as well as the varied shapes, sizes, and
locations of breast lesions. To counteract these limitations, we propose a novel method for detecting
breast tumors within DBT images. This method relies on a potent dynamic ensemble technique,
along with robust individual breast tumor detectors (IBTDs). The proposed dynamic ensemble
technique utilizes a deep neural network to select the optimal IBTD for detecting breast tumors,
based on the characteristics of the input DBT image. The developed individual breast tumor detectors
hinge on resilient deep-learning architectures and inventive data augmentation methods. This study
introduces two data augmentation strategies, namely channel replication and channel concatenation.
These data augmentation methods are employed to surmount the scarcity of available data and to
replicate diverse scenarios encompassing variations in breast density, as well as the shapes, sizes, and
locations of breast lesions. This enhances the detection capabilities of each IBTD. The effectiveness
of the proposed method is evaluated against two state-of-the-art ensemble techniques, namely non-
maximum suppression (NMS) and weighted boxes fusion (WBF), finding that the proposed ensemble
method achieves the best results with an F1-score of 84.96% when tested on a publicly accessible DBT
dataset. When evaluated across different modalities such as breast mammography, the proposed
method consistently attains superior tumor detection outcomes.

Keywords: breast cancer; tomosynthesis; tumor detection; computer-aided detection (CAD) systems;
deep learning

1. Introduction

Breast malignancy stands as a prevalent and impactful variant of cancer afflicting
women, contributing significantly to the global burden of cancer-related fatalities [1].
Timely identification of the disease is pivotal in enhancing the prospects of effective thera-
peutic interventions and favorable survival outcomes [2]. Accurate cancer detection poses
numerous challenges, including the complexity of tumor identification in the early stages,
potential variability in imaging modalities, and the need for an accurate and timely diag-
nosis. Mammography and breast ultrasonography (BUS) are the prevailing techniques
employed for diagnosing breast cancer. Nevertheless, the heightened breast density often
diminishes the sensitivity and specificity of breast lesion detection within mammographic
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and BUS images due to the presence of densely compacted fibro-glandular tissue in the
breast. This limitation emerges due to the reliance on two-dimensional (2D) imaging
modalities in these contexts [3].

In an attempt to surmount the challenge of tissue superposition and overlapping,
which can obscure or mask breast lesions within mammographic images, the advent of Dig-
ital Breast Tomosynthesis (DBT) has brought forth a three-dimensional (3D) tool for breast
cancer screening [4]. DBT operates by capturing a set of individual mammographic images
while rotating the X-ray tube at various angles around a stationary compressed breast.
Subsequent software processing of these images yields a sequence of high-resolution 3D
slices that convey depth-related information [5]. This 3D rendering considerably mitigates
the influence of dense tissues, consequently enhancing the rate of breast lesion detection in
contrast to conventional mammography and BUS images [6]. Therefore, DBT presents a
viable avenue for early breast cancer detection and diagnosis.

While DBT effectively addresses the challenge of tissue superposition intrinsic to mam-
mography, it introduces fresh complexities into clinical procedures [5]. The need to assess a
greater number of slices per breast volume amplifies the intricacy of radiologists’ workflow.
This intricacy can be compounded by the augmented level of physician involvement in the
interpretation process as the number of slices available for assessment increases. In this
context, Computer-Aided Detection (CAD) systems have demonstrated their potential to
ameliorate radiologists’ performance and alleviate the clinical intricacies introduced by
DBT [7].

Numerous CAD systems rooted in deep learning have emerged over recent years,
aiming to autonomously discern, segment, and classify breast tumors within DBT data.
The integration of deep learning techniques facilitates the extraction of meaningful features
directly from DBT images, circumventing the necessity for manual feature engineering.
This approach streamlines the detection, segmentation, and classification processes for
breast tumors within an end-to-end framework. As an illustration, Lai et al. [8] introduced
a technique for segmenting breast tumors in DBT images using a U-Net architecture. Their
approach comprises six stages encompassing data pre-processing, patch extraction, data
augmentation, U-Net-based segmentation, a voting phase, and post-processing. Initial data
pre-processing involved applying a top-hat transform to heighten the contrast between
tumor regions and the background tissue. Subsequently, the images were partitioned into
patches and subjected to 90-degree rotations to expand the pool of available data for patch
extraction and augmentation. The U-Net model, boasting 23 layers, was leveraged for
pixel-wise segmentation across the entire image. During the voting stage, probabilistic
forecasts for each slice were generated using the U-Net model. These predictions were
then fused into a final image label through one of various voting strategies. The ultimate
step encompassed the imposition of volumetric constraints to eliminate small clusters
erroneously identified as breast masses.

In a similar vein, Samala et al. [9] introduced a CAD system designed to classify
breast masses within DBT images, utilizing a deep convolutional neural network (DCNN)
integrated with transfer learning from mammography data. The DCNN architecture
featured four convolutional layers and three fully connected (FC) layers. Initially, the
network was trained on mammography data. Subsequently, the weights within the first
three convolutional layers were frozen, while the last convolutional layer and the FC layers
were initialized randomly and further trained on DBT images. Evaluation on a proprietary
dataset demonstrated that the transfer learning approach boosted classification accuracy
by 9%.

Limited research endeavors have been directed towards the detection and segmen-
tation of breast tumors within DBT images. As an example, Fan et al. [10] introduced a
deep learning strategy grounded in convolutional neural networks (CNNs), employing
the Faster Region-Based Convolutional Neural Network (R-CNN) for the purpose of mass
detection in DBT images. The proposed methodology encompassed three distinct modules:
(1) Module A undertook the preprocessing of DBT z-stack images, (2) Module B harnessed
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the efficiency of the Faster R-CNN model to detect masses, and (3) Module C was dedicated
to amalgamating the detection outcomes from successive 2D slices into a comprehensive
3D DBT volume. The efficacy of this CAD system was evaluated on a private DBT dataset,
yielding notable performance results with an Area Under the Curve (AUC) of 92%.

Moreover, in a subsequent work [11], Fan et al. continued their exploration by intro-
ducing a deep learning framework founded on a 3D variant of the Mask-RCNN model,
specifically designed for mass detection and segmentation within DBT images. This model
employed a ResNet-Feature Pyramid Network (ResNet-FPN) as its foundational archi-
tecture. The ResNet-FPN efficiently extracted features across diverse scales, which were
subsequently integrated within the Feature Pyramid Network (FPN). The region proposal
network (RPN) was responsible for generating bounding boxes for input images. In parallel,
segmentation masks for each region of interest (ROI) were generated via the mask branch of
the fully convolutional network (FCN). Through comprehensive evaluation, Fan et al. [11]
showcased notable enhancements in performance when compared to their preceding work,
particularly on the same DBT dataset.

Lotter et al. [12] introduced a sophisticated deep learning model in a three-stage
configuration, tailored for the purpose of breast lesion detection within mammographic
and DBT images. In the initial stage, a pre-trained ResNet model was fine-tuned using
digital mammogram patches to facilitate lesion classification. Subsequently, this trained
ResNet served as the foundational architecture for the RetinaNet detection model, which
was further refined in the second stage to achieve accurate lesion localization. The third
stage encompassed two segments: (1) In segment A, the utilization of multiple-instance
learning (MIL) facilitated mammogram image classification; and (2) in segment B, the
application of MIL facilitated the classification of optimized 2D images extracted from DBT
data. The model’s performance was meticulously assessed through a proprietary dataset,
yielding notable outcomes with an AUC of 94.5%.

In a parallel trajectory, Buda et al. [13] introduced a comprehensive, publicly acces-
sible DBT image dataset aimed at fostering the development and evaluation of artificial
intelligence algorithms for breast cancer screening. Additionally, they formulated a founda-
tional deep-learning model for the detection of masses and architectural distortions within
DBT images. This model was constructed as a singular-stage CNN network founded on
the YOLO architecture, catered to 2D object detection, and underpinned by a DenseNet
backbone. Various loss functions were assessed, including binary cross-entropy, weighted
binary cross-entropy, focal loss, and reduced focal loss. The investigation revealed that
the model’s optimal performance was achieved using the focal loss function with an AUC
score of 0.69 and sensitivity of 67%.

Furthermore, Hossain et al. [14] proposed a novel algorithm for detecting breast
lesions within DBT images, integrating false positive (FP) instances from non-annotated
images as a novel form of data augmentation. The authors employed the YOLOv5 model
as the foundational network and trained it using verified ground truth samples to identify
actionable false positives within non-annotated images, which were subsequently har-
nessed as augmented samples. The baseline model was then refined through fine-tuning
on the augmented dataset, which included the actionable false positive findings. The
outcomes stemming from experiments on a publicly accessible dataset showcased the sub-
stantial value of actionable false positive findings in enhancing lesion detection algorithms,
subsequently leading to a significant improvement in lesion detection performance.

Notably, the CAD systems discussed above have made significant efforts to address
the issue of breast tumor detection within DBT images, and several challenges continue
to hinder the effectiveness of CAD systems designed for this purpose. These challenges
encompass a wide range of breast lesion shapes, locations, sizes, and variations in breast
density, as visually depicted in Figure 1. Furthermore, the limited availability of anno-
tated DBT images for training tumor detectors presents another obstacle that impedes the
progress of CAD systems tailored specifically for DBT applications.
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Figure 1. Illustrations from DBT instances highlight the diversity found in breast lesions. In these
instances, differences in tumor sizes are marked with green bounding boxes, variations in shapes
are indicated by blue bounding boxes, and fluctuations in breast density are represented by yellow
bounding boxes.

In an effort to address these challenges, this study presents a promising approach
for detecting breast tumors in digital breast tomosynthesis (DBT) images. The approach
leverages a dynamic ensemble technique and resilient individual breast tumor detectors.
The proposed dynamic ensemble technique relies on a deep neural network that decides
the optimal IBTD to detect breast tumors based on the characteristics of the input DBT
image. In this study, we constructed sturdy individual breast tumor detectors (referred
to as IBTDs) using diverse deep learning architectures, specifically Faster R-CNN [15],
RetinaNet [16], YOLOv5 [17], YOLOv7 [18], and YOLOv8 [19]. To surmount the limitations
of available data and enhance the detection performance of each IBTD, we employed
two data augmentation methods: channel replication and channel concatenation. These
techniques simulate various scenarios of breast density, as well as shapes, sizes, and
locations of breast lesions.

The contributions of this paper encompass:

1. Proposing a dynamic ensemble technique for DBT-based breast tumor detection.
Depending on the characteristics of the input DBT image, the dynamic ensemble tech-
nique selects an appropriate individual breast tumor detector for the detection task.

2. Introduction of two data augmentation strategies—channel replication and channel
concatenation. These techniques mitigate data scarcity and enhance the detection
capabilities of each individual breast tumor detector.

3. A comprehensive experimental investigation was carried out using a publicly ac-
cessible DBT dataset to illustrate the effectiveness of the proposed methodology.
Furthermore, this paper includes comparative assessments with established ensemble
techniques, specifically non-maximum suppression (NMS) [20] and weighted boxes
fusion (WBF) [21].

4. Study the efficacy of the proposed approach for breast cancer detection across various
modalities, such as breast mammography. Our findings indicate that the proposed
method consistently outperforms alternative techniques, yielding superior results.

The organization of this manuscript is outlined as follows. Section 2 delineates the
detailed exposition of the proposed detection methodology. In Section 3, the experimental
outcomes are presented and subsequently discussed. Section 4 encapsulates the conclusions
drawn from the study and offers insights into potential avenues for future research endeavors.

2. Methodology

This section presents a comprehensive overview of our breast lesion detection method
for DBT images. As shown in Figure 2, our proposed framework consists of an ensemble
model that takes in the input DBT image and outputs the corresponding label of one of the
three individual detection models (label 1 for IBTD#1, label 2 for IBTD#2, and label 3 for
IBTD#3) based on the image’s characteristics. The selected IBTD model is then utilized to
detect the breast tumor. We describe each of these components in the following subsections.
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IBTD #1

IBTD #2

IBTD #3

1

2

3

Input DBT images

Dynamic Ensemble

Figure 2. The framework of the proposed ensemble technique for breast lesion detection in DBT
images involves feeding the input DBT into the dynamic ensemble. Within this ensemble, the deep
CNN network (ResNet50) is trained to select the most suitable Individual Breast Tumor Detection
(IBTD) model based on the characteristics of the input DBT image, ensuring accurate breast tumor
detection. The numbers 1, 2, and 3 stand for the label of each IBTD model. The detected tumor is
indicated by the red rectangular bounding box.

2.1. Proposed Ensemble Technique

Figure 3 illustrates the workflow of the proposed dynamic ensemble, designed to
autonomously select the optimal detection model from a set of robust breast tumor detection
models (IBTDs) based on the characteristics of the input DBT image. This selection process
has been formalized as a classification task.

Input DBT image

ResNet50 
Feature Extractor 

1

2

3

IBTD Label 
{1,2,3}

Figure 3. In the workflow of the proposed dynamic ensemble, the ResNet-50 model is trained to
autonomously select the breast tumor detection model (IBTD) based on the characteristics of the
input DBT images to detect breast tumors.

In this approach, we employ the top k IBTD models, signifying the models with the
highest accuracy, to train the ResNet-50 CNN model [22] to determine the most suitable
IBTD for a given input DBT image. In the illustrated example within Figure 3, there are
three labels (k = 3), each directly associated with a specific IBTD model: Label (1) designates
the highest-performing IBTD model, which is the model with the highest accuracy among
the top three IBTD models, Label (2) corresponds to the second-best IBTD model, and
Label (3) is attributed to the third-best IBTD model.

Table 1 provides an overview of the dataset’s structure used to train the IBTD label
prediction model. To construct this dataset, we identified the top three IBTD models, those
with the highest accuracy. For each image in the training set, we calculated the detection
accuracy of each IBTD model and assigned an IBTD label (1), (2), or (3), corresponding to
the model with the highest accuracy.
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Table 1. Data structure used to train the proposed ensemble model.

Input IBTD Label

I1 2

I2 1

I3 2

I4 3

...
...

In 1

Subsequent to the ensemble model’s training phase, each DBT image was inputted
into the ensemble model to determine the optimal IBTD for detecting breast tumors. Once
the suitable IBTD has been selected, it is applied to predict bounding box coordinates
containing the tumor regions. These bounding boxes furnish information encompassing
the potential object class, a coordinate list represented by [x1, y1, x2, y2], and a confidence
score indicative of the model’s certainty regarding the object’s presence.

2.2. Developing Robust Individual Breast Tumor Detection (IBTD) Models

Figure 4 illustrates the steps of constructing the individual detection models tailored to
the task of breast lesion detection. This type of implementation typically consists of a deep
convolutional neural network (CNN) model that processes an input image and outputs a
set of bounding boxes and class labels for the objects presented in the input image. The
CNN is typically trained using a large dataset of annotated images, where each image
has been labeled with the coordinates of the objects in the image and their corresponding
class labels. However, due to the lack of annotated DBT images, we utilized effective
data augmentation techniques to increase the limited available annotated DBT images.
To develop robust IBTD models, we employed five of the most prevalent and effective
deep learning-based object detection architectures—Faster R-CNN [15], RetinaNet [16],
YOLOv5 [17], YOLOv7 [18], and YOLOv8 [19].

Data
Augmentation

Deep learning
Detection Model

Input DBT Image Output Tumor
Detection

Figure 4. The framework for developing robust individual breast tumor detection models (IBTDs).
The detected tumor is indicated by the red rectangular bounding box.

2.2.1. Data Augmentation Techniques

Indeed, the performance of deep learning models is significantly influenced by the size
of the training set, which typically requires manual annotation by expert radiologists [23].
However, manual annotation is a laborious and time-consuming task, leading to limitations
in the availability of publicly accessible medical image datasets. This challenge is especially
pronounced in the context of DBT image analysis, where the creation of large datasets is
further complicated by privacy and legal considerations.

In this study, we utilized two effective data augmentation techniques: channel repli-
cation (Ch-Rep) and channel concatenation (Ch-Conc). These augmentation techniques
involve various geometric transformations, including flipping, translation, and shearing.
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Additionally, we incorporated two image intensity transformations: gamma correction and
contrast-limited adaptive histogram equalization (CLAHE).

These data augmentation techniques significantly contribute to enhancing the diversity
and robustness of the training dataset for deep learning models. They simulate different sce-
narios of breast density, lesion shapes, sizes, locations, and image characteristics, allowing
the model to generalize better and perform well on a wide range of real-world cases.

2.2.2. Image Geometric and an Image Intensity Transformations

Here, we explain the geometric and pixel-wise transformations used in the context of
breast tumor detection in DBT images. The following three geometric transformations are
used in this study to simulate the variations of breast lesion shapes, sizes, and locations.

• Image flipping: This transformation generates a mirror image of an image with both
horizontal or vertical axes. In our case, which involves breast images, we chose to flip
all images in the training set horizontally as the horizontal axis is preferred over the
vertical axis when considering the mirror direction of the breast in DBT images.

• Image translation: This transformation applies to prevent positional bias. This trans-
formation involves shifting the entire image by a specified translation vector in a
particular direction. This helps the network learn properties that are invariant to
location rather than being focused on features present in a single spatial position. In
the case of DBT, the translation of images can generate suitable augmented images.
An image that is translated in the coordinate system undergoes the equations:

x′ = x + xT

y′ = y + yT
(1)

where x′, y′, x, and y are the coordinates of a pixel in the new image and the coordinates
of the original, respectively. The distance of which the pixel is translated in every
direction is denoted by xT and yT , respectively.

• Image shearing: It is a geometric transformation that skews an image along one axis
while keeping the other axis unchanged. It is typically represented mathematically
by a 2 × 2 transformation matrix that contains elements representing the amount of
shearing along the x and y axes. In 2-D images, a shear transformation simply maps
a pair of input pixel coordinates (x, y) to a pair of output coordinates (u, v) in the
form of

u = x + a× y

v = y
(2)

where a is the shear factor that represents the amount of shearing applied along the
x-axis. The shearing transformation can be used to create a new set of training images
by changing the orientation of the objects in the image, helping the model to learn
features that are invariant to orientation.

In this study, we employed two image intensity transformations to simulate the
variations of breast density and DBT image contrast.

• Gamma Correction: It is an image intensity transformation that is used to adjust the
brightness and contrast of an image. It is a way to adjust the relationship between the
input image pixel intensities and the output pixel intensities. It can be defined by the
following power-law expression:

Iγ = Is
γ (3)

where Iγ is the output image for gamma correction and γ is the gamma correction
factor. We used image gamma correction as image data augmentation to generate new
training images with varied brightness and contrast levels. This was done to simulate
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different radiation dose ratios that can result from varying acquisition parameters
in DBT imaging, helping the model to learn features that are invariant to changes in
brightness and contrast.

• CLAHE—Contrast limited adaptive histogram equalization: This transformation
is a popular image enhancement technique used to improve the visibility of low
contrast structures in an image [24]. This method equalizes the histogram of the
image to enhance the overall contrast of the image. It is a type of adaptive histogram
equalization specifically designed to avoid over-amplifying noise or other image
artifacts. The CLAHE method divides the image into small overlapping blocks,
computes the histogram for each block, and then applies histogram equalization to
each block independently. The equalization process is limited by a parameter called
clip limit, which sets a threshold on the maximum amount of contrast stretching that
can occur in a given sub-region. To calculate the clip limit for the CLAHE algorithm,
we used Equation (4).

cliplimit =
W × H

L

(
1 +

α

100
(Smax − 1)

)
(4)

where W × H is the number of pixels in each histogram calculated region, L is the
number of gray scales, α is a clip factor, and Smax is the maximum allowable slope.
However, Smax should be set to four for still X-ray images.

2.2.3. Channel-Replication (Ch-Rep) Data Augmentation Technique

Channel-Replication (Ch-Rep) data augmentation technique entails horizontally flip-
ping all images in the training set and then creating new samples for each original and
flipped image through the application of translation and shearing geometric transforma-
tions. Subsequently, pixel-wise gamma correction and CLAHE enhancement, with a γ value
of 0.5 and an α value of 1, respectively, were applied to the generated images, resulting in
the generation of 18 additional samples from each image in the training set.

After the operations of Ch-Rep data augmentation technique, each image is trans-
formed into a three-channel image by concatenating the original and replicated images
with their various transformations. Figure 5 presents examples of images generated using
the Ch-Rep augmentation technique.

Original Image Flipping Translation Shearing

Gamma Correction CLAHE

Figure 5. Examples of the Channel-Replication (Ch-Rep) data augmentation technique applied to
DBT images. The augmented images have three channels, achieved by concatenating three replicated
images of the resulting grayscale image, each processed with a single color channel.

The use of Ch-Rep data augmentation technique results in a dataset with a significantly
increased number of images, each exhibiting different breast density, lesion shapes, sizes,
and locations. The diversity introduced by these transformations helps the deep learning
model learn to recognize tumors under various conditions.
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2.2.4. Ch-Con—Channel-Concatenation Data Augmentation Technique

The Channel-Concatenation data augmentation technique employed an innovative
3-channel augmentation method that concatenates the image with two post-processed
images, as proposed in [25]. With this augmentation technique, instead of concatenating
three duplicated grayscale images, we utilized two filtered images (Iγ with γ = 0.5 and
Iclahe with α = 1) for concatenation with the grayscale image Ig. This process generated a
new 3-channel image, denoted as I, as illustrated in Equation (5).

I = Concat(Ig, Iγ, Iclahe) (5)

In this context, I, Ig, Iγ, and Iclahe represent the output images, images after gamma
correction, and images after CLAHE equalization, respectively. This process resulted in the
creation of six additional samples from each image in the training set.

Figure 6 shows sample images generated using the Ch-Con data augmentation tech-
nique. Ch-Con produces a dataset with 3-channel images, and each channel carries different
information. The combination of the original grayscale image and the two post-processed
images provides a rich dataset that reflects variations in breast density and image contrast.
This aids in training the model to detect tumors under different conditions.

Original Image Flipping Translation Shearing

Channel Concatenation with Gamma and CLAHE 

Figure 6. Examples of the Channel-Concatenation (Ch-Con) data augmentation technique applied to
DBT images. In this approach, the image is concatenated with two post-processed images.

2.2.5. Developing IBTDs Based on Robust Deep Learning Object Detection Architectures

The deep learning-based breast tumor detection model in our study employs various
object detection algorithms, each associated with different deep learning architectures.
Specifically, in this study we developed efficient IBTDs based on five advanced deep
learning architectures: Faster R-CNN [15], RetinaNet [16], YOLOv5 [17], YOLOv7 [18], and
YOLOv8 [19]. Below, we briefly introduce these object detection architectures.

• Faster R-CNN [15]: This well-established object detection architecture has found
extensive application in diverse fields of computer vision, such as surveillance systems,
pulmonary nodule detection, and breast cancer and brain tumor detection. Employing
a two-stage approach, it comprises four pivotal components. It commences with a
Convolutional Neural Network (CNN) to derive feature maps from the input image.
Subsequently, a Region Proposal Network (RPN) generates region proposals on these
feature maps. These proposals undergo classification to distinguish the object from
the background, followed by a regression step to refine the object’s position via
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bounding box regression. The implementation of Faster R-CNN can be found at https:
//pytorch.org/vision/main/models/faster_rcnn.html, accessed on 22 October 2023.

• RetinaNet [16]: This single-stage object detection architecture serves as an alternative
to two-stage methods like Faster R-CNN. It amalgamates object classification and
bounding box regression into a singular network, utilizing anchor boxes to manage
diverse object scales and aspect ratios. Anchor boxes are assigned to actual objects
based on Intersection-over-Union (IoU). Training employs a focal loss function that
emphasizes challenging samples. Known for efficiency, RetinaNet requires that only
one passes through the network. The implementation of Faster R-CNN can be found
at https://pytorch.org/vision/main/models/retinanet.html, accessed on 22 Octo-
ber 2023.

• YOLOv5 [17]: A state-of-the-art real-time object detection architecture renowned for
its speed and accuracy. Embracing a single-stage, anchor-free approach, YOLOv5
processes entire images in a single forward pass, directly predicting object bounding
boxes and class probabilities. Improvements over previous iterations include cross-
stage partial connections for preserving high-level semantic information and a new
anchor-free detection mechanism.

• YOLOv7 [18]: Integrating architectural enhancements and novel techniques, YOLOv7
aims to boost robustness and accuracy. It introduces a new feature extraction network,
modified loss function, and set-based learning approach that exploits inter-object
relationships. A multi-scale training strategy further enhances its performance.

• YOLOv8 [19]: A recent architecture aiming to enhance speed and accuracy. It adopts a
new backbone network (CSPDarknet53) and introduces an anchor-free detection head.
Bounding box predictions are made in a pixel-wise manner, and feature pyramid
networks aid in recognizing objects of varying sizes.

The implementations of YOLOv5, YOLOv7, and YOLOv8 can be found at https:
//github.com/ultralytics, accessed on 22 October 2023. All models have been implemented
in the Pytorch framework. It is noteworthy that Faster R-CNN’s loss function combines
classification and bounding box regression losses using cross-entropy and smooth L1 loss,
respectively. YOLO models employ three losses: classification, localization (based on IoU),
and confidence (cross-entropy).

Our ablation study begins with a basic detection model for each architecture, serving as
a reference for their performance in detecting breast lesions in DBT images. We individually
trained each detector by augmenting the training set through horizontal image flipping.
We also assessed the efficacy of the proposed Ch-Rep and Ch-Conc data augmentation
techniques in enhancing the IBTD models’ performance for breast tumor detection.

2.3. Implementation Details and Parameter Setting

The flowchart depicted in Figure 7 illustrates the sequential steps entailed in construct-
ing our breast lesion detection framework, which is founded upon the dynamic ensemble
technique. The initial phase involves the development of the Individual Breast Tumor
Detection (IBTD) model, as explained in Section 2.2.

It should be noted that the number of labels corresponds to the number of individual
models, specifically the Individual Breast Tumor Detection (IBTD) models, employed in
building the ensemble. In this study, we leveraged the top three IBTD models to form the
ensemble model, resulting in a total of three labels. Utilizing these top three IBTD models,
we trained the ResNet-50 model to determine the most suitable IBTD for a given input DBT
image. This selection process has been formalized as a classification task. In this context,
there exist three labels, each directly associated with a specific IBTD model:

• Label (1) designates the top-performing IBTD model, Faster R-CNN, which is the
model with the highest accuracy among the top three IBTD models.

• Label (2) corresponds to the second-best IBTD model, RetinaNet.
• Label (3) is attributed to the third-best IBTD model, YOLOv5.

https://pytorch.org/vision/main/models/faster_rcnn.html
https://pytorch.org/vision/main/models/faster_rcnn.html
https://pytorch.org/vision/main/models/retinanet.html
https://github.com/ultralytics
https://github.com/ultralytics
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For each DBT image within the training dataset, we recorded the IBTD label associated
with the highest detection accuracy. This information was then employed to construct the
training data used to educate the ResNet-50 classifier, as detailed in Table 1.

In the subsequent stage, the ResNet50 model is trained to select the most suitable IBTD
model for the detection of breast tumors, predicated upon the characteristics inherent in
the input images.

Start

Develop Individual IBTD

Generate IBTD Labels

Train ResNet50 
(Ensemble Model)

Develop Ultimate Breast
Tumor Detection Framework

End

Figure 7. The flowchart depicts the sequential stages in the creation of the proposed ensemble
approach for the detection of breast lesions in Digital Breast Tomosynthesis (DBT) images.

The original DBT image size was 1890× 2457. To reduce computational complexity,
we resized the DBT images to 640× 640. It is worth noting that all of the detection models
were optimized using the SGD algorithm with various learning rates (lr) ranging from
5× 10−3 to 1× 10−2, finding that the best results were achieved with lr = 1× 10−3. To
mitigate the risk of overfitting, which can arise due to the limited training data, all models
were trained for a modest 50 epochs with a mini-batch size of 8 images.

To ensure fair comparisons, the evaluated models were trained using the same DBT
dataset and tested on the same DBT test dataset. Our methods were developed using the
Python programming language, and all experiments were conducted on a 64-bit Ubuntu
operating system with a 3.6 GHz Intel Core i7 processor, 32 GB of RAM, and an Nvidia
RTX3080 graphics card with 10 GB of video RAM, utilizing the PyTorch framework.

3. Experimental Results and Discussion
3.1. Dataset

This study utilized the DBTex challenge dataset [13,26], which is the sole publicly
accessible DBT image dataset. The dataset includes 1000 breast tomosynthesis scans from
985 patients. It is worth noting that not all DBT images in the BTex challenge dataset have
annotations. Specifically, ground-truth bounding boxes are available for 208 DBT images
from 101 patients. Among these 208 DBT images, there are 224 tumors, indicating that
some images contain more than one tumor.

The dataset was partitioned in a patient-wise random manner, as shown in Table 2,
with 70% of the patients designated for training and the remaining 30% for testing. This
division yielded 145 images for the training set and 63 images for the testing set. To train
the baseline models, we chose to augment the training set by horizontally flipping the
images. The same training sets generated through Ch-Conc and Ch-Rep augmentation
techniques, were used to establish the IBTD labels. It is important to highlight that the
test set, consisting of 63 images, was exclusively used to evaluate the performance of the
proposed ensemble.



Computers 2023, 12, 220 12 of 21

Table 2. Overview of the DBT image dataset for the proposed breast tumor detection framework.

No. of Patients No. of Images Baseline Ch-Rep Augmentation Ch-Conc Augmentation

Train set 70 145 290 2610 870
Test set 31 63 63 63 63

Total 101 208 353 2673 933

As detailed in Section 2.2.1, the Ch-Rep data augmentation method produced a total of
18 samples for each image in the training set, resulting in an expanded dataset comprising
2610 images, each associated with 2880 tumor bounding box annotations. In the case of
the Ch-Conc data augmentation method, an additional six samples were generated for
each image within the training set, culminating in a dataset of 870 images, encompassing
960 tumor bounding box annotations for training.

3.2. Evaluation Metrics

To assess the effectiveness of the proposed method, we utilized standard evaluation
metrics widely used for object detection models [27], including accuracy, precision, recall,
and F1-score. Accuracy, which is the most commonly used and reliable metric for evaluating
breast tumor detection methods, can be defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

where true positive (TP) refers to the number of accurately detected tumors, true negative
(TN) represents the number of correctly detected non-lesions or backgrounds, false positive
(FP) indicates the number of backgrounds wrongly identified as tumors, and false negative
(FN) denotes the number of tumors incorrectly identified as backgrounds.

Precision is the degree of exactness of the model in identifying only relevant objects,
specifically breast tumors in this case. It is measured as the percentage of correct positive
predictions. Recall, also known as sensitivity, refers to a model’s ability to identify all
relevant cases or true positive rate and is measured as the percentage of true positives
detected among all relevant ground truths. Precision and recall can be expressed as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(7)

The F1-score combines precision and recall. It is the harmonic mean of precision and
recall. It is computed as follows:

F1− score = 2× precision× recall
precision + recall

(8)

3.3. Experimental Results

Table 3 provides the results of the baseline breast tumor detection models based
on the Faster R-CNN, RetinaNet, YOLOv5, YOLOv7, and YOLOv8 architectures. These
models were trained on a dataset that included horizontally flipped versions of the original
DBT images.

Based on the results, it was observed that the Faster R-CNN architecture outperformed
the other baseline models in the detection of breast lesions. This superiority was attributed
to the region proposal network (RPN), which facilitated Faster R-CNN in generating Region
of Interest (ROI) proposals more efficiently compared to other methods. Furthermore,
RetinaNet demonstrated promising results, outperforming all YOLO-based breast tumor
detection models across all evaluation metrics.
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Table 3. Results of the baseline breast tumor detection models (IBTD#1, IBTD#2, IBTD#3, IBTD#4,
and IBTD#5) based the Faster R-CNN, RetinaNet, YOLOv5, YOLOv7 and YOLOv8 architectures.

Accuracy (%) Precision (%) Recall (TPR) (%) F1-Score (%)

Faster R-CNN (IBTD#1) 76.64 80.77 65.63 72.41
RetinaNet (IBTD#2) 66.41 95.69 34.38 50.57
YOLOv5 (IBTD#3) 60.74 76.00 28.79 41.76
YOLOv7 (IBTD#4) 55.12 98.99 10.94 19.72
YOLOv8 (IBTD#5) 56.15 83.33 15.38 25.97

However, it is worth noting that the YOLO architectures possessed an advantage in
terms of speed and simplicity, as they could directly predict both bounding boxes and class
probabilities from entire breast DBT images in a single pass. In contrast, the RetinaNet
architectures involved an additional step of classifying proposal regions before predicting
the bounding boxes and class probabilities for each region. This additional step enhanced
the precision of the RetinaNet architecture but also made it slower and more complex.

In summary, these findings suggest that the Faster R-CNN and RetinaNet object detec-
tion architectures may be better suited for DBT images, with Faster R-CNN showcasing top
performance and RetinaNet offering enhanced precision despite increased complexity.

Table 4 tabulates the results of the breast tumor detection models based on the Faster
R-CNN, RetinaNet, YOLOv5, and YOLOv7 architectures with the Ch-Rep data augmenta-
tion technique.

Table 4. Results of the breast tumor detection models (IBTD#1, IBTD#2, IBTD#3, IBTD#4, and IBTD#5)
based the Faster R-CNN, RetinaNet, YOLOv5, YOLOv7, and YOLOv8 architectures with the Ch-Rep
data augmentation technique.

Accuracy (%) Precision (%) Recall (TPR) (%) F1-Score (%)

Faster R-CNN (IBTD#1) 79.85 86.27 68.75 76.52
RetinaNet (IBTD#2) 79.26 84.62 68.75 75.86
YOLOv5 (IBTD#3) 62.79 87.50 32.80 47.71
YOLOv7 (IBTD#4) 63.91 81.48 33.85 47.83
YOLOv8 (IBTD#5) 60.74 73.08 29.23 41.76

Comparing the values in Table 4 to those in Table 3, it can be concluded that utilizing
the Ch-Rep training set for deep learning-based detectors can result in significant enhance-
ments across all metrics for all the evaluated models. Specifically, the Faster R-CNN-based
IBTD model demonstrated an increased detection accuracy of 3%, accompanied by notable
improvements in precision, true positive rate (TPR), and F1-score, which rose by 6%, 3%,
and 3%, respectively. Similarly, the RetinaNet-based IBTD model exhibited a remarkable
13% surge in detection accuracy, with its TPR experiencing a substantial boost of 34%.
These improvements led to a notable 25% enhancement in F1-score by reducing the number
of false negatives.

In contrast, the YOLO-based IBTD models achieved a lower detection accuracy, regis-
tering figures of 62.79%, 63.91%, and 60.74% for versions 5, 7, and 8, respectively. Nonethe-
less, they consistently outperformed their baseline models, indicating that an increase in
the number of training samples can significantly enhance their detection performance.

Table 5 presents the results of the breast tumor detection models with the Ch-Conc
data augmentation technique.

Upon examination of Table 5 in conjunction with Tables 3 and 4, it became evident
that the Ch-Conc data augmentation method can outperform both the Ch-Rep data aug-
mentation method and the baseline models, even with a smaller set of training samples.
This serves as a clear indication that the proposed Ch-Conc data augmentation method
enhances the quality of the generated DBT images by incorporating valuable features and
information, ultimately leading to heightened detection accuracy.
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Table 5. Results of the breast tumor detection models (IBTD#1, IBTD#2, IBTD#3, IBTD#4, and IBTD#5)
based the Faster R-CNN, RetinaNet, YOLOv5, YOLOv7, and YOLOv8 architectures with the Ch-Conc
data augmentation technique.

Accuracy (%) Precision (%) Recall (TPR) (%) F1-Score (%)

Faster R-CNN (IBTD#1) 83.08 93.75 70.31 80.36
RetinaNet (IBTD#2) 80.60 86.54 70.31 77.59
YOLOv5 (IBTD#3) 68.18 85.24 42.19 54.40
YOLOv7 (IBTD#4) 60.28 68.75 32.35 44.00
YOLOv8 (IBTD#5) 64.14 68.18 44.12 53.57

For instance, the Faster R-CNN-based IBTD model achieved a detection accuracy that
was 4% higher than that obtained using the Ch-Rep method and 7% superior to the baseline
model. Furthermore, this model exhibited precision and recall rates of 93.75% and 70.31%,
respectively, resulting in a substantial 8% improvement in the F1-score in comparison to
the baseline.

Upon analyzing the RetinaNet-based IBTD model, it becomes evident that the detec-
tion accuracy has improved by 14% compared to the baseline model, surpassing the 13%
increase achieved with the Ch-Rep data augmentation technique. Although the precision
was slightly lower than that of the baseline IBTD models at 86.54%, the RetinaNet-based
IBTD model achieved a notably higher true positive rate (TPR) at 70.31%. This led to a
substantial improvement in the F1-score, which increased by 27% compared to the baseline
model and by 2% compared to the Ch-Rep method.

Transitioning to the YOLO-based IBTD models, it is apparent that the YOLOv5-based
IBTD model has achieved an increased accuracy of 68.18%, which is 6% higher than the
accuracy obtained using the Ch-Rep data augmentation technique. The YOLOv5-based
IBTD model has also exhibited improvements in TPR and F1-score. In addition, YOLOv8
demonstrated better accuracy with a 4% and 8% increase compared to the baseline and
Ch-Rep, respectively, while showing improvements in both TPR and F1-score.

However, the YOLOv7-based IBTD model outperformed the baseline model but
achieved lower performance than the Ch-Rep data augmentation technique. This indicates
that the number of training samples significantly impacts the performance of the YOLOv7-
based IBTD model.

Based on the analysis above, it can be inferred that the utilization of the Ch-Conc
augmentation technique can result in significant improvements in breast lesion detection
compared to Ch-Rep. Furthermore, the IBTD models based on the Faster R-CNN, Reti-
naNet, and YOLOv5 object detection architectures exhibited promising detection accuracy.
Therefore, we chose these models to construct the proposed ensemble.

Figure 8 presents the visual representation of the detection models trained using
the Ch-Conc approach with the Grad-CAM technique. The image is highlighted in red
for pixels that highly contribute to detecting tumors and blue for pixels with minimal
impact on the detector’s decisions. The fifth column displays the most accurate detection
outcomes, with the Faster-RCNN-based IBTD model output box highlighted in red, the
RetinaNet-based IBTD model output box in green, and the YOLOv5-based IBTD model
output box in yellow.

For the DBT image in the top row, which shows a small tumor situated at the left
edge of the image, the Faster R-CNN-based IBTD model exhibits an appropriate activation
response, whereas the RetinaNet-based IBTD and YOLOv5-based IBTD fail to detect the
tumor accurately. In the second row, the RetinaNet-based IBTD model successfully detects
a tumor with an irregular shape, whereas the Faster R-CNN-based IBTD model produces a
false positive response covering a large area, and YOLOv5-based IBTD fails to detect the
tumor at all. Finally, in the third row, with a large and circular tumor, only the YOLOv5-
based IBTD detector produces an accurate activation for the tumor, while RetinaNet-based
IBTD fails entirely and Faster R-CNN yields false positive results.
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Figure 8. Grad-CAM explanations from the individual detection models for DBT images. It is worth
mentioning that the intensity of the red color indicates the areas where the model focuses more when
making the final prediction. In contrast, blue represents less significant regions or pixels. In the
fifth column, Faster-RCNN detection is represented by red bounding boxes, RetinaNet detection is
indicated by green bounding boxes, and YOLOv5 detection is marked by yellow bounding boxes.

After carefully examining the results of the various IBTD detectors, we found that
each one excels at identifying tumors with well-defined boundaries. However, when it
comes to detecting tumors with fuzzy borders and low contrast, some detectors could
not identify them accurately. Therefore, ensembling these individual IBTD detectors is a
powerful technique in order to obtain better detection results by taking advantage of the
excellence of each detector.

Table 6 presents the breast tumor detection results of the proposed ensemble method
compared to the two most common object detection ensemble methods, including non-
maximum suppression (NMS) [20] and weighted boxes fusion (WBF) [21].

Table 6. Comparing the proposed ensemble technique with two existing ensemble techniques: non-
maximum suppression (NMS) [20] and weighted boxes fusion (WBF) [21]. The best results are
highlighted in bold.

Accuracy (%) Precision (%) Recall (TPR) (%) F1-Score (%)

NMS [20] 85.07 87.93 79.69 83.61
WBF [21] 83.82 85.00 79.69 82.26
Proposed ensemble 86.72 97.96 75.00 84.96
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The NMS technique [20] is a post-processing technique commonly used in object detec-
tion tasks to eliminate duplicate or redundant bounding boxes generated by the detection
model. In an ensemble setting, NMS can be applied to merge the output of multiple object
detection models into a final set of non-overlapping bounding boxes. This was achieved
by first sorting the bounding boxes according to their detection confidence scores, then
iterating through the boxes in decreasing order of confidence and discarding any boxes
that have an intersection-over-union (IoU) overlap greater than a predefined threshold
with higher-scoring boxes. The Weighted Box Fusion (WBF) ensemble technique [21] is a
popular post-processing technique used in object detection tasks to combine the outputs of
multiple detection models into a final set of non-overlapping bounding boxes. Unlike NMS,
which simply selects the highest-scoring box and discards the rest, WBF assigns weights to
each box based on its detection confidence and its intersection-over-union (IoU) overlap
with other boxes. The final box for each object is then computed as a weighted average
of the individual boxes, with the weights proportional to the product of their confidence
and their IoU overlaps. WBF has been shown to be effective in reducing false positives
and increasing the recall of object detection models, especially in cases where individual
models have different strengths and weaknesses. However, it requires more computational
resources than NMS and may be less suitable for real-time applications.

After analyzing the experimental results, we found that using ensemble methods
led to a slight improvement in accuracy of around 1–3% compared to the top-performing
individual models. However, our proposed method outperformed the other techniques
and achieved an impressive accuracy of 86.72%. Additionally, our approach achieved an F1
score of 84.96%, indicating that it can accurately detect breast tumors with minimal false
positive and false negative samples. This significant performance improvement resulted in
a 5% increase in the F1 score compared to the best individual detector.

Figure 9 illustrates the four examples of images of breast tumor detection using
different ensemble methods, including NMS, WBF, and the proposed ensemble. The
top row demonstrates that the proposed ensemble method only accurately detects the
tumor with dense, bright tissue region compared to the given input images. However, the
other ensemble NMS and WBF methods produce false positives by detecting the fuzzy
boundaries of healthy tissues. The proposed ensemble method is effective in such cases,
relying on the best detection model for each input image. The second and third rows
show false positive results from all individual models, which affect both NMS and WBF
methods, but the proposed ensemble has minimal false positives. In the last rows, none of
the individual detection models produce correct detections, resulting in no outputs from
the ensemble methods. The proposed technique shows some limitations for these specific
cases but is performed better than the others.

3.4. Analyzing the Complexity of the Proposed Method

The proposed ensemble approach not only excels in detection accuracy but also boasts
a competitive edge in terms of computational complexity when juxtaposed with alternative
ensemble methods. In the case of NMS and WBF ensemble strategies, the generation of
tumor bounding boxes necessitates the activation of all individual detection models (IBTDs)
before constructing the ensemble outcome. To elucidate, all three IBTD models must be
executed to procure bounding boxes, which are subsequently subjected to NMS and WBF
for ensemble formation, culminating in the final breast tumor detection outcome. Contrary
to existing ensemble techniques such as NMS and WBF, our proposed ensemble mechanism
distinguishes itself by selecting a singular IBTD model for tumor bounding box generation
with every input DBT image. Consequently, the throughput of our approach surpasses that
of the other evaluated methods.
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Input Image NMS Ensemble WBF Ensemble Proposed Ensemble 

Figure 9. Visual explanations of tumor detection predictions produced by the non-maximum suppres-
sion (NMS) [20] and weighted boxes fusion (WBF) [21] ensemble methods and proposed ensemble.
The first column includes the input DBT image, and the green bounding boxes stand for the ground-
truth (the correct location of tumors). In the second column, NMS Ensemble detection is represented
by blue bounding boxes. In the third column, WBF Ensemble detection is indicated by yellow bound-
ing boxes. In the fourth column, the proposed ensemble detection is marked by red bounding boxes.
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Importantly, the computational complexity of the ensemble breast tumor detection
model escalates with the augmentation of parameters within individual breast tumor
detection models. Within our study, individual models founded on Faster-RCNN, Reti-
naNet, and YOLO deep learning architectures encompass 43 million, 36 million, and
7 million parameters, respectively. Employing NMS and WBF entails the simultaneous
operation of Faster-RCNN, RetinaNet, and YOLO tumor detection models, leading to a
cumulative computational complexity approximating the summation of the three models’
parameters—equivalent to 86 million parameters.

In contrast, our proposed ensemble technique requires the activation of only one
among Faster-RCNN, RetinaNet, and YOLO tumor detection models, along with the
parameters of ResNet50 (24 million parameters). In the optimal scenario for a given
DBT image, our ensemble opts for the YOLO-based tumor detection model, resulting
in a computational complexity totaling 31 million parameters. In a less favorable case,
our ensemble selects the Faster-RCNN-based tumor detection model (the most resource-
intensive), contributing to a total computational complexity of 67 million parameters.

3.5. Evaluating the Proposed Method on the Breast Mammography Modality

To further corroborate the efficacy of the proposed ensemble approach, we con-
ducted evaluations using another breast imaging modality, namely breast mammography.
Our assessment focused on the performance of the proposed method using the INbreast
dataset [28]. It contains a total of 410 images from 115 women. It is a valuable resource for
research that focuses on mammogram images for breast cancer detection and diagnosis and
has been used in several studies to develop and evaluate new methods for breast cancer
imaging, including computer-aided detection (CAD) systems.

Table 7 presents the evaluation results of the individual baseline models based on
Faster-RCNN, RetinaNet, and YOLOv5, the ensemble methods (NMS and WBF), and the
proposed ensemble method for the INbreast dataset.

Table 7. Evaluating the proposed method on the mammographic INbreast dataset [28]. The best
results are highlighted in bold.

Accuracy (%) Precision (%) Recall (TPR) (%) F1-Score (%)

Faster R-CNN 75.52 75.00 68.18 71.43
RetinaNet 86.11 96.77 68.18 80.00
YOLOv5 79.00 80.00 48.48 60.38

NMS ensemble 76.24 70.00 79.55 74.47
WBF ensemble 76.47 69.23 81.82 75.00
Proposed ensemble 88.64 94.74 81.82 87.81

The proposed ensemble technique exhibited marked superiority over all examined
ensemble methods, thereby elevating detection accuracy beyond the capabilities of baseline
models. It is noteworthy that conventional ensemble methods (NMS and WBF) proved
incapable of augmenting detection performance due to the adverse impact of false pos-
itives from individual models on the final ensemble outcomes. However, our ensemble
approach outperformed these conventional methods, highlighting the efficacy of model
selection tailored to each input DBT image. Our ensemble method achieved an accuracy of
88.64%, surpassing the top-performing RetinaNet model (best baseline) by a margin of two
percentage points. Additionally, it attained an f1-score of 87.81%, marking a remarkable
12% advancement over the WBF ensemble technique.

One of the limitations of this study is the reliance on the DBTex challenge dataset, the
only publicly accessible database for Digital Breast Tomosynthesis (DBT) images, which
poses constraints on the model’s generalizability due to its relatively limited size and
diversity. In addition, the quality of annotations within the dataset could influence the
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model’s performance, yet details about the annotation process, such as inter-rater reliability
and quality control measures, are not provided.

4. Conclusions and Future Work

This paper introduces a novel and efficient dynamic ensemble method for detecting
breast tumors within digital breast tomosynthesis (DBT) images. The method primarily
relies on a sophisticated deep neural network that identifies the most suitable individual
breast tumor detector (IBTD) based on specific characteristics inherent to the input DBT
image. The study further develops these effective IBTD models using popular architectures
such as Faster R-CNN, RetinaNet, and YOLOv5, thus forming the foundation for the
ensemble model.

Notably, the paper highlights the successful application of the channel concatenation
augmentation technique, which improves the performance of the baseline breast tumor
detection models better than the channel replication augmentation technique, even when
the training dataset is relatively limited. The experimental results, conducted on the
publicly available DBTex DBT dataset, reveal a substantial enhancement in the accuracy
and F1-scores of the breast tumor detection models based on the YOLO architecture,
showing an impressive improvement of approximately 17%. Additionally, the F1-score of
the Faster R-CNN-based model exhibits a noteworthy 3% enhancement.

Most significantly, the proposed dynamic ensemble method achieves an impressive
detection accuracy of 86%, surpassing the performance of the best individual breast tumor
detection model by a notable margin of 10%. This advancement in the field of breast tumor
detection in DBT images demonstrates the promising potential of the dynamic ensemble
approach, setting a new benchmark for future research in this domain.

In comparison to two contemporary ensemble techniques, namely non-maximum
suppression (NMS) and weighted boxes fusion (WBF), it was revealed that the dynamic
ensemble method proposed in this paper exhibits superior detection accuracy, surpassing
WBF by 3% and NMS by 1.5%. Notably, a thorough analysis of computational complexity
highlights the significant advantage of the proposed method in terms of computational
efficiency when compared to both WBF and NMS techniques.

The findings of this research indicate a promising direction for future work, with a
focus on integrating the proposed ensemble technique with an automated approach for
estimating the malignancy of breast tumors in DBT images. Specifically, the developed
detection method will be harnessed to extract regions within the DBT images that contain
tumors, subsequently utilizing a deep learning-based model for estimating malignancy.
This integration aims to provide accurate malignancy scores for the identified tumors,
thereby facilitating more comprehensive and effective diagnostic capabilities within the
field of breast tumor detection in DBT images.
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