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Abstract: Static analysis is a software testing technique that analyzes the code without executing
it. It is widely used to detect vulnerabilities, errors, and other issues during software development.
Many tools are available for static analysis of Java code, including SpotBugs. Methods that perform
a security check must be declared private or final; otherwise, they can be compromised when a
malicious subclass overrides the methods and omits the checks. In Java, security checks can be
performed using the SecurityManager class. This paper addresses the aforementioned problem by
building a new automated checker that raises an issue when this rule is violated. The checker is built
under the SpotBugs static analysis tool. We evaluated our approach on both custom test cases and
real-world software, and the results revealed that the checker successfully detected related bugs in
both with optimal metrics values.

Keywords: SecurityManager class; Java; SpotBugs; static analysis; accurate checker

1. Introduction

Our existence is dependent on complex software systems that are challenging to
ensure they are functioning properly. From a security point of view, a vulnerability is
introduced when a coding or design error occurs [1]. Static analysis techniques detect
security vulnerabilities early in software development, leading to time, effort, and cost
savings [2–5]. Static analysis techniques can detect various security vulnerabilities and bugs,
ranging from basic programming mistakes to more intricate issues such as access control
problems [5]. Several static analysis tools exist for the most widely used programming
languages, which can be integrated easily into the software development cycle and even
made part of the continuous integration and continuous delivery CI/CD pipeline; this way,
they can automate the discovery of many bugs and vulnerabilities.

An important class of security vulnerabilities in the Java programming scenario is
related to the SecurityManager class (SM) in the standard application programming inter-
face. This class provides means for applications to establish and enforce security policies.
It enables an application to evaluate the nature of an operation, which may be unsafe or
sensitive, before executing it. Doing so allows the application to determine if the operation
can be carried out within the current security context. A security manager routine simply
returns if the operation is permitted but throws a SecurityException if the operation is
not permitted [6]. According to the SEI CERT Oracle Coding Standard for Java, methods
that perform a security check must be declared private (which means that the method
cannot be accessed from, or even overridden, from outside the class) or final (which means
it cannot be overridden) [7] because otherwise, those member methods can be compro-
mised when a malicious subclass overrides the methods and omits the checks. However,
according to the same web page, no automated static analysis tool can detect non-final and
non-private methods that perform security checks. Consequently, this paper targets this
specific problem.
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Many static analysis tools—with varying capabilities—can be employed for imple-
menting our idea. We followed the following criteria to choose a suitable one. (1) It should
be well-known, free, and open source, (2) target Java language, and (3) inspect the bytecode.
We chose SpotBugs version 4.7.3 [8].

The motivations of this research are the following:

• Although losing a little popularity, Java is still among the most often-used program-
ming languages in the software industry, according to the TIOBE index [9].

• Many applications used in our everyday lives are written in Java, with a long life span.
Maintaining these applications and removing their weaknesses is essential.

• SM is common among the Java applications in GitHub repositories, but no practical
work or research articles still focus on using it safely.

• Using static analysis techniques is effective in identifying security vulnerabilities and
programming weaknesses.

The main contributions of the paper are the following:

• We build a novel checker named FindVulnerableSecurityCheckMethods under the
SpotBugs static analysis tool that raises an issue when calling an overridable method
that performs a security check;

• We evaluate our approach on custom test cases and real-world software, and report the
evaluation results using four robust metrics: recall, false alarm rate (FAR), precision,
and F1-score.

Problem Statement

According to the “SEI CERT Oracle Coding Standard for Java,” it is advised to declare
methods that perform security checks as either private or final [7]. This recommendation is
made to safeguard these member methods from potential compromise. If these methods are
not declared private or final, there is a risk that a malicious subclass could override them
and deliberately omit the essential security checks, thereby introducing vulnerabilities.

Using SM to mitigate the potential of unintentional vulnerabilities in local code is
practically difficult. There is much less usage of this class in production than most peo-
ple realize, and many assertions that it is frequently used to secure local code have no
evidence. Nowadays, SM is not used for some reasons: difficult programming model,
poor performance, and weak permission model. Consequently, since the benefits of this
class have significantly decreased over time due to changes in the deployment and threat
environment, and due to the high cost of its maintenance, it has been deprecated for re-
moval in a future release [10]. Still, it was necessary to conduct this research and build this
checker because many Java applications perform security checks using the SM. We looked
at Java software on GitHub and saw that 224 k files have been used [11]. Moreover, it is not
always straightforward to upgrade applications to the newer Java version, as major version
upgrades (e.g., upgrading from Java 8, or less, to Java 17) can require more effort and
may involve addressing deprecated APIs, modifying code that relies on removed features,
and adapting to changes in the language or libraries. This can involve code refactoring,
updating dependencies, and addressing any compatibility issues or behavioral changes
introduced in the newer version.

2. Related Work

According to the SEI CERT Oracle Coding Standard for Java, no automated static
analysis tool can detect the call of overridable methods that perform security checks using
one of the methods of the SM. However, some other checkers do similar work; they can
detect the use of overridable methods in other insecure scenarios.

In this section, we present two categories of related works in a detailed and extensive
way. The first are those static analyses that can detect similar issues to ours. The second
category includes the research works that are interested in the security of the Java language,
including the usage of the SM and the research papers that have used the class as a part of
their implemented work.
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In this first category, different commercial and free static analysis tools target the
problem of calling overridable methods from other methods in Java code. Increasing the
accessibility of overridden or hidden methods permits a malicious subclass to offer wider
access to the restricted method than was originally intended [12]. This issue has been
targeted by the Parasoft Jtest static analysis tool [13]. However, since the tool is commercial,
the proposed solution is not in-handy, and we are unsure if it can detect our presented issue.
SpotBugs, PVS-Studio [14], and SonarQube [15] all target the problem of calling an over-
ridable method by a constructor. This problem may result in the use of uninitialized data,
leading to runtime exceptions or to unanticipated outcomes. Calling overridable methods
from constructors can also leak this reference before object construction is complete, which
may expose the uninitialized or inconsistent data to other threads [16].

The clone method may invoke only methods that are non-overridable. The opposite is
insecure because a malicious subclass could override the method and affect the behavior of
the clone method. However, even if the subclass is trusted, it could observe (and possibly
modify) the cloned object in a partially initialized state before its construction has concluded.
In these cases, the subclass could leave the clone, the object being cloned, or both in an
inconsistent state [17]. SpotBugs and Parasoft Jtest have targeted this problem.

None of the previously presented static analysis tools currently target the problem
of calling overridable methods that use security checks. In our work, we targeted this
issue and designed such a checker under SpotBugs. Table 1 presents the summary of the
aforementioned static analysis checkers.

Table 1. Related work summary (first category).

The Issue Tools Target It

Increasing the accessibility of overridden or hidden method Parasoft Jtest
Calling an overridable method by a constructor SpotBugs, SonarQube, PVS-Studio
Calling an overridable method by the method clone SpotBugs, Parasoft Jtest
Calling an overridable method that performs a security check Our checker, under SpotBugs

In the second category, we first give an overview of the research work that concerns
the importance of Java security and/or the usage of the SM. Nevertheless, some of them
shed light on the insecurity of Java, but not specifically the possible insecurity of this class.

Almut Herzog et al. [18] thoroughly analyzed the Java SM’s performance, identify-
ing permissions with subpar performance and making recommendations for improving
efficiency. According to their experiments, resource access statement CPU execution penal-
ties ranged from 5% to 100%. Some resource uses, such as file and socket access, can
hide the performance cost of access control checks. Accessing main memory resources,
however, results in observable latency penalties. They concluded that enhancing the pol-
icy file’s garbage collection and authorization order is essential to achieving acceptable
response times.

Joseph A. Bank [19] assessed the Java language’s security concerns, its intended appli-
cations in Java-enabled web browsers, and Java’s suggested fixes. He briefly described the
history of executable contents, then talked about the potential security concerns associated
with these contents and Java’s responses to those risks, and then examined the efficacy of
those solutions. He concluded that Java does increase the security risk, and the power gains
must always be balanced against the security risk posed by Java-based systems. They also
argued that using Java does not make sense for a system where security is of the utmost
concern; the increased security risk is not worth it. Regarding home computers, they see
that Java’s advantages outweigh its drawbacks. Similarly, several systems are inaccessible
online due to security concerns that exceed the advantages of using the internet.

In a study conducted in 1995 by A. Sterbenz [20], an introduction to the Java language
was given, followed by a discussion of the problems that could occur when running
unauthorized programs in an insecure setting. The efficiency and adaptability of the Java
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security model were assessed in both theoretical and practical contexts across numerous
application scenarios to find viable solutions to this issue. Their findings reveal several flaws
in both the present implementations and the underlying security paradigm. The security
features of the Java and. NET programming languages were compared by N. Paul et al. [21].
However, they discovered that, due to its more straightforward and cleanly designed
architecture, NET is more secure than Java in several areas. In their analysis, they shed
light on a variety of Java flaws, including the potential for a null SM. Rewriting the policy
class or implementing a different SM may be required in Java to enhance the default policy
implementation. Thereby, due to the enormous security concerns introduced by his level of
extensibility, it is uncertain what advantages Java provides.

Secondly, we explain how numerous studies used the SM throughout the development
stage of their software due to its different functions (for instance, login access, user man-
agement, message coding, and decoding). However, they did not consider the possibility
of insecure use of its methods. Consequently, we briefly describe the related research to
show the importance of implementing our checker.

G. Cabri et al. [22] used the Java authentication and authorization system (JAAS)
to execute security checks on individual actions for each role that Java agents play and
concluded that it outperformed the usage of the SM. P.J. Clemente et al. [23] have provided
a new method for creating fully Model-Driven Architecture (MDA) compatible component-
and-aspect-based software systems. With this method, the system can be modeled at
several levels of abstraction, from early platform agnostic models through platform-specific
models and towards the system’s final code. The SM component has addressed the security
issue during its development process, which has also been incorporated into the system to
grant authorized access to the online store.

In order to assess the benefits of Aspect-Oriented Software Development (AOSD) for
Model-Driven Architecture (MDA), B. Tekinerdogan et al. [24] have provided a thorough
analysis of cross-cutting issues in the context of the MDA. Based on their research, they
provided a few recommendations regarding Java and the process used in the MDA ap-
proach. According to a chosen list of cross-cutting problems, they have identified several
evolutionary possibilities. All the designed scenarios have used SM, although some of
these scenarios have upgraded it.

Also, SM was employed in JoiN (a Java-based software framework for building
massively parallel grids that can run huge parallel applications) by E.J.H. Yero et al. [25] to
offer an access control mechanism based on roles that are integrated throughout the internal
structure of the system. Furthermore, JoiN has advanced fault tolerance characteristics
that enable it to withstand failures in both the computers handling the groups and the
computers executing parallel tasks. JoiN employs a dynamic, adaptable scheduling method
that repeats parallel activities for fault tolerance and variations in resource availability.

M.C. Little [26] created W3OTrans, a tool that enables programmers to build web apps
utilizing atomic actions and objects. The C++ and Java implementations of W30Trans allow
server-side programs to utilize more effective compilation methods fully. However, using
Java poses some significant security concerns. They used the SM object to impose security,
which controls what an applet can and cannot do.

Our work differs from the previously presented works in that we considered the im-
portance of using the methods of the SM in an insecure way; consequently, we designed and
implemented a free and open-source static analysis checker that targets this issue. Table 2
presents the summary of these research papers, focusing on the SM related information.
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Table 2. Related work summary (second category).

References
Concern About Use the SM in Implementing

Their Ideas Research Conclusions
Java Security SM

[18,21] Yes

Yes

- Analyzed the SM’s
performance

- Focused on Java
flaws, including the
potential for a
null SM

No

- The policy file’s garbage
collection should be
improved

- NET is more secure than
Java in several areas

- Implementing a different
SM may be required in
Java to enhance the
default policy
implementation

[19,20] Yes No No

- Java does increase the
security risk

- There are several flaws in
the underlying security
paradigm of Java

[22–26] No No

Yes

- To address the security
issues during the
development process

- To offer an access control
mechanism

- To impose security
- Used to design scenarios

- Using the JAAS to
achieve security checks
outperformed the usage
of the SM

Current No

Yes

- Design and
implement a checker
that detects an
overridable method’s
calling that performs
a security check

Yes

- To build the custom
test cases

- The designed checker
gave the optimal
performance

3. Research Methodology

In this section, we explain our method of designing the checker, followed by the
method of building the custom test cases, and finally, we explain the checker’s performance
evaluation method and the used metrics.

3.1. Checker Design

Figure 1 presents the detailed method process we followed for executing our checker
named (FindVulnerableSecurityCheckMethods). Since the methods of final classes cannot
be overridden, the usage of SM could be insecure only if used in a non-final class; conse-
quently, we designed our checker to focus only on those classes. For each non-final class, it
inspects for method invocations, followed by searching for neither final nor private meth-
ods because methods that are either final or private cannot be overridden. Subsequently,
an issue will be reported if the invoked method performs a security check using one of the
methods of the SM. The previously explained method has been implemented successfully
under the SpotBugs static analysis tool and passed the internal review of our team; see
reference [27] for more details concerning the implementation coding. Our approach was
accepted by the official SpotBugs software as a novel checker [28] and has been included in
SpotBugs version 4.8.0.
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3.2. Custom Test Cases Design

To evaluate our produced checker and comprehensively cover the issue under the
study, our team designed custom test cases that cover the following criteria:

• Non-compliant (NC) and compliant (C): we designed flawed and non-flawed test
cases to be able to test our checker performance in both true positive (TP) and false
positive (FP) aspects;

• Unambiguous: they are written clearly and concisely, leaving no room for misinterpre-
tation;

• Test objective: each test case has a specific objective clearly stating what aspect of the
issue is being tested;

• Independence: For better isolation and identification of issues, we designed indepen-
dent test cases;

• Validated expectations: each test case has an expected outcome defined beforehand.

Consequently, we came out with 6 NC and 18 C test cases. Next, we give details about
their design.

NC test cases: these test cases should be reported by our checker, as they include real
bugs and are considered insecure. By designing these six test cases, we could cover all the
possible scenarios when SM methods are insecure, i.e., a SM method is used in a non-final
and non-private method and included in a non-final class. Table 3 presents the details of
these test cases. Code snippet 1 presents test case 4 (T4).

Table 3. NC test cases description.

Test Cases Description

T1 Using a named SM object
T2 Using a nameless SM
T3 Using a protected method
T4 Calling a vulnerable method from another method.
T5 Using obvious true if statement (ex: if (5 > 3))
T6 Using arbitrary if statement (if (ex: x < 12), when the value of x is unknown)

Code snippet 1. NC test case. Calling a non-final and non-private method uses an SM
object to perform a security check from another method.
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public class FindVulnerableSecurityCheckMethodsTest {
Logger logger = Logger.getAnonymousLogger();

public void badCallee() {
(new FindVulnerableSecurityCheckMethodsTest()).badCalled();

}
public void badCalled() {

try {
SecurityManager sm = System.getSecurityManager();
if (sm! = null) {

sm.checkRead(“/temp/tempFile”);
}
//Access the file

} catch (SecurityException se) {
logger.log(Level.WARNING, se.toString());

}
}

}

C test cases: our checker should not report these test cases, as they do not include real
bugs; rather, they include safe coding scenarios to test if the static analysis (our checker)
successfully avoids them. We designed two test case categories. In the first one, non-final
classes were used, and are presented in Table 4; however, in the second category, we used a
combination of test cases from the first category and the NC test cases, but we put them in
final classes, which is enough to make them secure. By designing these eighteen test cases,
we could cover all the possible scenarios when SM methods are secure. Code snippets 2
and 3 are examples of test cases of both categories (T1 and T4).

Table 4. C test case description (first category).

Test Cases Description

T1 Using a final method
T2 Using a private method
T3 Creating a SM object without using it
T4 Performing the security check in an obvious false branch (like if (5 > 10))
T5 Calling a method of SM that does not perform any security checks
T6 Using a user-defined SM instead of java.lang.SecurityManager

Code snippet 2. C test case (1st category). A final class includes a non-final and
non-private method that uses a SM object to perform a security check.

public final class GoodSecurityCheckMethodsTest1{
Logger logger = Logger.getAnonymousLogger();

public void goodSecurityCheckMethodsTestCheck(){
try {

SecurityManager sm = System.getSecurityManager();
if (sm! = null) {//Check for permission to read file

sm.checkRead(“/temp/tempFile”);
}
//Access the file

} catch (SecurityException se) {
logger.log(Level.WARNING, se.toString());

}
}

}
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Code snippet 3. C test case (2nd category). A non-final class includes a public method
that uses a SM object, but it is not vulnerable because of performing the security check in
an obvious false condition branch.

public class GoodSecurityCheckMethodsTest2{
Logger logger = Logger.getAnonymousLogger();

public void goodSecurityCheckMethodsTestCheck6(){
try {

SecurityManager sm = System.getSecurityManager();

if (sm! = null) {//Check for permission to read file
if (5> 10) {

sm.checkRead(“/temp/tempFile”);
}

}
//Access the file

} catch (SecurityException se) {
logger.log(Level.WARNING, se.toString());

}
}

}

You can refer to the second author’s GitHub repository [27] for checking the other NC
and C test cases. NC test cases contain the word bad in the test method or the file name,
while C test cases contain the word good.

3.3. Performance Evaluation

For the evaluation purpose, we used four metrics, namely, recall, false alarm rate
(FAR), precision, and F1-score, to represent distinct aspects of our checker’s performance in
identifying the target issue of this paper. We first ran our checker on the test cases, then
computed the number of TP, and FP to determine these metrics:

Recall =
TP

NC testcases
(1)

FAR =
FP

C testcases
(2)

Precision =
TP

TP + FP
(3)

F1 − score =
2 × Recall × Precision

Recall + Precision
(4)

True positives (TP) are NC constructs correctly classified as NC. False positives (FP)
are C constructs misclassified as NC ones. Recall is expressed as the quotient of TP to the
total number of NC test cases (Equation (1)). Hence, recall is restricted to NC constructs
and represents the percentage of NC test cases accurately identified by our checker. FAR
provided in Equation (2) is exclusively concerned with C test cases, and it reflects the
percentage of C test cases that have been misidentified as NC ones. It is the ratio of FP to
the total number of compliant test cases or the ratio of mistakenly reporting C constructions
as NC ones.

Precision, as defined in Equation (3), calculates the ratio of TP to the sum of TP and FP.
Therefore, precision encompasses all reported test cases and represents the percentage of
accurately identified NC constructs out of the total number of constructs reported by a tool.

As defined in Equation (4), the F1-score combines recall and precision by taking their
harmonic mean. This allows us to merge these two important metrics into a single measure.
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In this paper, we used it to describe the accuracy of the analysis. We did not use the
standard accuracy metric, which is the fraction of correct detections (TP + TN (TN: true
negatives are compliant constructs correctly ignored by a static analysis tool.)) out of all
detections (TP + TN + FP + FN (FN: false negatives are compliant constructs mistakenly
detected by static analysis.)). This metric is suitable for balanced classification, but in our
experiment, the numbers of NC and C occurrences are imbalanced, both for the custom
test cases and the real-world software.

High values of recall, precision, the F1-score, and low values of the FAR indicate the
best performance. All falling in the interval {0, 1}.

4. Results

The result of running our checker on related Java bugs and the performance evaluation
results of the checker are presented in this section. Two Java bug types were used here; the
first type is those built with intentional flaws (custom test cases), and the second type is
real-world bugs.

4.1. Analyzing Custom Test Cases

In this section, the results of running our checker on the custom test cases, which were
explained in Section 3.2, are presented in Table 5. Our checker could find all the NC test
cases and correctly ignore all the C test cases, resulting in TP = 6 and FP = 0. Moreover,
the recall, FAR, precision, and F1-score values were optimal (i.e., 1.0, 0.0, 1.0, and 1.0),
respectively.

Table 5. Evaluation results of analyzing the custom test cases.

Metrics Value

NC test cases 6
C test cases 18

TP 6
FP 0

Recall 1.00
FAR 0.00

Precision 1.00
F1-score 1.00

4.2. Analyzing Real Software

To evaluate our checker performance in detecting the related bug in real-world soft-
ware, we analyzed nine pieces of software: SpotBugs itself, Elasticsearch [29], selective-
security-manager [30], Lottie Android [31], mybatis-3 [32], tomcat [33], intellij-community [34],
tutorials [35], and netty [36]. These software programs were not selected arbitrarily; we
selected those that use SM.

We could calculate the number of C and NC occurrences in this software using a
simple grep command; consequently, the metrics values were calculated for evaluating
the checker performance on detecting the related flaws in the analyzed software. The
evaluation results are presented in Table 6; they revealed that our checker gave optimal
performance values.

There were no NC cases for netty software, and the checker successfully did not detect
any flaws (TP and FP = 0), resulting in recall and precision = N/A, because both equations’
denominators are zeros. Consequently, the value of F1-score was N/A, for the same reason.
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Table 6. Evaluation results of analyzing the real-world software.
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NC 6 8 4 1 1 7 6 2 0
C 0 7 0 0 0 1 4 1 2
TP 6 8 4 1 1 7 6 2 0
FP 0 0 0 0 0 0 0 0 0
Recall 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A
FAR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00
Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A
F1-score 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 N/A

5. Conclusions

In the presented study, we designed and implemented a novel checker named Find-
VulnerableSecurityCheckMethods under the SpotBugs static analysis tool, which can detect
the calling of overridable methods that perform security checks in Java programs.

We evaluated our approach on both custom test cases and real-world software. The
results revealed that the produced checker is accurate and precise when detecting the
related issue in the analyzed programs. The performance metrics values were optimal for
all the analyzed test cases and real-world software.

6. Future Work

In order to properly validate our approach, we will examine more real-world software
in future studies. The checker’s design may be improved by including a feature that offers
substitutes for carrying out SecurityManager’s work. This is in line with the class being
removed in the subsequent Java version.
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