
Citation: Ferrer-Gomila, J.-L.;

Hinarejos, M.F. A Hard-Timeliness

Blockchain-Based Contract Signing

Protocol. Computers 2023, 12, 246.

https://doi.org/10.3390/

computers12120246

Academic Editors: Nino

Adamashvili, Caterina Tricase, Otar

Zumburidze, Radu State and

Roberto Tonelli

Received: 17 October 2023

Revised: 16 November 2023

Accepted: 17 November 2023

Published: 24 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

A Hard-Timeliness Blockchain-Based Contract Signing Protocol
Josep-Lluis Ferrer-Gomila † and M. Francisca Hinarejos *,†

Department of Mathematics and Computer Science, University of the Balearic Islands (UIB),
07122 Palma de Mallorca, Illes Balears, Spain; jlferrer@uib.es
* Correspondence: xisca.hinarejos@uib.es
† These authors contributed equally to this work.

Abstract: In this article, we present the first proposal for contract signing based on blockchain that
meets the requirements of fairness, hard-timeliness, and bc-optimism. The proposal, thanks to the
use of blockchain, does not require the use of trusted third parties (TTPs), thus avoiding a point of
failure and the problem of signatories having to agree on a TTP that is trusted by both. The presented
protocol is fair because it is designed such that no honest signatory can be placed at a disadvantage.
It meets the hard-timeliness requirement because both signatories can end the execution of the
protocol at any time they wish. Finally, the proposal is bc-optimistic because blockchain functions
are only executed in case of exception (and not in each execution of the protocol), with consequent
savings when working with public blockchains. No previous proposal simultaneously met these
three requirements. In addition to the above, this article clarifies the concept of timeliness, which
previously has been defined in a confusing way (starting with the authors who used the term for the
first time). We conducted a security review that allowed us to verify that our proposal meets the
desired requirements. Furthermore, we provide the specifications of a smart contract designed for
the Ethereum blockchain family and verified the economic feasibility of the proposal, ensuring it can
be aligned with the financial requirements of different scenarios.

Keywords: blockchain technology; contract signing; fair exchange; timeliness; EVM-based blockchain;
trust-free system; e-commerce; blockchain cost

1. Introduction

Contract signing is an essential process in commerce in general and in electronic
commerce in particular. Therefore, it is necessary to design protocols for contract signing
that are secure. The fundamental security requirements are fairness, timeliness, and non-
repudiation. Traditionally, the fairness requirement (no signatory can be at a disadvantage
during the contract signing process) has been achieved with the assistance of trusted third
parties (TTPs). However, these TTPs can become a point of failure for the protocol, and it
can also be difficult for the parties to agree on a TTP that is trusted by both.

Recently, we have witnessed the incorporation of blockchain into multiple processes
to provide transparency and efficiency in various business transaction scenarios, such as
energy trading [1], e-commerce [2], healthcare [3], and spectrum sharing [4], and contract
signing has become aligned with the adoption of blockchain technology. Service level
agreements (SLAs) are a type of contract that establish service expectations. These SLAs
could be automated through smart contracts in blockchains, which allow for the definition
of terms and conditions in agreements, triggering actions automatically when the specified
conditions are met. Blockchain technology provides a transparent and immutable record
of all transactions and events, making it an interesting option for efficiently verifying and
monitoring contract signing procedures [5,6].

We found multiple proposals for contract signing based on blockchain in the literature.
However, the use of public blockchains entails a cost for those involved in the signing of a
contract. Therefore, our objective was to design a solution for contract signing that meets

Computers 2023, 12, 246. https://doi.org/10.3390/computers12120246 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12120246
https://doi.org/10.3390/computers12120246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-1848-6232
https://orcid.org/0000-0003-4755-2614
https://doi.org/10.3390/computers12120246
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12120246?type=check_update&version=1

Computers 2023, 12, 246 2 of 22

the bc-optimistic requirement; that is, that blockchain functions are only executed in case of
exception and not in each protocol run.

Regarding the timeliness requirement, the bibliography is confusing in its definition.
On the one hand, it is defined as guaranteeing that the execution of the protocol ends within
a finite time, and on the other hand, it is defined as guaranteeing that the signatories can
decide the moment at which the execution of the protocol ends; the same term is used for
both definitions. Our objective was, in addition to clarifying the definition of the timeliness
requirement, to design a protocol that meets the second definition, which is more restrictive,
and which we have called hard-timeliness.

We have not found any proposal for contract signing based on blockchain that meets
the three requirements: fairness, hard-timeliness, and bc-optimism. This was the funda-
mental objective of this work, and thus we present a protocol that satisfies these three
requirements, in addition to the non-repudiation and confidentiality requirements.

We also want to demonstrate the practical viability of the proposal, and to do so, we
present a smart contract code for the Ethereum blockchain family. This allows us to provide
the cost of executing the functions and to prove that the proposal, in addition to being
secure, is viable from a practical perspective.

Contributions. We provide the first protocol for contract signing based on blockchain
that, in addition to meeting the mandatory security requirements (fairness, timeliness,
and non-repudiation), meets the optional requirements of confidentiality and bc-optimism.
Regarding the timeliness requirement, a review of definitions used to date is provided. Our
solution satisfies the most restrictive definition (which we call hard-timeliness). Moreover,
an analysis of all proposals for contract signing based on the blockchain was performed.
Finally, we conducted an economic cost analysis of our solution, to verify its feasibility.

Organization. This paper is organized as follows. Section 2 provides a review of
the timeliness definitions used to date. The related work in the literature is analyzed in
Section 3. Section 4 introduces the blockchain technology features. Section 5.1 outlines
our proposal for hard-timeliness in contract signing, followed by a full specification of
the protocol in Section 5.2. The smart contract execution logic is provided in Section 6.
A security review of our proposal is conducted in Section 7, and a cost analysis is performed
in Section 8. Finally, the conclusions are presented in Section 10.

2. Timeliness

The first article in which the term timeliness appeared was [7], where it is defined as
follows: “at the beginning of the exchange, P [a signer] can be certain that the protocol
will be completed at a finite point in time; at completion, the state of the exchange as of
that point is either final or any changes to the state will not degrade the level of fairness
achieved by P thus far”. In the same article, the authors define timely conclusion: “at any
time during a protocol run, either player can unilaterally choose to force an end to the
protocol without losing fairness”. The two definitions pursue the same goal, but they are
not identical. Although the authors use two terms, from the rest of the explanations in the
article, nothing suggests that their objective was to define two requirements with different
characteristics. These definitions led us to the initial considerations that we develop in the
following paragraphs.

The main difference between the two previous definitions is the temporal aspect: “at a
finite point in time” vs. “at any time”. A solution based on the establishment of deadlines
may meet the first definition (at a finite point in time) and not meet the second definition
(at any time). Clearly, if a proposal meets the “at any time” requirement, then it also
meets the “at a finite point in time” requirement. Therefore, we propose to use the term
hard-timeliness for the definition of “at any time” (we do not propose strong-timeliness
because other authors have used the term for other definitions) and the term so f t-timeliness
for the definition of “at a finite point in time”.

Some authors (e.g., [8–15]) restricted compliance using the requirement of honest
signers. This approach seems absolutely reasonable, since we should not worry about what

Computers 2023, 12, 246 3 of 22

happens to dishonest signatories. In any case, if a proposal meets the requirement for all
signatories, then the proposal meets the requirement for honest signatories.

We can also observe a difference in the action of the signer. In the hard-timeliness
definition, the signer has an active role: he or she forces completion. In the so f t-timeliness
definition the signer has a passive role: “... the protocol ends”. This fact is closely linked to
the temporal aspect (“at any time” vs. “at a finite point in time”).

Note that one of the two definitions specifies “unilaterally” and the other does not.
It should be understood that, unless otherwise stated, the decision to terminate/abandon
the execution of the protocol can be made unilaterally. Again, the difference between the
two definitions is related to the temporal aspect. In the “at any time” case, the signer must
perform an action, and most likely, this is why Asokan et al. took care to make explicit that
the signer should not depend on the actions of others to be able to end the protocol run.

Both definitions end with a reference to no loss of fairness. We believe that this
is not harmful, but it is not strictly necessary. Recall that the fairness requirement is
the fundamental demand that any contract signing proposal must meet. If a proposal,
for whatever reason, causes an honest signatory to be placed in an unfair situation, then
it is an invalid proposal [16] (in this case, it is inconsequential whether the timeliness
requirement is met).

In a previous article [17], the same authors provided two other definitions (reproduced
in a later article [18]), although without using the term timeliness. The first reads as follows:
a player can always force a timely and fair termination without the cooperation of the other
player. While the second definition is as follows: one player cannot force the other to wait
for any length of time—a fair and timely termination can always be forced by contacting the
third party. The second definition clearly states the problem to be solved: a signatory does
not have to wait an indefinite time to finish the protocol. Both definitions appear to better
accord with the definition we have called hard-timeliness (a signer can force completion).
We want to highlight an element that we consider negative in the second definition. This
definition includes how the requirement must be satisfied: “contacting the third party”
(similarly stated by other authors [19–22]). We believe that the mechanisms should be left
to the choice of the authors of the proposals.

Since then, multiple authors have used one definition or another, using the term
timeliness or, alternatively, a term similar to timely protocol. Some authors have even
made some significant changes to the definition using the same term timeliness. Some
authors [19,21–31] used definitions that fit the definition we have called hard-timeliness.
While other authors [8,9,13,15,32–45] used definitions that fit the definition we have
called soft-timeliness. Some introduced nuance: predetermined time [34,37], agreed
time [35,36], bounded time [39], or that the protocol defines a deadline [45]. Finally,
some authors [46–48] presented both types of definition.

Some authors [10,11,27,49–57] redefined the concept of timeliness (or timely protocol),
leaving the temporal aspect unspecified: each party has some recourse to avoid/pre-
vent/stop unbounded/endless waiting. Alternatively, we find [58]: there exists some
mechanism to ensure termination.

The authors in [12] argued that users of contract signing protocols are not typically
experts and that they should be relieved of certain responsibilities when executing a
protocol. For this reason, these authors defined a new requirement that they called strong-
timeliness: at any moment in an ongoing protocol run, an honest party P can be certain
that the protocol will be automatically completed at a certain point in time; if any action
is required from P, it should be clearly stated, along with the circumstances in which it
should be taken.

We believe that it would be desirable to standardize the nomenclature (to avoid
erroneous interpretations). In any case, all authors should clearly state the definition they
use in their proposal.

Computers 2023, 12, 246 4 of 22

3. Related Work

After performing a search via the Web of Science, Scopus, and Scholar for the terms
“blockchain” and “contract signing”, 14 articles containing proposals for contract signing
based on blockchain were obtained. These articles make proposals for different scenarios:

• two-party [59–64]
• three-party [65–67]
• multi-party [68–71]
• multi-two-party [72]

Although our goal was to provide a two-party protocol, all articles were considered
in our analysis, since “multiparty” cases can be reduced to two-party cases (interestingly,
proposals for the three-party scenario are the most difficult to convert, because they are
specifically designed for contracts among three signatories).

The first observation is that 7 [59,62–64,67,70,71] of the 14 articles did not even mention
a timeliness requirement. We find this surprising because, unlike other requirements that are
optional (such as the confidentiality requirement), the timeliness requirement should be met
by any proposal of contract signing. More serious is the fact that three proposals [63,67,70]
did not meet the timeliness requirement.

Most authors [60,65,66,68,69,72] presented a definition corresponding to so f t-timeliness.
Notably, Ref. [68] clarified that the (maximum) end time should be known a priori.

After analyzing the proposals (whether the authors considered the timeliness re-
quirement), we observed that the majority [59–62,65,66,68,69,71,72] met the so f t-timeliness
requirement through the establishment of deadlines in the protocol specification. The only
exception was found in [72], where two proposals were presented, and one met the hard-
timeliness requirement. However, this proposal did not meet the bc-optimistic requirement
(another requirement we want our proposal to satisfy).

In addition to the temporal aspect, we observed two trends in the analyzed articles.
Some authors [59,61,62,64–66,69,73] based fairness, totally or partially, on penalties for
dishonest signers (deposits must be made in an initial phase of the protocol). We consider
that this is not an adequate mechanism, since it is not easy to determine a reasonable
economic amount that discourages fraud without discouraging contracting. The case of
proposals [65,66,69] in which the deposits are asymmetrical (not all signatories must deposit
the same amount) appears more serious to us, since a degree of unfairness is introduced
a priori.

The other trend we observed is that most proposals [59–67,69–72] execute blockchain
functions in all protocol runs, and most of them do so intensively. We must not forget that,
in public blockchains, the execution of blockchain functions involves a cost (which must be
assumed by the signatories). Therefore, we believe that it is beneficial to develop proposals
that meet the bc-optimism requirement; that is, that blockchain functions are executed only
in the case of an exception. We found only two proposals [68,72] that met this requirement,
but as we have already indicated, they did not meet the hard-timeliness requirement.

In short, we did not find any proposals that satisfied all the requirements that
we wanted to meet: fairness, hard-timeliness, non-repudiation, confidentiality and bc-
optimism.

4. Technological Background

In this section, we explain the different types of blockchain technologies and determine
which is most suitable for our proposed solution. Furthermore, we explore how smart
contracts work and store information within the blockchain environment. This is an
important point in determining the most suitable data storage method to be used for the
evidence in the contract signing protocol.

4.1. Blockchain Overview

Blockchain technology has become a transformative force, providing innovative so-
lutions for reducing dependence on TTPs in a variety of scenarios, such as energy [1],

Computers 2023, 12, 246 5 of 22

e-commerce [2], healthcare [3], and dynamic spectrum sharing in 6G technology [4]. At its
core, blockchain can be described as a distributed ledger system that operates transparently
within the nodes of a computer network, commonly known as miners. In this context,
the data recorded in the general ledger remain immutable.

Blockchain can be broadly classified as public or private and permissionless or permis-
sioned [74]. In public blockchains, anyone can participate in the network, and no single
entity controls it, creating a permissionless and trustless environment. This feature pro-
vides enhanced security through a large number of participating nodes. In contrast, private
blockchains are governed by a central authority responsible for managing access, making
them authorized and trustworthy. Unlike their public counterparts, private blockchains
limit active participation to a limited number of authorized nodes, thereby raising potential
security concerns, due to this centralized control.

Although initially associated with cryptocurrencies, blockchain has evolved to support
many applications, largely thanks to the development of smart contracts. Smart contracts
can be described as self-executing code that triggers actions when specific events occur [75].
Running such code will incur costs, which depend on the computational complexity of the
tasks involved [76]. Moreover, associated data are stored on the blockchain, which serves
as a decentralized and distributed ledger that records all data associated with the smart
contract. Notably, while data are stored on the blockchain, private or sensitive information
should be handled with care and must not be stored on-chain [77].

Ethereum, a pioneering public blockchain, has revolutionized the execution of smart
contracts with the introduction of the Ethereum Virtual Machine (EVM) [78]. Initially
adapted for Ethereum, EVM has transcended its origins and is now adopted by other
blockchains such as Polygon, Binance Smart Chain (BSC), and Arbitrum. This interoper-
ability provides a number of benefits to developers, including the seamless migration of
smart contracts from one EVM-compatible blockchain to another, expanding blockchain-
based applications.

4.2. Smart Contract Data Storage

Smart contracts can hold and manage assets or data and are typically composed of
functions that can be executed [79]. When a function within a smart contract is triggered, it
performs a specific action based on predefined logic, such as transferring cryptocurrency,
updating data, or verifying conditions. Solidity [80], a programming language for smart
contracts, provides three distinct types of memory that enable developers to manage the
storage of variables in the EVM [78,81]: memory, call data, and storage.

The memory is used for variables and parameters within the scope of a function. These
variables only exist during function execution and are deleted at the end of function
execution. The memory is similar to that familiar to programmers with a background in
traditional coding.

Call data is similar to memory and is essential when setting dynamically sized parame-
ters in an external function signature. Unlike memory, call data variables are read-only and
refer to an area of memory that cannot be modified.

Storage represents the long-term memory of a contract, preserving variables even after
a function or transaction has ended. State variables, those declared in the contract but
outside of any functionality, are stored in the storage memory area. This concept is unique
to blockchain, as smart contract data are secured with cryptographic properties, ensuring
tamper-proof data persistence directly on the blockchain.

5. Hard-Timeliness Contract Signing Protocol
5.1. Our Proposal in a Nutshell

In this section, we give the security requirements that our proposal must meet, and we
present a summarized vision of our proposal. Table 1 defines the notation used in the
explanation of the protocol.

Computers 2023, 12, 246 6 of 22

Our contract signature solution involves two signatories (A and B) and exceptionally
(in case of conflict) the use of a smart contract deployed on an EVM-compatible blockchain
(Figure 1). In this scenario, our solution must meet the following requirements [7,23,72,82]:

• Fairness: No honest signer should be disadvantaged;
• Hard-timeliness: At any time, a signatory can terminate the execution of the protocol;
• Non-repudiation: The signatories should not be able to deny their actions once the

execution of the protocol is finished;
• Effectiveness: No TTP should be involved in the protocol;
• Confidentiality: The content of the contract should only be known by the signatories;
• Bc-optimistic: Blockchain functions should only be executed in case of exception (and

not in each protocol run).

Our proposal consists of two subprotocols: exchange and resolution. Under normal
conditions, only the four-step exchange subprotocol should be executed. First, A must send
a signed copy of the contract to B. B must then send his signature to A. A must confirm
that she has received B’s signature, and finally B must confirm that he has received A’s
confirmation. The evidence that the contract has been signed are the signature-confirmation
pairs. Note that no blockchain function has been executed.

If A does not receive confirmation from B, then she must execute the resolution
function of the blockchain, requesting to finish the contract signing, and providing evidence
of the first three steps of the exchange subprotocol. If everything is correct and B has not
canceled, the smart contract will record the evidence provided by A and mark the status of
the contract signing as finished.

If after B sends his signature, he notices that he has not received confirmation from
A, then he must execute the resolution function of the blockchain, requesting to cancel the
contract signing. If everything is correct and A has finished the contract signing, the smart
contract will inform B that the contract signing is finalized, and he can obtain evidence
of the fact. If everything is correct and A has not finished the contract signing, the smart
contract will record the evidence provided by B and mark the status of the contract signing
as canceled.

ALICE (A) BOB (B)

Et
he

re
um

 V
irt

ua
l

M
ac

hi
ne

 (E
VM

)

EXCHANGE CONTRACT SIGNING

 RESOLUTION

SMART CONTRACT (SC)

BLOCKCHAIN ECOSYSTEM

Q
U

ER
Y Q

U
ERY

off-chain communication
on-chain communication

Figure 1. Hard-timeliness contract signing scenario.

Computers 2023, 12, 246 7 of 22

Table 1. Hard-timeliness contract signing protocol notation.

A and B Signatories
SC Smart contract
@X Blockchain address of entity X
M Content of the contract
H() One-way collision-resistant hash function
idAB Identifier of the contract signing
SigX(y) Signature on element y made by entity X
fX signature on the contract signing agreement made by entity X
ACKX signature on the contract signing confirmation made by entity X
status the status of the contract signing reflected on the SC: f inished or canceled

5.2. Design Specifications of Our Proposal

In this section, we provide a detailed description of the two subprotocols mentioned
in Section 5.1. In the “Security Review” section, we show that, with these two subprotocols,
compliance with the established requirements is guaranteed.

5.2.1. Exchange Subprotocol

The exchange subprotocol is always executed between the two signatories (A and B)
when a contract signing occurs, and this involves the following four steps (as illustrated
in Figure 2).

Signatory A

1 idAB, T, h, SigA [idAB, h]
sends to B her contract signing

agreement request

verifies the data provided by
A and sends his contract

signing agreement response

Signatory B

2 SigB [idAB, h]

3 ACKA = SigA [idAB, fA, fB]

4 ACKB = SigB [idAB, fA, fB, ACKA]

verifies the signature on the
agreement and sends to B her

contract signing ACK

verifies the ACK provided by
A and sends his contract

signing ACK

Figure 2. Hard-timeliness protocol: exchange subprotocol.

Step 1. A sends her contract signing agreement to B conveying the following information:

• a unique identifier of the transaction, idAB;
• a timestamp indicating the current date and time, T;
• the hash of the contract, h = H(M);
• the signature on the data of the contract signing agreement, fA = SigA[idAB, h].

The unique identifier is calculated as follows:

idAB = H(@A, @B, @SC, T, h)

In this calculation, we introduce the T value because, if a protocol run is aborted
and then a new execution is started to sign the same contract, there will be no confusion
between the two executions (the identifiers will be different).

If B does not want to sign the contract, he can ignore the received message; otherwise,
he must proceed with step 2.

Step 2. B must recalculate the identifier and verify A’s signature. If the above data are correct,
he must send his response to the agreement to A, conveying the following information:

Computers 2023, 12, 246 8 of 22

• his signature on the data of the contract signing agreement (idAB and h):

fB = SigB[idAB, h]

Then, if A and B are honest, they must complete the execution of the exchange subprotocol.

Step 3. A must send her contract signing confirmation to B with the following information:

• the signature on the data of the contract signing confirmation (idAB, fA and fB):

ACKA = SigA[idAB, fA, fB]

Step 4. Finally, B must send his contract signing confirmation to A with the following in-
formation:

• the signature on the data of the contract signing confirmation (idAB, fA, fB and ACKA):

ACKB = SigB[idAB, fA, fB, ACKA]

If the two signatories have followed the four steps of the exchange subprotocol, both
signatories have evidence that the contract has been signed. A has fB and ACKB, and B
has fA and ACKA; no blockchain function has been executed.

5.2.2. Resolution Subprotocol

In the course of the exchange subprotocol execution, certain circumstances may arise,
whether deliberately or unexpectedly, that could result in non-completion of the contract
signing. To maintain the security requirements, a smart contract is designed to handle such
circumstances. A and B may request contract signing resolution, whether finalization or
cancellation, by providing the necessary evidence (see Figure 3).

Smart Contract

Result (finished | canceled | error)

Signatory A

resolution (finish, idAB, @B, T, h, fA, fB, ACKA)

Signatory B

resolution (cancel, idAB, @A, T, h, fA, fB)

Result (finished | canceled | error)

Figure 3. Hard-timeliness protocol: resolution subprotocol.

Requesting finalization. If A observes that she has not received confirmation from B
(step 4), she must call the blockchain’s resolution function to request finalization of the
contract signing. Recall that B could have previously canceled the contract signing (see
Section 5.1). Below, we detail the steps.

Step 1. A requests finalization of the contract signing by calling the resolution function
with the following parameters:

resolution(f inish, idAB, @B, T, h, fA, fB, ACKA)

Step 2. The resolution function performs the following checks and operations:

1. It verifies if the contract signing identified by idAB was previously finished or canceled;
in this case, the smart contract reports the status of the contract signing to A and ends
the execution of the function. A can recover evidence associated with idAB by calling
the query function (see the ”requesting information” point explained below);

Computers 2023, 12, 246 9 of 22

2. It recalculates idAB using the parameters provided by A (@B, T, h) and the information
recovered by the smart contract (@A, SC);

3. It checks whether the evidence provided is correct (fA, fB, ACKA); that is, the signa-
tures are valid; if they are invalid, the smart contract informs A and ends execution of
the function;

4. It stores the ACKA parameter to resolve a possible future request from B and updates
the status of the contract signature to finished. In this way, the resolution transaction
is recorded in the blockchain.

Requesting cancellation. If B observes that he has not received confirmation from A, he
must execute the blockchain’s resolution function to request cancellation of the contract
signing. Recall that A could have previously finished the contract signing (see Section 5.1).
Below, we detail the steps.

Step 1. B requests execution of the resolution function with the following parameters:

resolution(cancel, idAB, @A, T, h, fA, fB)

Step 2. The resolution function performs the following checks and operations:

1. It verifies if the contract signing identified by idAB was previously finished or canceled;
in this case, the smart contract reports the status of the contract signing to B and ends
the execution of the function. B can recover evidence associated with idAB by calling
the query function (see the "requesting information" point explained below);

2. It recalculates idAB using the parameters provided by B (@A, T, h) and the information
recovered by the smart contract (@B, SC);

3. It checks whether the evidence provided is correct (fA, fB); that is, if the signatures
are valid; if they are invalid, the smart contract informs B and ends the execution of
the function;

4. It stores fA and fB to resolve a possible future request from A and updates the status of
the contract signature to canceled. In this way, the resolution transaction is recorded
in the blockchain.

Requesting information. Given an identifier idAB, any signatory can, at any time, track
the status of the contract signature and gather the evidence provided by the party who
requested the finalization or cancellation of the contract signing.

The query function (see Figure 4) takes an argument, the exchange identifier for a
specific contract signature, idAB. When the query function is called, it provides information
about the current status of the contract signing associated with idAB. If none of the signato-
ries previously requested finalization or cancellation, there are no data associated with this
idAB, and SC returns an error. However, if a signatory successfully requested finalization
or cancellation, the status is finished or canceled, respectively. In these cases, the smart
contract provides the evidence associated with this idAB.

Smart Contract

resultresultResult ([finished | canceled | error], evidence)
verifies the status associated to idAB

and returns the corresponding
evidence

Signatory A or B

query (idAB)

Figure 4. Hard-timeliness protocol: query subprotocol.

Computers 2023, 12, 246 10 of 22

6. Smart Contract Specification

The solution presented in Section 5.2 is built upon blockchain technology, where the
use of a smart contract is required when problems arise during the exchange subprotocol.
In this section, we outline the specific smart contract code necessary for implementing each
of the functions required to handle these situations.

Solidity [80] is a high-level programming language specifically designed to facilitate
the creation of self-executing and self-enforcing contracts within the decentralized block-
chain ecosystem. Therefore, we use Solidity to define the rules and logic of the smart
contract, because it is the preferred programming language for developing smart contracts
in blockchain-based distributed applications.

6.1. Data Structure Definition

In the smart contract, we define a data structure indexed by idAB (see Section 5.2.1).
This structure is designed to store data associated with each contract signing and includes
four fields, as shown in Listing 1. These fields include the contract signing agreement
values (fA and fB) provided by the signatory calling the resolution function, A’s contract
signing confirmation (ACKA) when required, and the current status of the contract signing
process (status) (see Table 1 and Sections 5.2.1 and 5.2.2).

These data hold significant importance within our solution, since they must be accessi-
ble to both signatories whenever necessary. This serves as tangible evidence of the contract
signing status. Therefore, we use storage memory to ensure tamper-proof data persistence
(see Section 4.2).

Listing 1. Hard-timeliness in contract signing: data structure

1

2 enum State { undefined , finished , canceled }
3 mapping(bytes32 => dataHTCS) htContracts;
4

5 struct htContracts{
6 bytes fA;
7 bytes fB;
8 bytes ackA;
9 State status;

10 }

6.2. Signature Validation

In our proposal, one of the critical validations is digital signature verification. Due to
the critical nature of this process, we are required to implement it with the strictest security
measures. OpenZeppelin [83] is a company specializing in cryptocurrency cybersecurity
technology and services. They offer secure and audited smart contracts and libraries that
have established themselves as industry standards. They also offer open-source code
templates that have had widespread adoption and rigorous testing, reducing the risks
associated with deploying cryptographic solutions.

We employ the openZeppelin function ECDSA.recover to obtain the address of the
signer of specific data to authenticate the evidence (such as fA, fB, and ACKA) submitted
by each signatory. For this purpose, we define the function validSign (see Listing 2) to
evaluate the authenticity of a signature, taking into account the data, the signature on the
provided data, and the signer. This function returns true when the signature is valid and
false otherwise.

Computers 2023, 12, 246 11 of 22

Listing 2. Hard-timeliness in contract signing: validSign function

1

2 address recover(bytes32 hash , bytes signature)
3

4 function validSign(bytes32 hash , bytes memory signature , address signer)
private pure returns(bool){

5 return (ECDSA.recover(toEthSignedMessageHash(hash), signature) == signer);
6 }

6.3. Main Functions Definition

Functions in a smart contract perform specific tasks or sets of actions when called.
They are typically defined by specific inputs (parameters) and may return outputs or
modify the internal state of the contract [81].

Our proposal requires two main functions to allow signatories to interact and manip-
ulate the state and functionality of the smart contract. Following the description of the
proposal (see Section 5.2), SC provides two public functions:

• resolution (Listing 3): Given a transaction identifier, A can finish the contract signature
by providing signatures on the contract agreement (her own signature and B’s sig-
nature) and her contract signing acknowledgment (ACKA); B can cancel the contract
signature by providing signatures on the contract agreement: his own signature and
A’s signature;

• query (Listing 4): Given a transaction identifier, A and B can check the status of the
transaction and obtain the required data. If the contract was finished by A, B obtains
evidence of A’s signature. If the contract was canceled by B, A obtains evidence of
this fact.

Listing 3. Hard-timeliness in contract signing: resolution function

1

2 function resolution(State _type , bytes32 _idAB , address _addr , uint _T,
bytes32 _hashM , bytes memory _fA , bytes memory _fB , bytes memory _ackA)

3 validStatus(_idAB) validRequest(_type) public {
4 if(_type == State.finished) {
5 checkProofs(_idAB , msg.sender , _addr , addrSC , _T, _hashM , _fA , _fB);
6 bytes32 hashACK = keccak256(abi.encodePacked(_idAB , _fA ,_fB));
7 require(validSign(hashACK ,_ackA ,msg.sender), ‘‘Invalid ACK ’’);
8 htContracts[_idAB].ackA = _ackA;
9 } else {

10 checkProofs(_idAB , _addr , msg.sender , addrSC , _T, _hashM , _fA , _fB);
11 }
12 htContracts[_idAB]. status = _type;
13 htContracts[_idAB].fA = _fA;
14 htContracts[_idAB].fB = _fB;
15

16 emit Result(msg.sender , _idAB , uint(_type));
17 }

The execution of the resolution function is controlled by modifiers. Modifiers [80] are
code that can be run before and/or after a function call and can be used to restrict access,
validate inputs, etc. We have defined the following two modifiers:

• validRequest: given a request identifier type, this modifier checks if the type of request
is valid: finish or cancel.

• validStatus: given a transaction identifier, this modifier checks whether the status of
the contract allows the execution of the resolution function; that is, the contract signing
is neither finalized nor canceled.

Computers 2023, 12, 246 12 of 22

Listing 4. Hard-timeliness in contract signing: query function

1 function query(bytes32 _idAB) view public returns (State , bytes memory ,
bytes memory , bytes memory){

2 State status = htContracts[_idAB]. status;
3 if(status == State.finished){return (status , htContracts[_idAB].fA,

htContracts[_idAB].fB, htContracts[_idAB].ackA);}
4 else if(status == State.cancelled){return (status , htContracts[_idAB].fA ,

htContracts[_idAB].fB, ‘‘’’);}
5 else{revert(status);}
6 }

After successful completion of the above validations, the resolution function calls the
private function checkProo f s (as shown in Listing 5). This private function is responsible
for conducting the following tasks:

• calling the private function validID, to check whether the given transaction identifier is
valid. To achieve this, the SC generates idAB using both the blockchain address of the
signer of the transaction and its own address. It then compares this derived value with
the identifier supplied as a parameter by the signatory to determine whether they match;

• calling the validSign private function (defined in Section 6.2) to ensure the validity of
the evidence provided by the signatory: fA and fB.

If the signatory requested finalization, in addition to the previous signature validations,
the resolution function must also validate the ACKA signature by calling the validSign
private function.

After all validations have been successfully completed, the resolution function stores
the evidence provided by the signatory who called the resolution function and updates the
status of the contract signature to finalized or canceled, based on who called the function
and what evidence was provided.

Listing 5. Hard-timeliness in contract signing: checkProo f s function

1

2 function checkProofs(bytes32 _idAB , address _addrA , address _addrB , address
_addrSC , uint _T , bytes32 _hashM , bytes memory _fA , bytes memory _fB)

internal pure {
3

4 bytes32 hashData = keccak256(abi.encodePacked(_idAB ,_hashM));
5

6 require(validID(_idAB ,_addrA ,_addrB ,_addrSC ,_T ,_hashM), ‘‘Invalid
identifier ’’);

7 require(validSign(hashData ,_fA ,_addrA),‘‘A Invalid evidence ’’);
8 require(validSign(hashData ,_fB ,_addrB),‘‘B Invalid evidence ’’);
9 }

When the resolution function is completed, the smart contract emits an event to
communicate the execution’s outcome. Consequently, both A and B gain real-time insight
into the contract signing status. To further facilitate this process, we implement a query
function (see Listing 4) that enables both A and B to check the contract’s status at any time.
When the status is finalized, the smart contract returns the evidence fA, fB, and ACKA
provided by A. If the contract is canceled, it returns the evidence fA and fB provided by B.
When the provided identifier has no associated information, the smart contract employs
the revert mechanism (In Solidity, the revert statement [84] is used to stop the execution
of a smart contract. This mechanism is a crucial part of writing secure and robust smart
contracts, as it helps prevent unexpected or erroneous behavior that could otherwise lead to
unwanted state changes on the blockchain) to address this scenario and notifies the calling
signer accordingly. Importantly, the query function operates without altering the contract
signing status, eliminating the need for any transactions to be added to the blockchain and,
consequently, the associated economic cost (see Section 8).

Computers 2023, 12, 246 13 of 22

7. Security Review

Next, we show that our protocol satisfies the desired requirements. The fairness and
hard-timeliness requirements are presented together to avoid duplicating explanations.

Effectiveness. There is no TTP involved in any of the subprotocols. Therefore, the protocol
meets the effectiveness requirement.

Non-repudiation. The evidence available to a signatory is signed by the other signa-
tory, who cannot deny his/her involvement. Therefore, the protocol meets the non-
repudiation requirement.

Confidentiality. The content of the contract is known to only A and B, and the smart
contract functions require only the hash of the contract. Therefore, the protocol meets the
confidentiality requirement.

Bc-optimistic. Under normal conditions, only the exchange subprotocol is executed, and no
blockchain functions are executed. Therefore, the protocol satisfies the bc-optimistic re-
quirement.

Fairness and hard-timeliness. We analyzed the states in which signatories can be found
and the actions that can be taken in each state. We only considered cases in which at least
one of the signatories is honest (if both are dishonest, what happens is inconsequential).

State 1: Nothing has been sent. Neither signatory has evidence proving the contract is signed,
and both can “stop” the execution of the protocol (in fact, the execution has not started).

State 2: A has sent fA. No signatory has evidence proving the contract is signed. Both can
stop the execution of the protocol without loss of fairness. If B requests cancellation of the
smart contract, this would be irrelevant.

State 3: B has sent fB. No signatory has evidence proving the contract is signed or canceled;
however, they can obtain evidence with the help of the blockchain. The following situations
may occur:

1. A stops execution of the exchange; If B is honest (and smart) he will cancel the
exchange (when he wants). None of the signatories has evidence proving the contract
is signed;

2. A finishes using the smart contract (when she wants), and the smart contract records
the evidence proving this fact. If B attempts to cancel the exchange, the smart contract
will provide him with ACKA. Both have evidence proving the contract is signed;

3. B cancels, and A stops. The result is analogous to situation 1 explained above;
4. B cancels, and A attempts to finish. Once the exchange is canceled, the smart contract

only provides evidence of cancellation. No one will have evidence that the contract
is signed;

5. B cancels, and A follows with execution. This case is analogous to the case that will
be discussed below (“State 4—situation 2”).

State 4: A has sent ACKA. B already has evidence of the signing of the contract and A does
not. The following situations may occur:

1. At the moment A wishes, she can request finalization of the smart contract, and if B
has not canceled, the smart contract will update the status of the contract signature
and record the associated evidence; therefore, she will have evidence of the signing of
the contract;

2. If B is dishonest, although he already has fA-ACKA, he can issue the order to cancel
the exchange. If this execution is prior to A’s f inish request, the smart contract will
cancel the transaction. If A now requests the execution of f inish, the smart contract
will send evidence of cancellation. If B attempts to prove that the contract is signed
(providing fA-ACKA), A will be able to show the cancellation evidence recorded by
the smart contract, which will prove that B was dishonest (when he already had

Computers 2023, 12, 246 14 of 22

fA-ACKA, he executed the cancellation). This situation is what we had left pending in
“State 3—situation 5)”.

State 5: B has sent ACKB. Both have evidence of the signing of the contract (the protocol
has finished). The following situations may occur:

1. A could request finalization of the contract signing, but this is an unnecessary and
senseless situation, since the smart contract would only record information that both
contracting parties already possess. All parties can prove the signing of the contract
without the involvement of the smart contract;

2. B can request cancellation of the contract signing. However, if he attempts to use the
data recorded by the smart contract (the contract signing is canceled), A could show
fB and ACKB, which would prove that B was dishonest.

The previous explanations enable us to confirm that the protocol satisfies the fairness
requirement (no signatory is at a disadvantage) and the timeliness requirement (both can
finish the execution of the protocol at the moment they want).

8. Cost Assessment

Paying for executing smart contracts is necessary to cover the costs of using computing
resources on blockchain networks such as Ethereum [85,86]. This prevents spam (by making
it costly for attackers to flood the network with unnecessary transactions), ensures fair
resource allocation, supports network sustainability, and incentivizes network participants
to authenticate and secure transactions. This economic model helps maintain the efficiency
and security of the blockchain ecosystem.

To evaluate the costs associated with our solution, we deployed our smart contract on
the Hardhat Network, a dedicated local Ethereum network node suitable for development
purposes [87]. This approach enabled us to deploy, test, and debug smart contract code in
a local environment, avoiding the costs associated with a real public blockchain.

8.1. Gas Cost

The complexity of the operations involved in executing smart contract functions on
the EVM imposes specific economic costs, quantified in gas units, as specified in [78].
For example, the amount of gas required to create a contract is fixed to 32,000 gas units,
even before any contract functions have been performed. Several tools exist for estimating
gas consumption for individual smart contract functions. We chose the Ethereum gas
reporting plugin [88], due to its adaptability, allowing it to seamlessly integrate with
multiple development frameworks, including Hardhat.

To assess the cost of our smart contract, we developed a script in the JavaScript
language. This script allowed us to deploy the contract using Hardhat and execute the
resolution function. After completing the test, the Ethereum gas reporting plugin provided
the cost of each operation measured in gas units. In Table 2, we present the cost measured
(as explained before), in gas units, associated with the main function of our solution,
resolution, as well as the deployment cost of the smart contract itself. Additionally, we
assessed the cost of the resolution function by considering whether the contract signature
had been requested to be finalized or canceled. As shown in the table, deploying the smart
contract on the blockchain was the most expensive operation (1,658,625 gas units). Its cost
primarily depends on the fixed costs associated with contract creation and the size of the
contract’s bytecode [78]. However, a smart contract can be deployed in advance and used
multiple times to oversee the resolution of different contract signatures.

The execution of the resolution function depends on the type of request made. In the
case of requesting finalization of the contract signature, the SC must perform the validations
specified in Section 5.2.2, primarily involving cryptographic hashing and verifying and
storing the signatures of three pieces of signed evidence (see Sections 6.1 and 6.3). The
execution of these operations and the storage of evidence entailed a cost of 343,282 gas units
(see Table 2). In the case of requesting cancellation of the contract signature, the SC must

Computers 2023, 12, 246 15 of 22

perform validations similar to those for finalization; but in this case, it only needs to verify
and store two pieces of signed evidence (see Sections 6.1 and 6.3). The execution of these
operations and the storage of evidence entailed a cost of 247,847 gas units (see Table 2).
This made the cost of canceling the contract signature approximately 38% lower than the
cost of finalizing it. The query function does not alter the blockchain’s state; therefore, it
does not incur any gas consumption.

Table 2. Cost in gas units of the deployment of the SC and the execution of the resolution function to
finish and cancel the contract signing.

Deploy Resolution
Finish Cancel

Gas units 1,658,625 343,282 247,847

8.2. Cost in Fiat

Measurement in gas units serves as a valuable indicator of the complexity of the opera-
tions executed and provides a consistent metric to compare different solutions, because this
metric remains unaffected by variations in the price of the cryptocurrency associated with
the blockchain on which the SC is executed [78]. However, the economic costs required to
perform the tasks involved in our solution can fluctuate on a daily basis due to changes in
the market value of cryptocurrencies [60,89]. Therefore, the final cost of implementing a
function was calculated by multiplying the gas units required and the current gas price at
the time of execution.

Gas price refers to the amount of Wei (Wei refers to the smallest denomination of Ether
(ETH), the currency used on the Ethereum network (1 ETH = 1018 Wei).) that a user is
willing to spend per unit of gas. To account for daily gas price fluctuations, we analyzed
historical data on gas prices over time. For this analysis, we relied on the dataset provided
by [90], which records the average daily gas price in Wei for the Ethereum blockchain.
Leveraging the Ether–USD exchange rate (per day [91]), we determined the total cost of
deploying the smart contract and running the resolution function when finish or cancel is
requested by signatories. Therefore, the final cost in fiat of deploying and executing the
resolution function was obtained by multiplying the three parameters mentioned above: the
gas units (obtained in Section 8.1), the average gas price per day, and the daily Ether–USD
exchange rate.

Figure 5 illustrates the average daily costs (in USD) that could be incurred by signato-
ries during 2023 (1 January to 30 September) when using the Ethereum network to perform
smart contract functions. Close inspection of the figure indicates that some significant cost
peaks coincide with network congestion events (https://markets.businessinsider.com/
currencies/eth-usd, accessed on 1 October 2023), leading to escalating gas demand and,
therefore, higher gas prices. Beyond these peaks, the remaining data show a relatively sta-
ble trend (as shown in Figure 5 and Table 3). However, the overall price can be considered
significant considering both the quantity and frequency of contract signatures requiring
a resolution. Note that this function is exclusively called under specific circumstances
(see Section 5.2.2), such as when A has not received acknowledgment (ACKB) from B and
wishes to complete the contract signature or when B wants to cancel the contract signature.

In recent years, new EVM-based blockchains have emerged to address some of the
challenges faced by Ethereum, particularly its scalability limitations and the resulting
cost implications [92]. Two of these blockchains are Binance Smart Chain (BSC) [93] and
Polygon [94]. BSC is a layer-one blockchain (“A layer-1 network is another name for a base
blockchain. BNB Smart Chain (BNB), Ethereum (ETH), and Bitcoin (BTC) are all layer-1
protocols” Source: https://academy.binance.com, accessed on 1 October 2023) that supports
smart contracts and is designed to operate independently as a standalone blockchain, while
remaining compatible with the Ethereum ecosystem. Polygon is a layer-two blockchain
(“Layer-2 solutions build on layer 1 and rely on it to finalise its transactions” Source:

https://markets.businessinsider.com/currencies/eth-usd
https://markets.businessinsider.com/currencies/eth-usd
https://academy.binance.com

Computers 2023, 12, 246 16 of 22

https://academy.binance.com, accessed on 1 October 2023) scaling solution operating on
top of Ethereum, enhancing its scalability and functionality. Next, we examine the cost
of implementing our solution on BSC and Polygon, considering them as representative
examples of EVM-based blockchains.

Figure 5. Resolution function: estimated average spend (in USD) for 2023, spanning from 1 January
to 30 September, taking into account average gas prices observed on the Ethereum network.

Figures 6 and 7 depict the average costs (in USD and obtained following the same pro-
cedure as for Ethereum) for executing the resolution function, considering both finalization
and cancellation requests and during the same time period as analyzed for Ethereum. No-
tably, these prices exhibited a substantial reduction when compared to Ethereum, with all
falling below USD 1.0. This held true even when considering the maximum price rather
than the average, as detailed in Table 3; the highest price on Ethereum reached USD 106.80,
compared to USD 1 on BSC and USD 0.24 on Polygon.

When comparing BSC and Polygon, the latter stood out with the most cost-effective
rates. For the resolution execution (finish and cancel), the cost of Polygon was under
USD 0.08, while the cost of BSC was approximately USD 0.6. Even when considering the
maximum price, the cost of BSC was approximately USD 1.0, while the cost of Polygon
remained below USD 0.25.

Figure 6. Resolution function: estimated average spend (in USD) for 2023, spanning from 1 January
to 30 September, taking into account average gas prices observed on the BSC network.

https://academy.binance.com

Computers 2023, 12, 246 17 of 22

Figure 7. Resolution function: estimated average spend (in USD) for 2023, spanning from 1 January
to 30 September, taking into account average gas prices observed on the Polygon network.

Table 3. Maximum, minimum, and average (and standard deviation) of the price (in USD) required
by each function executed in 2023.

Ethereum BSC Polygon

Deploy Finish Cancel Deploy Finish Cancel Deploy Finish Cancel

Avg. 99.78 20.65 14.91 2.696 0.558 0.403 0.34 0.07 0.05
Max. 516.03 106.80 77.11 4.866 1.007 0.727 1.17 0.24 0.17
Min. 27.25 5.64 4.07 1.561 0.323 0.233 0.08 0.02 0.01
(std.) 65.85 13.63 9.84 0.777 0.161 0.116 0.22 0.04 0.03

9. Discussion

Our proposal meets the hard-timeliness requirement and therefore it is better than
proposals [63,67,70] that do not meet any timeliness requirement. Regarding the propos-
als [59–62,65,66,68,69,71,72] that meet the so f t-timeliness requirement (establishing one or
more deadlines), we also consider that our proposal is an enhancement, specially when
public blockchains are used, since in these blockchains the moment of execution of the
functions cannot be guaranteed.

From the point of view of compliance with the hard-timeliness requirement, our pro-
posal is comparable with one of the proposals in [72]. But this proposal requires the
execution of functions of the blockchain, regardless of the behavior of the signatories.
Therefore, our proposal represents an improvement from a cost point of view, as regards
the use of the blockchain. Recall that in our proposal blockchain functions are only executed
in case of exception and not in each protocol run.

Finally, our proposal achieves the fairness requirement without the signatories having
to make any a priori financial deposit. We think that this achievement represents an
improvement over [59,61,62,64–66,69,73], since this “restriction” could be a serious obstacle
in contract signing scenarios where one or both signatories may be reluctant to have money
blocked (without knowing if the contract will finally be signed).

10. Conclusions

The first conclusion of this work is that the concept of timeliness has not been clearly
defined since its first use. It would have been desirable to use different names for different
requirements (as we have done in this work). In any case, authors of contract signing
protocols must clearly specify what requirements they want their proposal to satisfy. This
is especially important when attempting to compare different proposals.

In this work, we have presented the first proposal for contract signing based on block-
chain that meets the following requirements: fairness, hard-timeliness, non-repudiation,

Computers 2023, 12, 246 18 of 22

confidentiality, and bc-optimism. This approach ensures that a contract’s content remains
confidential and is never exposed on the blockchain. Moreover, any signatory can finalize
the contract signing, without any disadvantages or the imposition of strict time limits. Since
blockchain transactions involve costs, signatories only resort to it in exceptional circum-
stances. As indicated by our cost assessment, the selection of an appropriate blockchain
solution helps keep costs minimal. Furthermore, this analysis ensures that the proposed
solution aligns with the financial requirements across various scenarios, making this a
valuable guide for its application in diverse financial contexts.

As part of our future work, we plan to include an optional abuse-freeness requirement,
which has not been addressed in this paper. Additionally, we aim to investigate the
applicability of our protocol in different blockchain environments, particularly focusing on
its feasibility within private and consortium blockchains.

Author Contributions: All authors have contributed to this work equally. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was conducted as part of projects BLOBSEC (PID2021-122394OB-I00, funded
by MCIN/AEI/10.13039/501100011033, Spain, and by ERDF "A way of making Europe"), and
GERMINAL (TED2021-131624B-I00, funded by MCIN/AEI/10.13039/501100011033, Spain, and by
European Union “NextGenerationEU”/PRTR).

Data Availability Statement: All data generated or analysed during this study are included in this
published article.

Conflicts of Interest: The authors declare no conflict of interest in this article.

References
1. Wang, Y.; Su, Z.; Zhang, N.; Chen, J.; Sun, X.; Ye, Z.; Zhou, Z. SPDS: A Secure and Auditable Private Data Sharing Scheme for

Smart Grid Based on Blockchain. IEEE Trans. Ind. Inform. 2021, 17, 7688–7699. [CrossRef]
2. Hinarejos, M.F.; Ferrer-Gomila, J.L.; Barceló, A.J. A Secure Solution for a Blockchain-Based Consortium Promotional Scheme.

IEEE Access 2022, 10, 119676–119691. [CrossRef]
3. Arbabi, M.S.; Lal, C.; Veeraragavan, N.R.; Marijan, D.; Nygård, J.F.; Vitenberg, R. A Survey on Blockchain for Healthcare:

Challenges, Benefits, and Future Directions. IEEE Commun. Surv. Tutor. 2023, 25, 386–424. [CrossRef]
4. Li, Z.; Wang, W.; Wu, Q.; Wang, X. Multi-Operator Dynamic Spectrum Sharing for Wireless Communications: A Consortium

Blockchain Enabled Framework. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 3–15. [CrossRef]
5. Azzahra, Z.F.; Nugraha, I.G.B.B. Service-Level Agreement Management with Blockchain-Based Smart Contract to Improve the

Quality of IT Service Management. In Proceedings of the 2023 12th International Conference on Software and Computer Applications;
Association for Computing Machinery: New York, NY, USA, 2023; ICSCA ’23; pp. 260–266. [CrossRef]

6. Tan, W.; Zhu, H.; Tan, J.; Zhao, Y.; Xu, L.D.; Guo, K. A novel service level agreement model using blockchain and smart contract
for cloud manufacturing in industry 4.0. Enterp. Inf. Syst. 2022, 16, 1939426. [CrossRef]

7. Asokan, N.; Shoup, V.; Waidner, M. Asynchronous protocols for optimistic fair exchange. In Proceedings of the 1998 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, 6 May 1998; pp. 86–99.

8. Kremer, S.; Raskin, J. A Game-Based Verification of Non-repudiation and Fair Exchange Protocols. In Proceedings of the
International Conference on Concurrency Theory—CONCUR, Aalborg, Denmark, 20–25 August 2001; pp. 551–565.

9. Drielsma, P.H.; Mödersheim, S. The ASW protocol revisited: A unified view. Electron. Notes Theor. Comput. Sci. 2005, 125, 145–161.
[CrossRef]

10. Chadha, R.; Kremer, S.; Scedrov, A. Formal analysis of multiparty contract signing. J. Autom. Reason. 2006, 36, 39–83. [CrossRef]
11. Mauw, S.; Radomirovic, S.; Dashti, M.T. Minimal message complexity of asynchronous multi-party contract signing. In

Proceedings of the 2009 22nd IEEE Computer Security Foundations Symposium, Port Jefferson, NY, USA, 8–10 July 2009;
pp. 13–25.

12. Piva, F.R.; Monteiro, J.R.; Dahab, R. Regarding timeliness in the context of fair exchange. In Proceedings of the International
Conference on Network and Service Security—N2S, Paris, France, 24–26 June 2009; pp. 1–6.

13. Chen, M.; Wu, K.; Xu, J.; He, P. A new method for formalizing optimistic fair exchange protocols. In Proceedings of the
Information and Communications Security: 12th International Conference, ICICS 2010, Barcelona, Spain, 15–17 December 2010;
Proceedings 12; Springer: Berlin/Heidelberg, Germany, 2010; pp. 251–265.

14. Küpçü, A.; Lysyanskaya, A. Optimistic fair exchange with multiple arbiters. In Proceedings of the Computer Security–ESORICS
2010: 15th European Symposium on Research in Computer Security, Athens, Greece, 20–22 September 2010; Proceedings 15;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 488–507.

http://doi.org/10.1109/TII.2020.3040171
http://dx.doi.org/10.1109/ACCESS.2022.3221424
http://dx.doi.org/10.1109/COMST.2022.3224644
http://dx.doi.org/10.1109/TCCN.2022.3212369
http://dx.doi.org/10.1145/3587828.3587867
http://dx.doi.org/10.1080/17517575.2021.1939426
http://dx.doi.org/10.1016/j.entcs.2004.05.024
http://dx.doi.org/10.1007/s10817-005-9019-5

Computers 2023, 12, 246 19 of 22

15. Abraham, A.; Ewards, V.; Mathew, H.M. A survey on optimistic fair digital signature exchange protocols. Int. J. Comput. Sci. Eng.
2011, 3, 821–825.

16. Asokan, N.; Schunter, M.; Waidner, M. Optimistic protocols for fair exchange. In Proceedings of the 4th ACM Conference on
Computer and Communications Security, Zurich, Switzerland, 1–4 April 1997; pp. 7–17.

17. Asokan, N.; Shoup, V.; Waidner, M. Optimistic fair exchange of digital signatures. In Proceedings of the International Conference on
the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1998; pp. 591–606.

18. Asokan, N.; Shoup, V.; Waidner, M. Optimistic fair exchange of digital signatures. IEEE J. Sel. Areas Commun. 2000, 18, 593–610.
[CrossRef]

19. Norman, G.; Shmatikov, V. Analysis of probabilistic contract signing. In Formal Aspects of Security; Springer: Berlin/Heidelberg,
Germany, 2002; pp. 81–96.

20. Ferrer-Gomila, J.L.; Martínez-Nadal, A.L.; Payeras-Capellà, M.; Huguet-Rotger, L. A juridical validation of a contract signing
protocol. In Proceedings of the E-Commerce and Web Technologies: Third International Conference, EC-Web 2002, Aix-en-
Provence, France, 2–6 September 2002; Proceedings 3; Springer: Berlin/Heidelberg, Germany, 2002; pp. 343–352.

21. Lee, B.; Kim, K. Fair exchange of digital signatures using conditional signature. In Proceedings of the Symposium on
Cryptography and Information Security, Shirahama, Japan, 29 January–1 February 2002; pp. 179–184.

22. Norman, G.; Shmatikov, V. Analysis of probabilistic contract signing. J. Comput. Secur. 2006, 14, 561–589. [CrossRef]
23. Zhou, J.; Deng, R.; Bao, F. Some Remarks on a Fair Exchange Protocol. In Proceedings of the Public Key Cryptography; Lecture Notes

in Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1751, pp. 46–57.
24. Ferrer-Gomila, J.L.; Payeras-Capella, M.; Huguet-Rotger, L. Optimality in asynchronous contract signing protocols. In Proceedings of

the International Conference on Trust, Privacy and Security in Digital Business; Springer: Berlin/Heidelberg, Germany, 2004; pp. 200–208.
25. Onieva, J.A.; Zhou, J.; Lopez, J. Attacking an asynchronous multi-party contract signing protocol. In Proceedings of the Progress

in Cryptology-INDOCRYPT 2005: 6th International Conference on Cryptology in India, Bangalore, India, 10–12 December 2005;
Proceedings 6; Springer: Berlin/Heidelberg, Germany, 2005; pp. 311–321.

26. Zhou, J.; Onieva, J.A.; Lopez, J. A synchronous multi-party contract signing protocol improving lower bound of steps. In
Proceedings of the Security and Privacy in Dynamic Environments: Proceedings of the IFIP TC-11 21st International Information
Security Conference (SEC 2006), Karlstad, Sweden, 22–24 May 2006; Springer: Boston, MA, USA, 2006; Volume 201, pp. 221–232.

27. Zhang, Y.; Zhang, C.; Pang, J.; Mauw, S. Game-based verification of multi-party contract signing protocols. In Proceedings of the
Formal Aspects in Security and Trust: 6th International Workshop, FAST 2009, Eindhoven, The Netherlands, 5–6 November 2009;
Revised Selected Papers 6; Springer: Berlin/Heidelberg, Germany, 2010; pp. 186–200.

28. Sun, Y.; Gu, L.; Qing, S.; Zheng, S.; Sun, B.; Yang, Y.; Sun, Y. Timeliness optimistic fair exchange protocol based on key-exposure-
free chameleon hashing scheme. In Proceedings of the 2010 The 12th International Conference on Advanced Communication
Technology (ICACT), Gangwon, Republic of Korea, 7–10 February 2010; Volume 2; pp. 1560–1564.

29. Sun, Y.; Gu, L.; Qing, S.; Zheng, S.; Yang, Y.; Sun, Y. New optimistic fair exchange protocol based on short signature. In
Proceedings of the 2010 Second International Conference on Communication Software and Networks, Singapore, 26–28 February
2010; pp. 99–104.

30. Gu, L.; Sun, Y. New Optimistic Fair Exchange Protocol Based on VE-RSA Signature. In Proceedings of the 2010 Second
International Workshop on Education Technology and Computer Science, Wuhan, China, 6–7 March 2010; Volume 1; pp. 292–295.

31. Xiao, H.; Wang, L.; Wei, Y. A new fair electronic contract signing protocol. In Proceedings of the Advances in Intelligent Networking
and Collaborative Systems: The 11th International Conference on Intelligent Networking and Collaborative Systems (INCoS-2019); Springer:
Cham, Switzerland, 2020; pp. 289–295.

32. Khill, I.; Kim, J.; Han, I.; Ryou, J. Multi-party fair exchange protocol using ring architecture model. Comput. Secur. 2001,
20, 422–439. [CrossRef]

33. Wang, H.; Guo, H.; Yin, J.; He, Q.; Lin, M.; Zhang, J. Abuse-free item exchange. In Proceedings of the Computational Science
and Its Applications–ICCSA 2005: International Conference, Singapore, 9–12 May 2005; Proceedings, Part IV 5; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 1028–1035.

34. Wang, G. An abuse-free fair contract signing protocol based on the RSA signature. In Proceedings of the 14th International
Conference on World Wide Web, Chiba, Japan, 10–14 May 2005; pp. 412–421.

35. Islam, S.; Zaid, M.A. Probabilistic Analysis and Verification of the ASW Protocol using PRISM. Int. J. Netw. Secur. 2008, 7, 388–396.
36. Islam, S.; Zaid, M.A. Probabilistic analysis of the ASW protocol using PRISM. In Proceedings of the IEEE SoutheastCon 2008,

Huntsville, AL, USA, 3–6 April 2008; pp. 159–164.
37. Wang, G. An abuse-free fair contract-signing protocol based on the RSA signature. IEEE Trans. Inf. Forensics Secur. 2009,

5, 158–168. [CrossRef]
38. Torabi Dashti, M. Optimistic fair exchange using trusted devices. In Proceedings of the Symposium on Self-Stabilizing Systems;

Springer: Berlin/Heidelberg, Germany, 2009; pp. 711–725.
39. Heidarvand, S.; Villar, J.L. A fair and abuse-free contract signing protocol from boneh-boyen signature. In Proceedings of the

Public Key Infrastructures, Services and Applications: 7th European Workshop, EuroPKI 2010, Athens, Greece, 23–24 September
2010; Revised Selected Papers 7; Springer: Berlin/Heidelberg, Germany, 2011; pp. 125–140.

40. Küpçü, A.; Lysyanskaya, A. Usable optimistic fair exchange. Comput. Netw. 2012, 56, 50–63. [CrossRef]

http://dx.doi.org/10.1109/49.839935
http://dx.doi.org/10.3233/JCS-2006-14604
http://dx.doi.org/10.1016/S0167-4048(01)00514-4
http://dx.doi.org/10.1109/TIFS.2009.2035972
http://dx.doi.org/10.1016/j.comnet.2011.08.005

Computers 2023, 12, 246 20 of 22

41. Draper-Gil, G.; Ferrer-Gomila, J.L.; Hinarejos, M.F.; Zhou, J. An asynchronous optimistic protocol for atomic multi-two-party
contract signing. Comput. J. 2013, 56, 1258–1267. [CrossRef]

42. Draper-Gil, G.; Zhou, J.; Ferrer-Gomila, J.L.; Hinarejos, M.F. An optimistic fair exchange protocol with active intermediaries. Int.
J. Inf. Secur. 2013, 12, 299–318. [CrossRef]

43. Chatterjee, K.; Raman, V. Assume-guarantee synthesis for digital contract signing. Form. Asp. Comput. 2014, 26, 825–859.
[CrossRef]

44. Draper-Gil, G.; Ferrer-Gomila, J.L.; Hinarejos, M.F.; Zhou, J. On the efficiency of multi-party contract signing protocols. In
Proceedings of the Information Security: 18th International Conference, ISC 2015, Trondheim, Norway, 9–11 September 2015;
Proceedings 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 227–243.

45. Xu, G.; Zhang, Y.; Jiao, L.; Panaousis, E.; Liang, K.; Wang, H.; Li, X. DT-CP: A double-TTPs-based contract-signing protocol with
lower computational cost. IEEE Access 2019, 7, 174740–174749. [CrossRef]

46. Kremer, S.; Raskin, J.F. Game analysis of abuse-free contract signing. In Proceedings of the 15th IEEE Computer Security
Foundations Workshop, CSFW-15, Cape Breton, NS, Canada, 24–26 June 2002; pp. 206–220.

47. Imamoto, K.; Zhou, J.; Sakurai, K. An evenhanded certified email system for contract signing. In Proceedings of the Information
and Communications Security: 7th International Conference, ICICS 2005, Beijing, China, 10–13 December 2005; Proceedings 7;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–13.

48. Imamoto, K.; Zhou, J.; Sakurai, K. Achieving evenhandedness in certified email system for contract signing. Int. J. Inf. Secur.
2008, 7, 383–394. [CrossRef]

49. Chadha, R.; Mitchell, J.C.; Scedrov, A.; Shmatikov, V. Contract signing, optimism, and advantage. In Proceedings of the International
Conference on Concurrency Theory; Springer: Berlin/Heidelberg, Germany, 2003; pp. 366–382.

50. Chadha, R.; Mitchell, J.C.; Scedrov, A.; Shmatikov, V. Contract signing, optimism, and advantage. J. Log. Algebr. Program. 2005,
64, 189–218. [CrossRef]

51. Mukhamedov, A.; Ryan, M.D. Resolve-impossibility for a contract-signing protocol. In Proceedings of the 19th IEEE Computer
Security Foundations Workshop (CSFW’06), Venice, Italy, 5–7 July 2006; pp. 176–182.

52. Mukhamedov, A.; Ryan, M. Improved multi-party contract signing. In Proceedings of the Financial Cryptography and Data
Security: 11th International Conference, FC 2007, and 1st International Workshop on Usable Security, USEC 2007, Scarborough,
Trinidad and Tobago, 12–16 February 2007; Revised Selected Papers 11; Springer: Berlin/Heidelberg, Germany, 2007; pp. 179–191.

53. Wang, X. Modeling and Analysis of Multi-party Fair Exchange Protocols. In Proceedings of the 2007 International Conference on
Wireless Communications, Networking and Mobile Computing, Shanghai, China, 21–25 September 2007; pp. 2246–2250.

54. Mukhamedov, A.; Ryan, M.D. Fair multi-party contract signing using private contract signatures. Inf. Comput. 2008, 206, 272–290.
[CrossRef]

55. Kordy, B.; Radomirovic, S. Constructing optimistic multi-party contract signing protocols. In Proceedings of the 2012 IEEE 25th
Computer Security Foundations Symposium, Cambridge, MA, USA, 25–27 June 2012; pp. 215–229.

56. Zhang, Y.; Zhang, C.; Pang, J.; Mauw, S. Game-based verification of contract signing protocols with minimal messages. Innov.
Syst. Softw. Eng. 2012, 8, 111–124. [CrossRef]

57. Mauw, S.; Radomirović, S. Generalizing multi-party contract signing. In Proceedings of the Principles of Security and Trust: 4th
International Conference, POST 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2015, London, UK, 11–18 April 2015; Proceedings 4; Springer: Berlin/Heidelberg, Germany, 2015; pp. 156–175.

58. Orzan, S.; de Vink, E. Multiparty contract signing over a reliable network. Electron. Notes Theor. Comput. Sci. 2006, 157, 27–41.
[CrossRef]

59. Tian, H.; He, J.; Fu, L. Contract coin: Toward practical contract signing on blockchain. In Proceedings of the Information
Security Practice and Experience: 13th International Conference, ISPEC 2017, Melbourne, VIC, Australia, 13–15 December 2017;
Proceedings 13; Springer: Berlin/Heidelberg, Germany, 2017; pp. 43–61.

60. Ferrer-Gomila, J.L.; Hinarejos, M.F.; Isern-Deya, A.P. A fair contract signing protocol with blockchain support. Electron. Commer.
Res. Appl. 2019, 36, 100869. [CrossRef]

61. Mut-Puigserver, M.; Payeras-Capellà, M.M.; Cabot-Nadal, M.À. Blockchain-based contract signing protocol for confidential
contracts. In Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA),
Abu Dhabi, United Arab Emirates, 3–7 November 2019; pp. 1–6.

62. Zhang, L.; Zhang, H.; Yu, J.; Xian, H. Blockchain-based two-party fair contract signing scheme. Inf. Sci. 2020, 535, 142–155.
[CrossRef]

63. Yang, K.; Wu, Y.; Chen, Y. A Blockchain-based Scalable Electronic Contract Signing System. In Proceedings of the 2022 IEEE
International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and
IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics
(Cybermatics), Espoo, Finland, 22–25 August 2022; pp. 343–348.

64. Wang, G.; Yu, Y.; Song, Z.; Fu, T. Fair Contract Signing Model Based on Blockchain and VES Algorithm. In Proceedings of the
2023 5th International Conference on Communications, Information System and Computer Engineering (CISCE), Guangzhou,
China, 14–16 April 2023; pp. 476–480.

http://dx.doi.org/10.1093/comjnl/bxs175
http://dx.doi.org/10.1007/s10207-013-0194-9
http://dx.doi.org/10.1007/s00165-013-0283-6
http://dx.doi.org/10.1109/ACCESS.2019.2952213
http://dx.doi.org/10.1007/s10207-008-0056-z
http://dx.doi.org/10.1016/j.jlap.2004.09.003
http://dx.doi.org/10.1016/j.ic.2007.07.007
http://dx.doi.org/10.1007/s11334-012-0180-9
http://dx.doi.org/10.1016/j.entcs.2005.09.042
http://dx.doi.org/10.1016/j.elerap.2019.100869
http://dx.doi.org/10.1016/j.ins.2020.05.054

Computers 2023, 12, 246 21 of 22

65. Huang, H.; Li, K.C.; Chen, X. A fair three-party contract singing protocol based on blockchain. In Proceedings of the
Cyberspace Safety and Security: 9th International Symposium, CSS 2017, Xi’an China, 23–25 October 2017; Proceedings; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 72–85.

66. Huang, H.; Li, K.C.; Chen, X. Blockchain-based fair three-party contract signing protocol for fog computing. Concurr. Comput.
Pract. Exp. 2019, 31, e4469. [CrossRef]

67. Zhang, Q.; Gao, J.; Qin, Q.; Wang, C.; Yin, K. FutureText: A blockchain-based contract signing prototype with security and
convenience. In Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure, Hong
Kong, China, 7–11 June 2021; pp. 77–83.

68. Ferrer-Gomila, J.L.; Hinarejos, M.F. A multi-party contract signing solution based on blockchain. Electronics 2021, 10, 1457.
[CrossRef]

69. Payeras-Capellà, M.M.; Mut-Puigserver, M.; Cabot-Nadal, M.À.; Huguet-Rotger, L. Blockchain-based confidential multiparty
contract signing protocol without TTP using elliptic curve cryptography. Comput. J. 2022, 65, 2755–2768. [CrossRef]

70. Zhang, T.; Wang, Y.; Ding, Y.; Wu, Q.; Liang, H.; Wang, H. Multi-party electronic contract signing protocol based on blockchain.
IEICE Trans. Inf. Syst. 2022, 105, 264–271. [CrossRef]

71. Zhang, T.; Wang, Y.; Ding, Y.; Jiang, X.; Liang, H.; Wang, H. Privacy-preserving blockchain-based contract signing with multi-party
supervision. Trans. Emerging Tel. Tech. 2022, ett.4710. [CrossRef]

72. Hinarejos, M.F.; Ferrer-Gomila, J.L.; Isern-Deyà, A.P. Enforcing Fairness with Blockchain Support: Proposals for Multi-two-party
Contract Signing. IEEE Access 2023, 11, 67893–67911. [CrossRef]

73. Wang, D.; Li, Q.; Li, F.; Zhang, Q.; Xu, B. Privacy-awareness fair contract signing protocol based on blockchain. In Proceedings
of the Cyberspace Safety and Security: 11th International Symposium, CSS 2019, Guangzhou, China, 1–3 December 2019;
Proceedings, Part I 11; Springer: Cham, Switzerland, 2019; pp. 274–278.

74. Johar, S.; Ahmad, N.; Asher, W.; Cruickshank, H.; Durrani, A. Research and applied perspective to blockchain technology: A
comprehensive survey. Appl. Sci. 2021, 11, 6252. [CrossRef]

75. Saini, K.; Roy, A.; Chelliah, P.R.; Patel, T. Blockchain 2.O: A Smart Contract. In Proceedings of the 2021 International Conference
on Computational Performance Evaluation (ComPE), Shillong, India, 1–3 December 2021; pp. 524–528. [CrossRef]

76. Li, X.; Jiang, P.; Chen, T.; Luo, X.; Wen, Q. A survey on the security of blockchain systems. Future Gener. Comput. Syst. 2020,
107, 841–853. [CrossRef]

77. Li, C.; Palanisamy, B.; Xu, R. Scalable and Privacy-Preserving Design of On/Off-Chain Smart Contracts. In Proceedings of the
2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW), Macao, China, 8–12 April 2019; pp. 7–12.
[CrossRef]

78. Wood, G. Ethereum: A Secure Decentralised Generalised Transaction Ledger; EIP-150 REVISION (759dccd) ; 2017. Available
online: https://ethereum.github.io/yellowpaper/paper.pdf (accessed on 16 October 2023).

79. Ethereum.org. The Community-Run Technology Powering the Cryptocurrency Ether (ETH) and Thousands of Decentralized
Applications. Available online: https://ethereum.org/ (accessed on 1 August 2023).

80. Ethereum.org. Smart Contracts Languages. Available online: https://ethereum.org/en/developers/docs/smart-contracts/
languages/ (accessed on 1 October 2023).

81. Marchesi, L.; Marchesi, M.; Destefanis, G.; Barabino, G.; Tigano, D. Design Patterns for Gas Optimization in Ethereum. In
Proceedings of the 2020 IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE), London, ON,
Canada, 18 February 2020; pp. 9–15. [CrossRef]

82. Kremer, S.; Markowitch, O.; Zhou, J. An intensive survey of fair non-repudiation protocols. Comput. Commun. 2002, 25, 1606–1621.
[CrossRef]

83. OpenZeppelin. The Standard for Secure Blockchain Applications. Available online: https://www.openzeppelin.com/ (accessed
on 1 August 2023).

84. Ethereum. Solidity Language: Expressions and Control Structures. Available online: https://docs.soliditylang.org/en/v0.4.24/
control-structures.html (accessed on 1 October 2023).

85. Baird, K.; Jeong, S.; Kim, Y.; Burgstaller, B.; Scholz, B. The Economics of Smart Contracts. arXiv 2019, arXiv:1910.11143
86. Koutmos, D. Network Activity and Ethereum Gas Prices. J. Risk Financ. Manag. 2023, 16, 431. [CrossRef]
87. Nomic Foundation. Ethereum Development Environment for Professionals. Available online: https://hardhat.org/ (accessed on

1 October 2023).
88. Ether Gas Reporter. A Mocha Reporter for Ethereum Test Suites. Available online: https://github.com/cgewecke/eth-gas-

reporter (accessed on 1 August 2023).
89. Ammer, M.A.; Aldhyani, T.H.H. Deep Learning Algorithm to Predict Cryptocurrency Fluctuation Prices: Increasing Investment

Awareness. Electronics 2022, 11, 2349. [CrossRef]
90. Etherscan. Block Explorer and Analytics Platform for Ethereum. Available online: https://etherscan.io/ (accessed on 1 August 2023).
91. CoinMarketCap. Price-Tracking Website for Cryptoassets. Available online: https://coinmarketcap.com/ (accessed on

1 October 2023).
92. Gangwal, A.; Gangavalli, H.R.; Thirupathi, A. A survey of Layer-two blockchain protocols. J. Netw. Comput. Appl. 2023,

209, 103539. [CrossRef]

http://dx.doi.org/10.1002/cpe.4469
http://dx.doi.org/10.3390/electronics10121457
http://dx.doi.org/10.1093/comjnl/bxab112
http://dx.doi.org/10.1587/transinf.2021BCP0011
http://dx.doi.org/10.1002/ett.4710
http://dx.doi.org/10.1109/ACCESS.2023.3292160
http://dx.doi.org/10.3390/app11146252
http://dx.doi.org/10.1109/ComPE53109.2021.9752021
http://dx.doi.org/10.1016/j.future.2017.08.020
http://dx.doi.org/10.1109/ICDEW.2019.00-43
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.org/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
https://ethereum.org/en/developers/docs/smart-contracts/languages/
http://dx.doi.org/10.1109/IWBOSE50093.2020.9050163
http://dx.doi.org/10.1016/S0140-3664(02)00049-X
https://www.openzeppelin.com/
https://docs.soliditylang.org/en/v0.4.24/control-structures.html
https://docs.soliditylang.org/en/v0.4.24/control-structures.html
http://dx.doi.org/10.3390/jrfm16100431
https://hardhat.org/
https://github.com/cgewecke/eth-gas-reporter
https://github.com/cgewecke/eth-gas-reporter
http://dx.doi.org/10.3390/electronics11152349
https://etherscan.io/
https://coinmarketcap.com/
http://dx.doi.org/10.1016/j.jnca.2022.103539

Computers 2023, 12, 246 22 of 22

93. Bnbchain.org. BNB Smart Chain White Paper. Available online: https://github.com/bnb-chain/whitepaper (accessed on
1 February 2023).

94. Polygon Technology. Ethereum’s Internet of Blockchains. Available online: https://polygon.technology/ (accessed on 1 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/bnb-chain/whitepaper
https://polygon.technology/

	Introduction
	Timeliness
	Related Work
	Technological Background
	Blockchain Overview
	Smart Contract Data Storage

	Hard-Timeliness Contract Signing Protocol
	Our Proposal in a Nutshell
	Design Specifications of Our Proposal
	Exchange Subprotocol
	Resolution Subprotocol

	Smart Contract Specification
	Data Structure Definition
	Signature Validation
	Main Functions Definition

	Security Review
	Cost Assessment
	Gas Cost
	Cost in Fiat

	Discussion
	Conclusions
	References

