
Citation: Hasan, M.R.; Alazab, A.;

Joy, S.B.; Uddin, M.N.; Uddin, M.A.;

Khraisat, A.; Gondal, I.; Urmi, W.F.;

Talukder, M.A. Smart Contract-Based

Access Control Framework for

Internet of Things Devices. Computers

2023, 12, 240. https://doi.org/

10.3390/computers12110240

Academic Editors: Paolo Bellavista

and Leandros Maglaras

Received: 24 July 2023

Revised: 12 November 2023

Accepted: 13 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Smart Contract-Based Access Control Framework for Internet of
Things Devices
Md. Rahat Hasan 1, Ammar Alazab 2,* , Siddhartha Barman Joy 1, Mohammed Nasir Uddin 1,*,
Md Ashraf Uddin 3,* , Ansam Khraisat 3, Iqbal Gondal 4, Wahida Ferdose Urmi 1 and Md. Alamin Talukder 1

1 Department of Computer Science and Engineering, Jagannath University, Dhaka 1100, Bangladesh;
rahatcsejnu@gmail.com (M.R.H.); siddharthjoy88@gmail.com (S.B.J.);
wahidaferdoseurmi@gmail.com (W.F.U.); alamintalukder.cse.jnu@gmail.com (M.A.T.)

2 Centre for Artificial Intelligence and Optimization, Torrens University, Brisbane, QLD 4006, Australia
3 School of Information Technology, Deakin University, Waurn Ponds Campus, Geelong, VIC 3125, Australia;

ansam.khraisat@deakin.edu.au
4 School of Computing Technologies, STEM College, RMIT University, Melbourne, VIC 3001, Australia;

iqbal.gondal@rmit.edu.au
* Correspondence: ammar.alazab@torrens.edu.au (A.A.); nasir@cse.jnu.ac.bd (M.N.U.);

ashraf.uddin@deakin.edu.au (M.A.U.)

Abstract: The Internet of Things (IoT) has recently attracted much interest from researchers due to
its diverse IoT applications. However, IoT systems encounter additional security and privacy threats.
Developing an efficient IoT system is challenging because of its sophisticated network topology.
Effective access control is required to ensure user privacy in the Internet of Things. Traditional
access control methods are inappropriate for IoT systems because most conventional access control
approaches are designed for centralized systems. This paper proposes a decentralized access control
framework based on smart contracts with three parts: initialization, an access control protocol, and
an inspection. Smart contracts are used in the proposed framework to store access control policies
safely on the blockchain. The framework also penalizes users for attempting unauthorized access
to the IoT resources. The smart contract was developed using Remix and deployed on the Ropsten
Ethereum testnet. We analyze the performance of the smart contract-based access policies based on
the gas consumption of blockchain transactions. Further, we analyze the system’s security, usability,
scalability, and interoperability performance.

Keywords: smart contract; blockchain; access control; Internet of Things; Ropsten test network; gas
cost

1. Introduction

The Internet of Things (IoT) effortlessly gathers and shares data from diverse embed-
ded devices, sensors, and actuators. This inherent capability positions it as a promising
network scenario, promoting efficient data exchange and interconnected functionality [1,2].
According to a recent study, the current count of IoT devices stands at almost 13.15 billion
in 2023, with an anticipated increase to over 25.4 billion by 2030. This exponential growth
underscores the expanding role and significance of IoT in our interconnected digital land-
scape [3].

IoT is prevalent in almost every aspect of life, such as healthcare, smart cities, and trans-
portation [4,5]. For instance, by fastening wearables or sensors on patients, doctors can
monitor their condition in real-time when they are away from the hospital. The Internet of
Things can enhance medical care and avoid fatalities in high-risk patients by continuously
monitoring specific metrics and sending automatic alerts on their vital signs. IoT offers
potential solutions to address urban problems such as pollution, traffic congestion, and en-
ergy shortages. IoT applications include the smart home, self-driving cars, smart grid, IoT

Computers 2023, 12, 240. https://doi.org/10.3390/computers12110240 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12110240
https://doi.org/10.3390/computers12110240
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-9443-937X
https://orcid.org/0000-0002-4316-4975
https://orcid.org/0000-0002-3192-1000
https://doi.org/10.3390/computers12110240
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12110240?type=check_update&version=1

Computers 2023, 12, 240 2 of 22

retail shops, smart parking, smart supply-chain management, environmental monitoring,
industrial internet, and e-voting, to name a few [6–8]. As the number of IoT applications
increases, more critical information, including personal or confidential information, is
produced. The most current IoT system can not guarantee trust and privacy for the data [9].

A rogue device might disrupt the IoT network’s operation and result in disastrous
outcomes. The IoT environment is battling problems with heterogeneity, integrity, resource
limitations, availability, privacy, and security susceptibility [10]. In addition, authentication
and access control are the first lines of protection because they only allow individuals with
the necessary rights to access data [11,12]. To guarantee data security and integrity, secure
IoT systems require reciprocal permission between IoT devices and other networks [13–15].
If not, these systems will be vulnerable to various security issues, such as unauthorized
access, data theft, and data modification [16–19]. Due to the heterogeneous nature and
distributed architecture of IoT networks, establishing authentication between diverse IoT
devices involves complex and varied rules and regulations. Maintaining this with the
aid of third-party authorities presents significant challenges, including issues of trust
and potential bottlenecks. Further, there are several access control mechanisms in the
state-of-the-art works. For example, usage control model (UCON), organizational-based
access control (OrBAC), capability-based access control (CapBAC), role-based access control
(RBAC), and attribute-based access control (ABAC) have been utilized in the literature [20].
role-based access control (RBAC) refers to managing user access to resources based on
their roles [21]. The attribute-based access control (ABAC) is a logical access control
paradigm that controls the access between subjects and objects by the properties of entries,
operations, and related environments [22]. In conventional security systems, these access
control mechanisms are implemented using centralized architectures, which are susceptible
to single-point failures, scalability challenges, lower reliability, and reduced throughput.
To address this issue, at present, researchers have sought blockchain technologies, which
have only recently emerged, to successfully provide a solution to improve scalability,
privacy, security, validity, and reliability. Blockchain is a decentralized platform where
every transaction is carried out decentrally [23,24].

Patil et al. proposed a framework of access control using blockchain technology [25].
Further, Nayabe et al. [26] proposed a blockchain-based authentication mechanism for
establishing secure communication between cars and shortening the time required for
message transmission and verification. Similarly in [27], Bera et al. suggested a decentral-
ized access control systems for the IoT environment, which allows mutual authentication
between two surrounding drones and their corresponding ground station servers.

IoT systems require operation in a distributed fashion, with minimal delay to facil-
itate device interactions and deliver crucial services. Consequently, distributed security
measures are essential to ensure the protection of these systems. Traditional security
mechanisms, like authentication procedures, often fall short due to the centralized and non-
scalable nature of IoT systems. For instance, an airborne drone transmitting time-sensitive
data may need rapid authentication with multiple command stations in a distributed en-
vironment [28]. Most existing solutions fall short in addressing the emerging challenges
in IoT. Many fail to fulfill key IoT attributes like usability, scalability, interoperability, se-
curity, and automation. To address these significant issues effectively, novel security and
access control strategies in distributed frameworks are required. This paper introduces a
blockchain-based access control framework to tackle these hurdles, aiming to enhance trust
and facilitate broader adoption of IoT technology.

In this paper, we proposed a decentralized access control framework that incorporates
a verification process for authorization. In our framework, a user does not get access to the
IoT resources until the verification for authorization is successful. The system also penalizes
users who attempt to gain unauthorized access to IoT resources. We store the access
policies to be written using smart contracts. The smart contract was created with Remix
and deployed on the Ropsten Ethereum testnet. We examine the performance of smart
contract-based access controls based on blockchain regarding gas usage. Furthermore, we

Computers 2023, 12, 240 3 of 22

assess the system’s performance in terms of security, usability, scalability, interoperability,
and automation.

Our main contributions are summarized below:

• We developed a smart contract-based authentication and access control mechanism
for IoT. The framework is divided into three parts. The first part is to identify all
the people and resources involved. The second part is to control access to network
resources, while the third part is used to examine the behavior of users.

• We analyzed our framework using Slither to detect vulnerabilities in our smart contract
code. We also tested the model on the Ropsten Ethereum test network and measured
gas consumption. The price of this is then compared with a number of the current IoT
authentication methods.

The remainder of the paper is arranged as follows. Section 2 provides a brief review
of previous studies. Section 3 describe the proposed access control framework for IoT.
Section 4 presents the findings of the experiments as well as a discussion. Finally, Section 5
concludes this study with future works. The acronyms that are used in this paper are listed
in Table 1.

Table 1. List of acronyms used in the article.

Acronym Full Form

ACP Access Control Protocols

UCON Usage Control Model

OrBAC Organizational-Based Access Control

CapBAC Capability-Based Access Control

RBAC Role-Based Access Control

ABAC Attribute-Based Access Control

RO Resource Owner

AID Allowance ID

ABI Application Binary Interface

ECDSA Elliptic Curve Digital Signature Algorithm

2. Related Works

This section summarizes the various blockchain-based authentication and access
control options for IoT.

Ouaddah et al. [29] presented a token-based access control paradigm called “FairAc-
cess”, which manages access policy efficiently and restricts policy reuse by deploying smart
contracts. The authors employed public and private tokens to indicate user access rights,
which may be transferred between peers. The token recipient must unlock the lock scripts
to prove the token ownership. Though it is a brilliant concept to lock scripts for access
control, the processing capacity of the locking scripts is rather limited.

Xu et al. [30] suggested a blockchain federated IoT access control system based on
federal capacity. The architecture takes two IoT domains into consideration. For each
area, the cloud elects the coordinator and transfers the decision-making process to the
coordinators, which contributes to the system’s scalability. The coordinator writes and
registers blockchain policies. The procedure of verification of access rights is carried out in
the IoT device using the local chain data synced with the blockchain network. Thus, certain
IoT devices incur the cost of retaining local chain data, reducing the system’s usability.
Additionally, the compatibility of IoT devices and blockchain technology is not examined
when it comes to synchronizing local chain data.

Hammi et al. [31] examined the blockchain concept’s feasibility for solving different
security challenges in IoT. The paper proposes a blockchain-based authentication system.

Computers 2023, 12, 240 4 of 22

It enables decentralized authentication for IoT technology. The primary disadvantage of
the suggested approach is that devices from one system cannot connect with devices from
another system. As a result, it is inapplicable to a variety of dispersed IoT applications
where communication between IoT devices belonging to various systems is crucial.

Han Liu et al. [32] designed and implemented an access control system named fabric
IoT based on Hyperledger Fabric. In the proposed scheme, there were three smart contracts,
namely policy contract (PC), device contract (DC), and access contract (AC). The authors
implemented the ABAC policy management and ensured the access security of the device
resources by implementing the smart contract application. This system utilizes a distributed
architecture to manage the physical network’s access control in a fine-grained and dynamic
manner. However, the reliability and performance of the system is limited.

Using blockchain technology, Sivaselvan et al. [33] built an IoT access control system
that uses capability-based authentication. A capability token is a digital representation
of the access privileges granted to the device that holds it. The suggested architecture
employs smart contracts to execute all actions, contributing to its scalability. However,
no blockchain technology is included in IoT devices for authentication or access control.
The essential connectivity between IoT devices and the blockchain network is achieved via
interfaces that convert IoT-COAP messages to blockchain-compatible JSON-RPC messages
and vice versa.

Khalid et al. [34] developed a decentralized authentication system for Internet of
Things (IoT) devices that is suitable for a wide variety of scenarios. The mechanism is
built on fog computing technology and the concept of a public blockchain. In general,
the fog nodes belong to different people and may not be made by the same company, which
makes it less safe. The elliptic curve digital signature algorithm (ECDSA) is utilized in
this approach to generate public and private keys for devices and fog nodes. The issue
identified in this work is that PoW consumes a lot of energy to validate each block.

Weizheng Wang et al. [35] introduced a smart contract token-based solution for decen-
tralized access control in the Industrial Internet of Things (IIoT). While highlighting the use
of the nth-degree truncated polynomial ring units (NTRU) for post-quantum encryption
and a prototype platform for performance evaluation, certain limitations emerge. The paper
lacks in-depth discussions on the token mechanism, security evaluation metrics, scalability
considerations, and a clear distinction between the prototype and real-world implemen-
tations. Additionally, a more thorough comparative analysis with existing solutions is
needed to comprehensively assess the proposed scheme’s strengths and weaknesses in the
context of IIoT access control.

Feifei Guo et al. [36] have proposed a domain attribute-based access control (DABAC)
approach to address access control challenges in dynamic IoT environments. The pro-
posed solution relies on an intelligent gateway for regional device management, which
may introduce a single point of failure and potential scalability concerns. Additionally,
the implementation on the Ethereum platform, while illustrating feasibility in a simulated
smart medical scenario, raises questions about real-world scalability, transaction speed,
and resource consumption. The effectiveness of DABAC in mitigating threats is asserted
but requires substantiation through a more comprehensive analysis of potential drawbacks
and comparative assessments with existing solutions.

An Internet of Things (IoT) access management strategy based on smart contracts
was proposed by O.novo in [37]. It makes no attempt to integrate blockchain technology
with IoT devices. In contrast, the necessary interactions between IoT devices and the
blockchain are formed through management hubs, which serve as middlemen between the
two technologies. The interface makes use of the Web3 JavaScript API to connect with the
Ethereum nodes using RPC calls, as well as a CoAP library named node-coap5 to connect
with the IoT devices. The scheme’s usability, scalability, and interoperability are all strong
characteristics. The security features, on the other hand, are restricted. There is no way to
verify the legitimacy of the management hubs.

Computers 2023, 12, 240 5 of 22

Xuanmei et al. [38] have presented a lightweight decryption-based access control
mechanism based on fabric blockchain technologies. The authors have shown how to use
fabric blockchain technologies to keep one’s information secure. The blockchain’s security
mechanisms ensure that outsourcing decryption works successfully without requiring
additional computation. However, they could not provide dynamic attribute management
or automated smart contract features.

From the above related works, we can conclude that present state-of-the-art access
control methods do not adequately address essential IoT attributes, including usability,
scalability, interoperability, security, and automation. These criteria have been widely
acknowledged in the literature as key factors contributing to the success of IoT solutions.
Specifically, usability ensures a user-friendly experience, security addresses the protection
of data and devices, scalability focuses on accommodating growth seamlessly, integrity
ensures data reliability and accuracy, and automation emphasizes the efficiency of oper-
ations. In this paper, we tried to fill in this important research gap. We developed a new
blockchain-based authentication and access management system for the Internet of Things.
In addition, we deployed smart contracts to create a proof-of-concept version of the system.

3. Proposed Framework

This section summarizes the proposed system’s general operation. The framework
includes several servers and storage devices, as well as one or more IoT gateways and
end-user devices that are all linked together via a P2P network. First, we describe the
primary roles of the peers below.

• Server: Servers are software or hardware devices that accept and reply to requests
that are sent via a network connection. The device that sends the request to the server
and gets a reply from the server is referred to as a client. Mostly on Internet, the term
“web server” refers to a computer networks system that accepts requests for web pages
and then delivers those items to the client.

• User device: User devices include personal computers, laptops, smartphones, and smart
watches, which allows users to access and use the services provided by the servers,
as well as read data from and write information to storage devices.

• Storage device: A storage device is a sort of hardware, often known as storage
media, that is capable of temporarily or permanently storing information. The storage
medium is often used to store, transport, and extract data files. This can be used to store
data inside or outside of a computer system, server, or any other type of computer.

• IoT gateway device: Gateways act as a wireless access portal, allowing IoT devices to
connect to the internet. Gateways can be physical or virtual devices such as Bluetooth,
WiFi, and Raspberry Pi.

• IoT device: IoT devices are physical components, such as sensors, actuators, gadgets,
appliances, or machines, that are configured for a specific purpose and can transmit
data via the internet or other networks. They can also be utilized for additional
purposes. They can be integrated with, among other things, other mobile devices,
industrial machinery, environmental sensors, and medical devices.

Our proposed methodology is segmented into three well-defined stages: initialization,
access control protocol (ACP), and inspection. A comprehensive visual representation
of our access control framework is provided in Figure 1. The initialization phase lays
the foundation of the entire system by setting up trusted nodes and establishing secure
communication channels.

The ACP phase forms the heart of our approach, effectively managing and enforcing
access control policies that regulate the interaction with resources in an IoT setting.

In the inspection phase, we introduce a vigilant monitoring system. This phase is
crucial for evaluating the conduct of subjects who seek access to resources, thereby ensuring
continuous adherence to established norms.

Computers 2023, 12, 240 6 of 22

Figure 1. Overview of the proposed access control framework.

3.1. Initialization Phase

The initialization phase facilitates the identification of trusted nodes, linking them
to the access control protocols (ACP) and their related functions. For integration into the
blockchain network, all associated entities are required to create at least one unique account,
distinguishable by a key pair. The public key from each user is utilized to formulate an
account address, serving as an identifier within the system, contingent on blockchain
network validation.

Key participants in our framework include the resource owner (RO), who holds
ownership of a specific resource, nodes that garner trust from the RO, and individuals
seeking to utilize the RO’s resources for various objectives. The RO can employ access
control protocols (ACPs) to establish access permissions for their resources. These ACPs,
formulated by the RO, are subject to audit and are constructed based on the allowance ID
(AID) of the subjects they safeguard.

The data presented in Table 2 are securely stored on the Ethereum blockchain, serving
as a decentralized repository. This blockchain meticulously logs transactions carried out
through smart contracts, inclusive of those formulated using Remix IDE in conjunction with
Metamask. Every entry in Table 2 signifies a distinct transaction record on the blockchain,
thereby fortifying the distributed and unalterable nature of the ledger.

Table 2. Illustration of the record maintained by initialization phase.

Allowance ID Subject Address ABI

0 0 × 786CabceC02C6C3C08b8F06ad72ca47240c0aB23 access control()

1 0 × 786CabceC02d6h7g0r06F06ad72bca47240c0aB12 access control()

2 0 × 786CabceC02C6C372ca47240C08b8F06adc0aB32 access control()

.

Once the identity details of users and IoT devices are authenticated, as depicted
in Figure 2, they can be validated through their respective addresses. Consequently, the re-
source owner (RO) gains the autonomy to manage its devices and resources, eliminating
dependence on external companies.

Computers 2023, 12, 240 7 of 22

Figure 2. Illustration of Initialization phase.

Access control protocols (ACPs) are adept at authenticating a user’s access rights by
processing transactions sent from a trusted node. These transactions incorporate crucial
elements such as the subject address, allowance ID (AID), and application binary inter-
face (ABI). The procedural steps for this initialization phase are meticulously outlined in
Algorithm 1.

Algorithm 1: Algorithm for initialization phase
Input: subjectAddress : The Address of the Entity or User, AllowanceId (AID):

The Allowance ID indicating the Subject’s Role or Type.
Output: list[subjectAddress]: The assignment of the subject’s role or type in the

access control system
if subjectAddress is valid then

// Check if AllowanceId is within the valid range.
if AllowanceId = 0 then

// Assign subjectAddress as “Resource Owner”.
list[subjectAddress] = “Resource Owner”

end
else if AllowanceId ≥ 1 and AllowanceId ≤ n then

// Valid AllowanceId, proceed with assignment.
list[subjectAddress] = “Subject Type” + AllowanceId

end
else

// Invalid AllowanceId, report an error.
Print(“Error report: Invalid AllowanceId”)

end
end
else

// Invalid subjectAddress, report an error.
Print(“Error report: Invalid Address”)

end

Explanatory Notes on Algorithm 1

AID (allowance ID) represents a numeric identifier associated with subjects in the
access control system.

• The range of AID is from 0 to n, offering a variety of possibilities for categorizing
subjects based on their roles or types in the system.

Computers 2023, 12, 240 8 of 22

• AID 0 is designated for the resource owner (RO), indicating the primary entity with
ownership and control over the resources.

• AID 1 to n is reserved for different subject types or roles, each serving a distinct
purpose within the access control framework.

• If a subject’s AID falls outside this specified range (0 to n), the system generates an
error report, signaling an “Invalid AllowanceId”. This mechanism ensures that only
valid and predefined AID values are accepted, maintaining the integrity and security
of the access control system.

3.2. Access Control Protocol Phase

Our proposed decentralized access control mechanism incorporates a two-factor
authentication process to enhance security.

• Initial Authorization Check: The process begins by determining if the subject is
authorized to make an access request. This involves checking various criteria to
validate the access request.

• Device Address Verification: After passing the initial step, the system checks if the
subject’s device address is registered. If the device is already registered, it can access
the specified resource without needing to sign a message. If the device is not registered,
the subject must sign a message using the chosen device that is currently logged in.

• Identity Verification through Signed Message: The system retrieves the identity of the
signer from the signed message. The hash of this signed message is computed using
the private key of the requester’s Ethereum account.

• Final Authentication and Device Registration: Upon confirming the signer’s identity,
the system verifies that the requester is indeed the legitimate user of the requested
resources. The new device is then registered for future use, ensuring streamlined
access in subsequent requests.

• Dynamic Access Control through Access Control Protocol List (ACP): For managing
access requests from peers, we assume one access control (AC) implements the agreed-
upon access control mechanisms for each subject-related object. Each ACP list as
shown in Figure 3 performs two crucial functions:

– It checks not only the established policies for the subject but also monitors the
subject’s behavior during access attempts.

– The ACP dynamically evaluates policies for a subject, ensuring compliance with
predefined rules. At the same time, it scrutinizes the subject’s real-time behavior,
providing an adaptive and responsive layer of control.

By incorporating these steps, our system effectively confirms the identity of the re-
quester and dynamically adapts to ensure compliance and security.

Policy management: Our Ethereum smart contracts are equipped with interfaces
and functions that facilitate policy-related activities through transaction execution. This
setup allows our proposed access control protocol (ACP) to efficiently handle the various
functions necessary to operate these application binary interfaces (ABIs).

• Adding a Policy: If there is an agreement between a subject-object and a newly-
deployed resource to add an access control policy, the resource owner initiates this
process. They do so by sending a message to trigger the addpolicy() function in the
relevant ACP.

• Updating a Policy: To modify an existing access control policy, the owner can send a
message to call the updatepolicy() function.

• Changing Location: The locationupdate() function is available for the owner to change the
location specified in an ACP policy list. To do this, the policy’s identity details are needed.

• Adjusting Time Range: The policy creator can also alter the policy’s time range using
the timerange() method.

Computers 2023, 12, 240 9 of 22

Figure 3. Illustration of Access Control Protocol phase.

To illustrate these processes more clearly, we have Table 3. This table demonstrates an
owner’s policy list, breaking down categories like subject (Ethereum address), resource,
action, location, time range, and permission. It provides a concise overview of the intricate
access control policies managed through Ethereum smart contracts in our system. The table
ensures that each step, from the deployment of the smart contract to the implementation of
the policy, is transparent and effectively enforced. The following segments of the policy list
are examined in greater detail:

• Subject: Identifies the subject through a unique identifier, such as their Ethereum
address.

• Resource: Specifies the name of the resource that needs to be included in the access
control process.

• Action: Outlines the permissible actions on the specified resource, which could include
viewing, downloading, reading, or writing.

• Location: Provides details about the location from which the subject can access the
resource.

• Time Range: Allows the resource owner (RO) to set a specific time range during
which the resource can be accessed.

• Permission: Indicates whether a particular pairing of resource and subject has been
granted permission for certain actions, like allowing or denying access.

Table 3. Illustration of the owner’s policy list.

Resource Subject Location Time Range Action Permission

File A User 2 Location A 02:05–03:10 Read Deny

File B User 4 Location B 14:10–16:20 Download Allow

File C User 9 Location D 20:24–22:25 Write Deny

File R User 5 Location G 05:30–05:50 View Allow

Computers 2023, 12, 240 10 of 22

Access Control: The access control policy (ACP) serves as a mechanism for both the
resource owner and the subject to manage access interactions between the subject and an
object. It is assumed that both parties are knowledgeable about all available access control
strategies. Utilizing this access behavior interface (ABI), they can obtain necessary access
control information, which then provides an outcome regarding access and any associated
penalties. When the subject invokes this function to authenticate a recent access request,
the system initiates a verification process to determine its legitimacy. If a potential violation
is detected, the ACP prompts the inspection phase by instructing the GetViolationHistory
ABI to enact a violation response. This inspection phase then delivers a verdict on any
penalty related to the violation. Once both static and dynamic verifications are satisfactorily
completed, the access request is granted.

Explanatory Notes on Algorithm 2

Algorithm 2 is designed for policy management within a context where certain param-
eters (parameter1 and parameter2) and contextual information such as RequesterAddress,
message, and currentDevice play a crucial role. The algorithm aims to evaluate access
requests and, if needed, assign penalties for violent actions. Here is a breakdown of the
algorithm’s steps:

1. Condition Checking:

• The algorithm begins with a conditional check on parameter1 and parameter2.
This check acts as a decision point, allowing the algorithm to follow different
paths based on the values of these parameters.

• Parameter1 and parameter2 represent specific conditions or attributes relevant
to the access request scenario. The choice of X and Y as comparison values may
reflect specific requirements that trigger particular actions.

2. Device Registration:

• If the condition (parameter1 = X and parameter2 = Y) is met, the algorithm
proceeds to check the registration status of the currentDevice.

• The process involves creating a hash of the message (msgHash) to ensure data
integrity during digital signature verification.

• The algorithm obtains a signature (sig) from the selected logged-in device using
Ethereum’s signing mechanism.

• Signature verification (verify) ensures that the signature corresponds to the
provided message, confirming the identity of the signer.

• If the signer’s address (recoverSigner) matches the requester’s address (Re-
questerAddress), the currentDevice is registered for future use.

3. Access Request Handling:

• After registration, or if the device is already registered, the algorithm checks
if the signer’s address matches the requester’s address. This step is crucial for
validating the authenticity of the access request.

• If the addresses match, the algorithm successfully registers the new device for
future use and returns true, indicating a successful access request.

• If the addresses do not match, the algorithm enters the judgePhase. This phase
handles penalties for bad access requests and returns false to signify an unsuc-
cessful access attempt.

Computers 2023, 12, 240 11 of 22

Algorithm 2: Algorithm for policy management
Input: parameter1 : AParameterValue, parameter2 : AnotherParameterValue,

RequesterAddress : TheAddresso f theRequester,
message : AMessageReceived,
CurrentDevice : TheDeviceMakingtheRequest

Output: Request Evaluation and Penalty Assignment for violence
if parameter1 = X and parameter2 = Y then

if currentDevice is not registered yet then
msgH← msgHash(message) ; // Calculate the message hash for
digital signature verification

sig← etheriumSignedMessage(msgH) ; // Obtain the signature from
the selected logged-in device

recoverSigner← verify(sig) ; // Verify the signature and retrieve
the signer’s address

if recoverSigner = RequesterAddress then
registerNewDevice(currentDevice) ; // Register the new device
for future requests

return true; // Request is approved
else

judgePhase(RequesterAddress) ; // Assign a penalty for a bad
access request

return false ; // Request is denied
end

else
return true; // Device is already registered, and the request is
approved

end
else

judgePhase(RequesterAddress); // Assign a penalty for a bad access
request

return false; // Request is denied
end

3.3. Inspection Phase

The inspection phase employs a misbehavior judging method upon receiving a report
from an ACP regarding possible misbehavior. This method assesses the nature of the
subject’s inappropriate behavior and determines the appropriate penalty. The decision re-
garding the penalty may take into account the subject’s misbehavior history. Consequently,
the inspection phase is responsible for maintaining a comprehensive record of misbehavior
histories for all individuals. Once the penalty is determined, the inspection phase proceeds
to forward its judgment to the ACP for further action. To provide further clarity on the
usage of penalties, let us illustrate how this phase maintains a detailed list of misbehavior
incidents for each individual who has engaged in improper actions, as depicted in Table 4.
Each record has a set of fields:

• Peer: The person who was affected by the misbehavior

• Misbehavior: The facts of the misbehavior, or what happened

• History: The number of misbehavior occurrences;

• Penalty: The punishment for misbehavior action.

The inspection phase manages the records using the following function.

• GetViolationHistory(): In order to decide on an appropriate penalty, this function
examines the behavior information obtained from the ACC. Following the report,

Computers 2023, 12, 240 12 of 22

this function judged the misconduct of subjects, determined the penalties for subjects
based on the subject’s violation history, and sent the penalty decision back to the
ACC that reported the misbehavior. The subject’s violation record is also updated by
this function.

Table 4. Violation records maintained by Inspection phase.

Subjects Violation Type History Penalties

User 4 Too frequent access 3 Blacklisted

User 2 Unmatched location 3 Access denied

User 5 Incorrect access request 4 Access denied

User 1 Too frequent access 5 Blacklisted

.

Table 4, illustrates an example of a document used to keep track of a user’s violation.
To illustrate such situations, let us assume User 4’s repeated access requests to the RO’s
ACP, as indicated in Table 4. One way to deal with this situation could be to blacklist the
person involved. In the case of User 2, the RO returns an access denied response since the
user’s location is not included in the list. Finally, since User 5’s access requests are not
included in the policy list, a rejected result is applied to handle this case. Additionally,
Algorithm 3 provides a detailed procedure for handling access violations as exemplified in
Table 4.

Algorithm 3: Algorithm for judge phase
Input: RequesterAddress,location,deviceName
Output: Misbehavior Inspection
if accesscontrolpolicy(reqadd, location, device) = true then

result← true;
else

result← f alse;
unauthorizedaccess[reqadd] + +;
if unauthorizedAccess[RequesterAddress] ≥ threshold then

unauthorizedAccess[RequesterAddress]← 0;
violationHistory[count ++]← RequesterAddress;
penalty[RequesterAddress]← penaltyID;

end
end
return result;

4. Implementation and Results
4.1. Implementation

This implementation section functions as a prototype, offering a scaled-down demon-
stration of our concept. We have integrated just two devices into the system/framework to
showcase its core functionalities. Our development process focused on blockchain-related
components and was executed using Remix, without the creation of a graphical user in-
terface. The entirety of this development process was managed within the integrated
development environment (IDE), proving to be highly effective for our prototype.

To exemplify the potential applications of our framework, we present a representative
use case. In this scenario, we demonstrate the remote control of light-emitting diodes
(LEDs) as the target resource. The specific device of interest is an LED equipped with
remote control capabilities. This LED is constructed using a NodeMCU board, which is

Computers 2023, 12, 240 13 of 22

built upon the ESP8266 platform, facilitating item connectivity and data transmission via
the Wi-Fi protocol.

The device is accessible remotely through a wireless LAN (WLAN) connection. The in-
teractions of various components within this case study are visually represented in Figure 4.

Figure 4. The interaction of several components in the case study.

We created a two-tiered access hierarchy on a single-board device. For the time being,
we will refer to them as LEVEL1 and LEVEL2. At LEVEL1 access depth, a real user can only
see the LED state of our target device. In addition to reading the device’s status, a valid
user with LEVEL 2 accessibility can change the LED’s status and turn it off. We begin
by introducing the hardware and software utilized in the research and then demonstrate
how the access control framework is implemented. Finally, we present the outcomes of
certain experiments. Algorithms 4 and 5 define the access control procedures for LEVEL1
and LEVEL2, respectively.

Algorithm 4: Algorithm for LEVEL1 access level
Input: parameter1,parameter2,RequesterAddress
Output: LED status
if accessibility(RequesterAddress) = LEVEL1 then

return LED_STATUS
else

return “Access Request Denied”
end

As shown in Figure 5a, the resource owner can change the user/role subject and set
how far it can get into the system. This is carried out with the set role and set state ABI.
Figure 5b displays how a requester might send an access request for a certain resource by
giving parameters such as the resource’s location, account address, and so on. The requester
must additionally sign a message for verification purposes, as presented in Figure 5d,
and the system will then extract the signer’s identity from the message that was signed.
This enables the system to confirm the identity of the requester.

Computers 2023, 12, 240 14 of 22

According to the case study, the light-emitting diode, considered a resource of the owner,
is controlled via a toggle menu. When the owner of a resource grants the user access to that
resource, the resource is under the control of the user. Let’s say that a legitimate user wishes
to alter the light’s intensity. Figure 5c shows toggle options that allow the user to change the
current state of an LED after it has been correctly validated during verification. In Figure 5e,
a web3.js application shows a successful attempt to change this resource’s state.

(a) Set role (b) Access request

(c) A toggle for certified requester (d) Sign message request

(e) LED resource status on web3.js

Figure 5. Implementation results.

Computers 2023, 12, 240 15 of 22

The Javascript files on the web3-enabled server continuously check the status value
that is stored at the deployed smart contract. If any change happens, i.e., LEVEL2 access is
triggered, it receives the update and makes a change to the Firebase database LED status.
On the other hand, the IoT device keeps listening to the Firebase database. If it notices any
change, it makes the change in real to the connected LED.

Algorithm 5: Algorithm for LEVEL2 access level
Input: parameter1, parameter2, RequesterAddress
Output: LED status toggle report
if accessibility(RequesterAddress) = LEVEL2 then

if LED_STATUS = “ON” then
LED_STATUS← “OFF”;
return “LED SET TO OFF”;

else
LED_STATUS← “ON”;
return “LED SET TO ON”;

end
else

return “Access Request Denied”;
end

• Hardware and Software

As depicted in Figure 6, our study used two laptop computers (Dell Vostro 356 500,
Asus VivoBook S14) and one NodeMCU board-integrated LED board. The NodeMCU
board is selected due to its compatibility with IoT projects, cost-effectiveness, strong open-
source community support, integrated Wi-Fi, and scalability. Table 5 lists the technical
specifications of these devices, and Table 6 indicates the software tools used for the case
scenario. The laptops are the user devices in the system, while the LED board is the
object. We took into account the issue of access control between the subjects and the objects.
We used the Remix integrated development environment (IDE), a browser-based IDE for
Solidity (the programming language for developing smart contracts) to write and compile
the smart contract. Additionally to this, we made use of web3.js (the official Ethereum
JavaScript API) at the object level to communicate with the associated geth client via HTTP
connections to deploy and also monitor the state of our code (i.e., the results of the access
control). Additionally, on the subject side, the web3 was set up to communicate with the
geth using transactions to submit access requests to the ACP and to get access control
responses from the smart contract.

Figure 6. Hardware used in the case study.

Computers 2023, 12, 240 16 of 22

Table 5. Specification of Hardware Devices.

Device CPU Operating System Memory Hard Disk

Dell vostro 5000 Intel Core i3-7100U, 2.40 GHz Ubuntu 20.04.4 4 GB 1 TB

Asus VivoBook S14 Ryzen 5 4500u, 4 GHz Windows 10 Home (64 bit) 8 GB 512 GB

NodeMCU Tensilica 32-bit RISC cpu, 80 MHz —— 64 kb flash memory 4 MB

Table 6. Software Tools Used for development.

Blockchain Platform Ethereum 2.0

Development Environment Remix IDE v0.11.0

Smart Contract Language Solidity 0.8.19

Web Integration Firebase 8.8.1

Security Analysis Slither 0.9.0

Operating System Linux 5.18

4.2. Security Requirements and Implementation

In this section, we will analyze how our suggested approach aligns with a range of
security prerequisites. The choice of the following security prerequisites stems from a
thorough evaluation of potential threats and the overarching objective of guaranteeing the
resilience of our proposed method. Each security measure has been carefully selected to
tackle distinct concerns and fortify the system’s overall security stance.

• Integrity: To ensure system integrity, data are signed using the sender’s private key
before being sent to the receiver. This is performed in order to generate a data packet
that is compatible with Ethereum’s ECDSA algorithm. Finally, the final packet com-
prises the data, a hash of the data, and a signature issued by the sender. The receiver
validates it using the signer’s address and the hash of received data [39].

• Identification: All devices entering the system must have device identification (ID) in
order to meet this security standard. For all devices registered in the system, an ID
is assigned to identify the receiving device, and this ID must be provided to other
devices in the system for communication. So the device may extract the sender’s ID
and know the system it belongs to.

• Mutual authentication: The suggested mechanism includes an allowance ID (AID),
which was addressed in detail in Section 3. The AID is created by the subjects’ private
key. The AID of each device in the system is genuine. This boosts the confidence of
other nodes in communicating with one another [40].

• Scalability: Our approach uses a public blockchain and a peer-to-peer network. P2P
networks are widely considered to be one of the greatest ways to achieve scalability at
big scales.

• Non-repudiation: Each transaction in the system is signed using the private key
associated with it. There is no way to dispute that a transaction was carried out; hence,
the sender cannot deny it (repudiate).

• Spoof attack: Device ID, system ID, and private key are required for a successful
spoof identity attack on a target device. Even if the attacker obtains system IDs and
device IDs, the intruder will still require the private key in order to fake the device
identity [41].

• Sybil attack: To carry out a Sybil assault, the attacker must construct bogus identities.
Multiple IDs are not permitted in the proposed process, and thus each device will
only have one ID that is registered with the system. The private key associated with

Computers 2023, 12, 240 17 of 22

a device is used to encrypt and sign the message. This eliminates the possibility of
creating false identities into the system [42].

• DoS/DDoS attack: Blockchains’ decentralized architecture makes systems resistant to
denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks. Transactions
are also expensive, and thus an attacker is less likely to spend money by sending
several transactions. Blockchain technologies such as Ethereum also have transaction
fees that depend on the size of the transaction packets that are sent [43]. In summary,
these security requirements is rooted in a thorough understanding of potential vul-
nerabilities and the strategic application of measures to address them. This approach
ensures a robust and resilient security framework for the proposed technique.

4.3. Smart Contract Analysis Using Slither

Modifications to the smart contract code are only feasible prior to its deployment on
the main network. Once deployed on the main network, any changes become irreversible.
The vulnerability of smart contracts due to weak coding has led to instances of malicious
actors pilfering substantial sums of money in the past. Hence, it is imperative to conduct a
comprehensive examination of smart contracts before their implementation.

To this end, we employed Slither, a static analysis framework designed for smart
contracts, to identify vulnerabilities within our code. This tool can also facilitate code
optimization and scrutiny. Following the analysis of our contract code with this tool,
the results are depicted in Figure 7. These results indicate that our code exhibits two
low-level issues, with zero medium and high-level issues identified. Slither attributed
the low-level issues to problems related to built-in symbol shadowing. Importantly, these
issues have no adverse impact on the code’s efficiency or the security of our smart contract.

Figure 7. Summary of our smart contract functions and issues.

4.4. Costs Evaluation and Comparison

Every time a smart contract function is called, a fee is incurred to compensate the
mining node for processing and recording the transaction on the blockchain. In Ethereum,
this cost is denoted in terms of “gas”, and it can be procured from mining nodes in exchange
for Ether. It is essential to bear in mind that while gas represents a consistent expense for
executing actions on the blockchain network, Ether is a volatile digital currency used to
settle charges for the network’s resources.

To evaluate and compare costs, we constructed prototypes of our proposed smart
contracts using the Solidity programming language. These prototypes were subsequently
deployed on the Ropsten Ethereum testnet to assess their functionality. As of 25 March
2023, we observed that the average gas value amounted to 0.00000002036. The following
section will provide a comprehensive breakdown of the specific expenses associated with
various operations.

In the provided Figure 8 and detailed in Table 7, the subject registration process incurs
a fee of 0.000956 ETH and consumes 46,935 gas on the test network. Similarly, a request for
access is associated with a cost of 0.0014 ETH and a gas consumption of 68,272 on the test
network. Additional details regarding the costs of various operations can be found in the
accompanying table.

Computers 2023, 12, 240 18 of 22

Table 7. Costs of the different operations.

Operation Gas Used Transaction Fee (ETH)

Contract deployment 2,758,894 0.05617

Subject registration 46,935 0.000956

Access request 68,272 0.0014

Recover signer 23,918 0.000486

Message signing 22,753 0.0004632

Access control protocol 127,055 0.0025

Accessibility check 26,659 0.000542

Violation history check 23,962 0.000493

Figure 8. Costs of multiple functions on smart contract.

Figure 9a illustrates the one-time constant costs of registration functions on smart
contracts in comparison to various alternative ways. For data sharing, T. Sultana et al. [44]
presented an Ethereum smart contract-based access control system. As a consequence of
their experiments, they discovered that it takes 130,000 gas to create a simple registration
policy function on the Ethereum blockchain. N. Sivaselvan et al. [33] suggested a blockchain-
based scheme for authentication and capability-based access control in the Internet of
Things (IoT) environment. It takes 60,785 gas to register on the Ethereum network. Our
proposed framework, on the other hand, consumes only 46,935 gas on the Ropsten testnet,
which is significantly less than the other two solutions.

Figure 9b demonstrates how much it costs to track misbehavior on our smart contract
versus how much it costs to utilize alternative ways. The inspection phase collects infor-
mation concerning the subject’s misbehavior, as well as the time of the offense, in order to
establish an appropriate punishment.

The one-time constant costs of access control functions on smart contracts are depicted
in Figure 9c in contrast to several alternative approaches. S. Y. A. Zaidi and colleagues
suggested an attribute-based access control for the Internet of Things (IoT) that relied on
blockchain and smart contracts. According to their testing results, it takes 820,457 gas
to implement an access control function in the Ethereum blockchain. On the other hand,
our suggested framework consumes only 292,619 gas on the Ropsten testnet, which is
significantly less than the other three solutions.

Figure 9d compares the contract deployment and overall cost of various authentication
and access control approaches. The present approach’s overall deployment costs exceed
the default 3,000,000 gas in the remix. However, the proposed method is within the default
gas limit of 3,000,000 gas in remix and considerably less than other existing frameworks.
For example, attribute-based access control for IoT systems developed in [45] required
about 5 million gas, nearly double the amount required by our approach. Based on the
costs, our proposed framework is clearly more lightweight than existing solutions.

Computers 2023, 12, 240 19 of 22

(a) Comparison of registration costs with
alternative methods

(b) Comparison of the costs of maintaining
a misbehavior record

(c) Comparison of access control costs with
alternative methods

(d) Comparison of the overall costs of
various approaches

Figure 9. Cost Comparison.

Table 8 shows a comparison of the several properties of various authentication and
access control approaches. It is noticeable that current state-of-the-art methodologies
fail to reach the essential IoT attributes of usability, scalability, interoperability, security
and automation as discussed on Section 2. The proposed technique, on the other hand,
addresses all of these. As a result, as compared to current state-of-the-art methodologies,
the proposed methodology is better suited for IoT.

Table 8. Comparison with the sate-of-art approaches.

Paper Usability Security Scalability Interoperability Automated

[29] X X x X x

[30] x x X X X

[31] X X x X X

[32] x X X x x

[33] X x X x X

[34] X x X X X

[35] X x x X X

[36] X X x X X

[37] X x X x X

[38] X X x X x
Proposed
Scheme X X X X X

Computers 2023, 12, 240 20 of 22

5. Conclusions

In the realm of IoT systems, users anticipate seamless operation within a distributed
environment, characterized by minimal latency. This enables IoT devices to securely
exchange time-sensitive data among themselves. In response to these demands, this paper
introduces a smart contract-based access control system tailored for IoT scenarios. This
decentralized approach to access control tackles the trust issue and enhances the overall
stability of the system.

Our proposed access control system incorporates a two-factor verification process.
The initial step assesses the subject’s authorization to initiate the access request, while
the second step validates the requester’s identity. Smart contracts were deployed on the
Ropsten test network, affirming the feasibility of our approach. Additionally, we utilized
Slither, a security analysis tool, to identify vulnerabilities and security concerns within
our smart contracts. The results of the security analysis confirm the practical safety of
our scheme.

Looking ahead, we envision several avenues for future exploration and expansion:

• Blockchain Integration: We are committed to deeper integration with emerging
blockchain technologies, such as sharding and layer 2 solutions, to enhance the perfor-
mance and efficiency of our access control system.

• AI and Machine Learning: By harnessing the capabilities of AI and machine learning,
we aim to bolster our security measures through advanced anomaly detection and
behavior analysis within the IoT ecosystem.

In conclusion, our smart contract-based access control system is not only a solution
for the present but a gateway to a future brimming with innovation and exploration in the
realm of IoT security.

Author Contributions: M.R.H. and S.B.J.: Data curation, methodology, software, writing—original
draft preparation; M.N.U., A.A. and M.A.U.: conceptualization, supervision, methodology, formal
analysis, visualization, writing—reviewing and editing; A.K., I.G. and W.F.U.: visualization, investi-
gation, validation, writing—reviewing and editing; M.A.T.: investigation, validation, visualization,
writing—reviewing and editing. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is partially supported by Deakin University and the Air Force Office of Scientific
Research under award number FA2386-23-1-4003.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors have no conflict of interest to declare that are relevant to the content
of this article.

References
1. Iqbal, W.; Abbas, H.; Daneshmand, M.; Rauf, B.; Bangash, Y.A. An in-depth analysis of IoT security requirements, challenges, and

their countermeasures via software-defined security. IEEE Internet Things J. 2020, 7, 10250–10276.
2. Singh, P.; Khari, M. Necessity of Time Synchronization for IoT-Based Applications. In Internet of Things: Technological Advances

and New Applications; Apple Academic Press: Cambridge, MA, USA, 2023; p. 285.
3. Danladi, M.; Baykara, M. Low Power Wide Area Network Technologies: Open Problems, Challenges, and Potential Applications.

Rev. Comput. Eng. Stud. 2022, 9, 71–78. [CrossRef]
4. Santos, R.; Eggly, G.; Gutierrez, J.; Chesñevar, C.I. Extending the IoT-Stream Model with a Taxonomy for Sensors in Sustainable

Smart Cities. Sustainability 2023, 15, 6594.
5. Malik, H.; Anees, T.; Faheem, M.; Chaudhry, M.U.; Ali, A.; Asghar, M.N. Blockchain and Internet of Things in Smart Cities and

Drug Supply Management: Open Issues, Opportunities, and Future Directions. Internet Things 2023, 23, 100860.
6. Espinosa, Á.V.; López, J.L.L.; Mata, F.M.; Estevez, M.E.E. Application of IoT in healthcare: Keys to implementation of the

sustainable development goals. Sensors 2021, 21, 2330.
7. González-Zamar, M.D.; Abad-Segura, E.; Vázquez-Cano, E.; López-Meneses, E. IoT technology applications-based smart cities:

Research analysis. Electronics 2020, 9, 1246.
8. Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. A survey on the adoption of blockchain in iot: Challenges and

solutions. Blockchain Res. Appl. 2021, 2, 100006.

http://doi.org/10.18280/rces.090205

Computers 2023, 12, 240 21 of 22

9. Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and Security: Challenges and Solutions. Appl. Sci. 2020,
10, 4102. [CrossRef]

10. Yaacoub, J.P.A.; Noura, H.N.; Salman, O.; Chehab, A. Ethical hacking for IoT: Security issues, challenges, solutions and
recommendations. Internet Things Cyber-Phys. Syst. 2023, 3, 280–308.

11. Alharbi, A. Applying Access Control Enabled Blockchain (ACE-BC) Framework to Manage Data Security in the CIS System.
Sensors 2023, 23, 3020.

12. Gupta, D.S.; Mazumdar, N.; Nag, A.; Singh, J.P. Secure data authentication and access control protocol for industrial healthcare
system. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 853–4864. [CrossRef] [PubMed]

13. Taherdoost, H. Security and Internet of Things: Benefits, Challenges, and Future Perspectives. Electronics 2023, 12, 1901.
14. Vignesh Saravanan, K.; Jothi Thilaga, P.; Kavipriya, S.; Vijayalakshmi, K. Data Protection and Security Enhancement in Cyber-

Physical Systems Using AI and Blockchain. In AI Models for Blockchain-Based Intelligent Networks in IoT Systems: Concepts,
Methodologies, Tools, and Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 285–325.

15. Rao, P.M.; Deebak, B. A Comprehensive Survey on Authentication and Secure Key Management in Internet of Things: Challenges,
Countermeasures, and Future Directions. Ad Hoc Networks 2023, 146, 103159.

16. Mishra, S. Exploring the Impact of AI-Based Cyber Security Financial Sector Management. Appl. Sci. 2023, 13, 5875. [CrossRef]
17. Kafi, M.A.; Akter, N. Securing Financial Information in the Digital Realm: Case Studies in Cybersecurity for Accounting Data

Protection. Am. J. Trade Policy 2023, 10, 15–26.
18. Duggineni, S. Impact of Controls on Data Integrity and Information Systems. Sci. Technol. 2023, 13, 29–35.
19. Bandari, V. Enterprise Data Security Measures: A Comparative Review of Effectiveness and Risks Across Different Industries

and Organization Types. Int. J. Bus. Intell. Big Data Anal. 2023, 6, 1–11.
20. Hussein, D.; Bertin, E.; Frey, V. Access control in IoT: From requirements to a candidate vision. In Proceedings of the 2017 20th

Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France, 7–9 March 2017; pp. 328–330. [CrossRef]
21. Ouaddah, A.; Mousannif, H.; Elkalam, A.; Ouahman, A. Access control in The Internet of Things: Big challenges and new

opportunities. Comput. Netw. 2016, 112, 237–262. [CrossRef]
22. Hu, V.C.; Ferraiolo, D.; Kuhn, R.; Friedman, A.R.; Lang, A.J.; Cogdell, M.M.; Schnitzer, A.; Sandlin, K.; Miller, R.; Scarfone, K.;

et al. Guide to attribute based access control (abac) definition and considerations (draft). NIST Spec. Publ. 2013, 800, 1–54.
23. Dai, H.N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A survey. IEEE Internet Things J. 2019, 6, 8076–8094.
24. Singh, S.; Hosen, A.S.; Yoon, B. Blockchain security attacks, challenges, and solutions for the future distributed iot network. IEEE

Access 2021, 9, 13938–13959. [CrossRef]
25. Patil, P.; Sangeetha, M.; Bhaskar, V. Blockchain for IoT access control, security and privacy: A review. Wirel. Pers. Commun. 2021,

117, 1815–1834. [CrossRef]
26. Nayab, A.; Javaid, N. An Efficient Distributed Data Communication Framework Using Blockchain for Vehicle-to-Vehicle

Communication. Available online: https://www.researchgate.net/publication/334626508_An_Efficient_Distributed_Data_
Communication_Framework_Using_Blockchain_for (accessed on 1 November 2023).

27. Bera, B.; Chattaraj, D.; Das, A.K. Designing secure blockchain-based access control scheme in IoT-enabled Internet of Drones
deployment. Comput. Commun. 2020, 153, 229–249. [CrossRef]

28. Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the unmanned aerial vehicles (UAVs): A comprehensive
review. Drones 2022, 6, 147. [CrossRef]

29. Ouaddah, A.; Elkalam, A.; Ouahman, A. Towards a Novel Privacy-Preserving Access Control Model Based on Blockchain Technol-
ogy in IoT. In Europe and MENA Cooperation Advances in Information and Communication Technologies; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 523–533. [CrossRef]

30. Xu, R.; Chen, Y.; Blasch, E.; Chen, G. Blendcac: A blockchain-enabled decentralized capability-based access control for iots.
In Proceedings of the 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
Halifax, NS, Canada, 30 July–3 August 2018; pp. 1027–1034.

31. Hammi, M.T.; Hammi, B.; Bellot, P.; Serhrouchni, A. Bubbles of Trust: A decentralized blockchain-based authentication system
for IoT. Comput. Secur. 2018, 78, 126–142. [CrossRef]

32. Liu, H.; Han, D.; Li, D. Fabric-IoT: A blockchain-based access control system in IoT. IEEE Access 2020, 8, 18207–18218. [CrossRef]
33. Sivaselvan, N.; Bhat, V.; Rajarajan, M. Blockchain-based Scheme for Authentication and Capability-based Access Control in

IoT Environment. In Proceedings of the 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), New York, NY, USA, 28–31 October 2020; pp. 323–330.

34. Khalid, U.; Asim, M.; Baker, T.; Hung, P.C.; Tariq, M.A.; Rafferty, L. A decentralized lightweight blockchain-based authentication
mechanism for IoT systems. Clust. Comput. 2020, 23, 2067–2087. [CrossRef]

35. Wang, W.; Huang, H.; Yin, Z.; Gadekallu, T.R.; Alazab, M.; Su, C. Smart contract token-based privacy-preserving access control
system for industrial Internet of Things. Digit. Commun. Netw. 2023, 9, 337–346. [CrossRef]

36. Guo, F.; Shen, G.; Huang, Z.; Yang, Y.; Cai, M.; Wei, L. DABAC: Smart Contract-Based Spatio-Temporal Domain Access Control
for the Internet of Things. IEEE Access 2023, 11, 36452–36463. [CrossRef]

37. Novo, O. Scalable access management in IoT using blockchain: A performance evaluation. IEEE Internet Things J. 2019,
6, 4694–4701. [CrossRef]

http://dx.doi.org/10.3390/app10124102
http://dx.doi.org/10.1007/s12652-022-04370-2
http://www.ncbi.nlm.nih.gov/pubmed/36684481
http://dx.doi.org/10.3390/app13105875
http://dx.doi.org/10.1109/ICIN.2017.7899435
http://dx.doi.org/10.1016/j.comnet.2016.11.007
http://dx.doi.org/10.1109/ACCESS.2021.3051602
http://dx.doi.org/10.1007/s11277-020-07947-2
https://www.researchgate.net/publication/334626508_An_Efficient_Distributed_Data_Communication_Framework_Using_Blockchain_for
https://www.researchgate.net/publication/334626508_An_Efficient_Distributed_Data_Communication_Framework_Using_Blockchain_for
http://dx.doi.org/10.1016/j.comcom.2020.02.011
http://dx.doi.org/10.3390/drones6060147
http://dx.doi.org/10.1007/978-3-319-46568-5_53
http://dx.doi.org/10.1016/j.cose.2018.06.004
http://dx.doi.org/10.1109/ACCESS.2020.2968492
http://dx.doi.org/10.1007/s10586-020-03058-6
http://dx.doi.org/10.1016/j.dcan.2022.10.005
http://dx.doi.org/10.1109/ACCESS.2023.3257027
http://dx.doi.org/10.1109/JIOT.2018.2879679

Computers 2023, 12, 240 22 of 22

38. Qin, X.; Huang, Y.; Yang, Z.; Li, X. LBAC: A lightweight blockchain-based access control scheme for the internet of things. Inf. Sci.
2021, 554, 222–235. [CrossRef]

39. Sultan, A.; Mushtaq, M.A.; Abubakar, M. IOT security issues via blockchain: A review paper. In Proceedings of the 2019
International Conference on Blockchain Technology, Honolulu, HI, USA, 15–18 March 2019; pp. 60–65.

40. Alvi, S.T.; Uddin, M.N.; Islam, L.; Ahamed, S. A Blockchain based Cost effective Digital Voting System using SideChain and
Smart Contracts. In Proceedings of the 2020 11th International Conference on Electrical and Computer Engineering (ICECE),
Dhaka, Bangladesh, 17–19 December 2020; pp. 467–470. [CrossRef]

41. Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. Continuous patient monitoring with a patient centric agent: A block
architecture. IEEE Access 2018, 6, 32700–32726. [CrossRef]

42. Alvi, S.T.; Uddin, M.N.; Islam, L. Digital Voting: A Blockchain-based E-Voting System using Biohash and Smart Contract. In
Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India,
20–22 August 2020; pp. 228–233. [CrossRef]

43. Uddin, M.A.; Stranieri, A.; Gondal, I.; Balasubramanian, V. Blockchain leveraged decentralized IoT eHealth framework. Internet
Things 2020, 9, 100159. [CrossRef]

44. Sultana, T.; Almogren, A.; Akbar, M.; Zuair, M.; Ullah, I.; Javaid, N. Data Sharing System Integrating Access Control Mechanism
using Blockchain-Based Smart Contracts for IoT Devices. Appl. Sci. 2020, 10, 488. [CrossRef]

45. Zaidi, S.Y.A.; Shah, M.A.; Khattak, H.A.; Maple, C.; Rauf, H.T.; El-Sherbeeny, A.M.; El-Meligy, M.A. An Attribute-Based Access
Control for IoT Using Blockchain and Smart Contracts. Sustainability 2021, 13, 10556. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ins.2020.12.035
http://dx.doi.org/10.1109/ICECE51571.2020.9393081
http://dx.doi.org/10.1109/ACCESS.2018.2846779
http://dx.doi.org/10.1109/ICSSIT48917.2020.9214250
http://dx.doi.org/10.1016/j.iot.2020.100159
http://dx.doi.org/10.3390/app10020488
http://dx.doi.org/10.3390/su131910556

	Introduction
	Related Works
	Proposed Framework
	Initialization Phase
	Access Control Protocol Phase
	Inspection Phase

	Implementation and Results
	Implementation
	Security Requirements and Implementation
	Smart Contract Analysis Using Slither
	Costs Evaluation and Comparison

	Conclusions
	References

