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Abstract: The digitization of information and technological advancements have enabled us to gather
vast amounts of data from various domains, including but not limited to medicine, commerce,
and mining. Machine learning techniques use this information to improve decision-making, but
they have a big problem: they are very sensitive to data variation, so it is necessary to clean them
to remove irrelevant and redundant information. This removal of information is known as the
Feature Selection Problem. This work presents the Pendulum Search Algorithm applied to solve
the Feature Selection Problem. As the Pendulum Search Algorithm is a metaheuristic designed for
continuous optimization problems, a binarization process is performed using the Two-Step Technique.
Preliminary results indicate that our proposal obtains competitive results when compared to other
metaheuristics extracted from the literature, solving well-known benchmarks.

Keywords: Pendulum Search Algorithm; Feature Selection Problem; Binarization Schemes;
Combinatorial Optimization

1. Introduction

In recent years, the use of different machine learning algorithms has become of great
interest in the scientific community. This is due to two main reasons: (1) access to large
computational capacities and (2) large volumes of existing data. These techniques have
been successfully applied in image analysis, natural language processing, and sentiment
analysis, among others.

However, the large volumes of data available for processing may contain redundant
or unnecessary variables for classification that decrease the accuracy of the results and the
performance of the predictive algorithms. Due to this sensitivity to the input data, it is very
difficult to arrive at reliable results without proper data preprocessing.

Feature selection is one of the most widely used preprocessing techniques and aims to
remove irrelevant and/or redundant information in order to keep only the most represen-
tative information of the dataset [1].
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In [2], the authors tell us that there are three methods to solve the Feature Selec-
tion Problem:

• Filter Methods: They are independent of learning or classification algorithms since
the filtering is based on expert judgment or statistical techniques that allow us to
determine which are the most important features.

• Wrapper Methods: The cleaning process is performed online, i.e., it always interacts
directly with the classification or learning algorithm. This is because, iteratively, the
algorithms need constant performance feedback.

• Embedded Methods: This method is a hybridization between a filter method and a
wrapper method. Feature selection is part of the training process of the learning or
classification algorithm.

Although wrapper methods are computationally very expensive, their performance is
better than that of filter methods. Metaheuristics fall into the category of wrapper methods.

Metaheuristics are general-purpose algorithms that, with a few modifications, can
solve different optimization problems. Although metaheuristics do not guarantee global
optimization, these provide us with high-quality solutions in a reasonable time. This
characteristic makes different authors use metaheuristics to solve the Feature Selection
Problem [2,3]. Figure 1 shows how to solve the Feature Selection Problem using meta-
heuristics.

Dataset with all
feature enabled

Metaheuristics
Module

Subset of data with 
some feature enabled

Machine Learning
(Classifier) Module

Performance
metrics

Term
criterion

Best subset of data with
some features enabled

FEATURE SELECTION MODULE

Yes

No

Figure 1. Feature Selection process flow chart.

As input, we have the original dataset where all features are being used. This set
enters the metaheuristic module, which will be responsible for eliminating irrelevant and
redundant features, resulting in a subset of data with some activated features. This subset of
data enters the machine learning module, where the performance of a classifier or predictor
with this subset of data will be tested. As the output of this module, we will have different
performance metrics. Then, we evaluate whether we have reached our termination criterion.
If we have not reached it, we return to the metaheuristic module, but with the feedback of
performance obtained previously; if we have reached the termination criterion, we obtain,
as a result, the best subset of data with some activated features.

In the literature, we can find different metaheuristics developed by researchers [4].
These researchers rely on the No Free Lunch (NFL) theorem to further deepen their under-
standing of metaheuristics, as this theorem indicates that there is no optimization algorithm
capable of solving all existing optimization problems [5]. This theorem has not only led
to the creation of new metaheuristics but also to the modification of existing ones, where
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we can highlight binarization. Binarization involves adapting metaheuristics designed
to solve continuous optimization problems so that they can solve binary combinatorial
optimization problems.

According to the work conducted in [6], we can observe that the Feature Selection
Problem is the most addressed issue by researchers who binarize metaheuristics. Given
this significant interest, there is a motivation to binarize recent metaheuristics that have not
yet solved this problem.

In this work, we binarize the Pendulum Search Algorithm (PSA), a recently developed
metaheuristic designed to solve continuous optimization problems. Such binarization is
performed so that PSA can solve binary combinatorial optimization problems such as the
Feature Selection Problem. The motivation for using the Pendulum Search Algorithm is
that it has no configurable parameters, and this saves us the process of parameter tuning.

To validate the performance of the proposal, we compared our proposal with the
Sine Cosine Algorithm and Moth-Flame Optimization, two widely used metaheuristics
in the literature to solve the Feature Selection Problem with good results. Preliminary
results indicate that PSA has good competitive results when compared to the other two
metaheuristics.

The paper is organized as follows: Section 2 defines the Feature Selection Problem,
Section 3 reviews how metaheuristics solve the Feature Selection Problem, Section 4 de-
fines the Pendulum Search Algorithm, Section 5 defines our proposal Binary Pendulum
Search Algorithm, the results obtained are shown in Section 6 to end with the conclusion
in Section 7.

2. Feature Selection Problem

The Feature Selection Problem (FS) is a multi-objective combinatorial optimization
problem that arises from the need to eliminate irrelevant and redundant information since
this information is detrimental to the learning tasks of prediction or classification algorithms.
On the one hand, we need to improve the prediction of classification algorithms, and on the
other hand, we need to decrease the number of features that make up the original dataset.

In its original definition, FS works by assuming a dataset S, which contains a d number
of f features, such that S = { f1, f2, f3, . . . , fd}. The objective of the problem is to select the
best subset of features D = { f1, f2, f3, . . . , fn} with n < d so that the features belonging to
the selected subset are the most representative of the set of original data.

Internally, Feature Selection has a binary domain, so the representation of vectors
S and D has the same character, as exemplified in Figure 2, where a 1 would mean the
activation or use of a feature, and a 0 the deactivation or the discarding of it. The vector S
represents the utilization of the complete original dataset; that is, all the cells of the vector
have a value of 1, whereas the vector D represents the resulting subset of features; that is,
the vector is composed of 1 s and 0 s.

Figure 2. Binary representation of vectors S and D.
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In this way, the objective function Z is calculated as the following equation:

min Z = α ·YR(D) + β · |R||N| (1)

where YR(D) represents the classification or prediction error of the ML algorithm, |R| is
the number of selected features, and |N| the total number of features, with α ∈ [0, 1] and
β = (1− α) parameters that regulate the importance of the quality of the results and the
size of the subset, respectively.

3. Continuous Metaheuristics Solving Feature Selection Problem

Using metaheuristics to solve the Feature Selection Problem is of high interest to
the scientific community. In the literature [2,3,7–9], different literature reviews can be
observed, focusing on documenting which metaheuristics have been used to solve the
FSP. For instance, we can highlight Ant Lion Optimization (ALO) [10,11], Artificial Bee
Colony Algorithm (ABC) [12,13], Bat Algorithm (BA) [14,15], Cuckoo Search (CS) [16–18],
Grey Wolf Optimizer (GWO) [19–21], Dragonfly Algorithm [22], Harris’ Hawk Optimiza-
tion (HHO) [23,24], Moth Flame Optimization (MFO) [25–27], Sine Cosine Algorithm
(SCA) [28–30] and, Whale Optimization Algorithm (WOA) [31,32].

All these metaheuristics have one characteristic in common: they are metaheuristics
designed to solve continuous optimization problems that were modified to solve binary
combinatorial optimization problems, such as the Feature Selection Problem.

3.1. Two Step Techniques

In the literature, there are different ways of binarizing continuous metaheuristics [6],
but the most widely used is the Two-Step Technique [33]. As the name suggests, the
binarization process is performed in two steps:

• Application of a transfer function, which transfers the continuous value to a value
within the range [0, 1].

• Application of a binarization rule which determines the assignment of a 1 or a 0.

In the literature [6], we can find different transfer functions, among which the S-Shaped
and V-Shaped transfer functions stand out. Table 1 and Figure 3 present the families of
transfer functions utilized in this study. The notation dj

i observed in Table 1 corresponds
to the continuous value of the j-th dimension of the i-th individual resulting after the
perturbation performed by the continuous metaheuristic.

Table 1. S-Shaped and V-Shaped transfer functions.

S-Shaped V-Shaped

Name Equation Name Equation

S1 T(dj
i) =

1

1+e−2dj
i

V1 T(dj
i) =

∣∣∣er f
(√

π
2 dj

i

)∣∣∣
S2 T(dj

i) =
1

1+e−dj
i

V2 T(dj
i) =

∣∣∣tanh(dj
i)
∣∣∣

S3 T(dj
i) =

1

1+e
−dj

i
2

V3 T(dj
i) =

∣∣∣∣∣ dj
i√

1+(dj
i )

2

∣∣∣∣∣
S4 T(dj

i) =
1

1+e
−dj

i
3

V4 T(dj
i) =

∣∣∣ 2
π arctan

(
π
2 dj

i

)∣∣∣
Additionally, in the literature [33], we can find five different binarization rules, of

which we can highlight the following:
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• Standard (STD): If the condition is satisfied, the standard binarization rule returns 1;
otherwise it returns 0. Mathematically, it is defined as follows:

X j
new =

{
1 i f rand ≤ T(dj

i)

0 else.
(2)

• Elitist (ELIT): The best value is assigned if a random value is within the probability;
otherwise, a zero value is assigned. Mathematically, it is defined as follows:

X j
new =

{
X j

Best i f rand < T(dj
i)

0 else.
(3)

• Elitist Roulette (ELIT_ROU): This binarization rule selects randomly among the best
individuals of the population, with a probability that is directly proportional to their
fitness. Mathematically, it is defined as follows:

X j
new =

P[X j
new = ζ j] =

f (ζ)
∑δ∈Qg f (δ) i f rand ≤ T(dj

i)

P[X j
new = 0] = 1 else.

(4)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
d j

i

0.0

0.2

0.4

0.6

0.8

1.0

T(
dj i)

Transfer Function S-Shaped

S1
S2
S3
S4

(a) S-Shaped

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
d j

i

0.0

0.2

0.4

0.6

0.8

1.0
T(

dj i)

Transfer Function V-Shaped

V1
V2
V3
V4

(b) V-Shaped

Figure 3. S-Shaped and V-Shaped transfer functions.

3.2. Evaluation Metrics

As seen in Equation (1), we need the error rate, and this is a classifier performance
metric. However, the classifier can not only measure their performance with the error
rate but also with the f-score [2]. Both metrics are constructed from the confusion matrix
obtained after classifier validation. Figure 4 shows how the confusion matrix is constructed.

Figure 4. Confusion Matrix.
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With this, the error rate and f-score are constructed as follows:

Error rate =
fP+ fN

tP+ fN+ fP+ tN
(5)

f .score = 2 · Precision · Recall
Precision + Recall

, where (6)

Recall =
tP

tP+ fN
, Precision =

tP
tP+ fP

(7)

These metrics are used by the authors to demonstrate that the metaheuristics applied
to solve the Feature Selection Problem did so correctly and reliably.

4. Pendulum Search Algorithm

The Pendulum Search Algorithm is a new population-based metaheuristic created in
2022 by Nor Azlina Ab. Aziz and Kamarulzaman Ab. Aziz [34]. This metaheuristic was
designed to solve continuous optimization problems, and it is inspired by the harmonic
motion of the simple pendulum. The equation of movement is very similar to the one
proposed in Sine Cosine Algorithm. The authors incorporate an exponential function,
which would improve the balance between exploration and exploitation [35].

The search agents are initialized randomly, and their position is updated using
Equation (8).

Xt
i,j = Xt

i,j + pendt
i,j · (Bestj − Xt

i,j) (8)

where Xt
i,j is the position of the i-th solution in the j-th dimension in t-th iteration, Bestj it

is the position of the best solution in the j-th dimension in the t-th iteration and pendt
i,j is a

parameter which is calculated as follows:

pendt
i,j = 2 · e(−t/tmax) · cos(2 · π · rand) (9)

where t is the current iteration, tmax is the maximum number of iterations and rand is a
uniform random number between [0, 1]. The pseudo-code of PSA is shown in Algorithm 1.

Algorithm 1 Pendulum Search Algorithm
Input: The population X = {X1, X2, . . . , Xi}
Output: The updated population X′ = {X′1, X′2, . . . , X′i} and Best

1: Initialize random population X
2: Evaluate the objective function of each individual in the population X
3: Identify the best individual in the population (Best)
4: for iteration (t) do
5: for solution (i) do
6: for dimension (j) do
7: Update pendt

i.j by Equation (9)
8: Update the position of Xt

i,j using Equation (8)
9: end for

10: end for
11: Evaluate the objective function of each individual in the population X
12: Update Best
13: end for
14: Return the updated population X′ where Best is the best result

5. Binary Pendulum Search Algorithm

As mentioned in Section 4, PSA is a metaheuristic designed to solve continuous
optimization problems, so it is necessary to convert the solutions to the binary domain to
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solve the Feature Selection. Additionally, in Section 3, it was mentioned that the Two-Step
Technique is one of the most widely used methods for binarizing continuous metaheuristics.

In [6,33], the authors present eight different transfer functions and five binarization
rules. In this work, after preliminary experimenting with different combinations, we de-
cided to use the following transfer function and binarization rule. Equation (10) represents
the transfer function, and Equation (11) represents the binarization rule used in this work.

T(dj
w) =

∣∣∣ 2
π arctan

(
π
2 dj

w

)∣∣∣ (10)

X j
new =

{
1 i f rand ≤ T

(
dj

w

)
0 otherwise

(11)

with this, we can construct the Binary Pendulum Search Algorithm (B-PSA). First, we
initialize the solutions in the binary domain, and in each iteration, the following will be
performed: (1) perturbing the binary solutions with Equations (8) and (9), the classical
equation of motion of the PSA. (2) after perturbing all the solutions, they will leave the
binary domain, and binarization will be applied using Equations (10) and (11). This process
is repeated until the end of the iterations. After the solution generation and binarization
step, a feasibility test and solution repair are performed (Algorithm 2). In the feasibility
test, we verify that each solution has at least one activated feature; that is, there is at least
one “1” in the solution vector. If this condition is not met, a new random binary solution is
generated, and the feasibility test is applied again. This process is repeated until all feasible
solutions are obtained. The pseudo-code of B-PSA is shown in Algorithm 3.

Algorithm 2 Feasibility test and repair solution
Input: The population X = {X1, X2, . . . , Xi}
Output: The feasible population X = {X1, X2, . . . , Xi}

1: repeat
2: for solution (i) do
3: if solutioni is composed of only 0 then
4: Generate a new binary random solution
5: else
6: feasible solution
7: end if
8: end for
9: until all solutions are feasible

10: return the feasible population X

Algorithm 3 Binary-Pendulum Search Algorithm
Input: The population X = {X1, X2, . . . , Xi}
Output: The updated population X′ = {X′1, X′2, . . . , X′i} and Best

1: Initialize binary random population X
2: Apply feasibility test according to Algorithm 2
3: Evaluate the objective function of each individual in the population X
4: Identify the best individual in the population (Best)
5: for iteration (t) do
6: for solution (i) do
7: for dimension (j) do
8: Update pendt

i.j by Equation (9)
9: Update the position of Xt

i,j using Equation (8)
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Algorithm 3 Cont.

10: end for
11: end for
12: Binarization of population X
13: Apply feasibility test according to Algorithm 2
14: Evaluate the objective function of each individual in the population X
15: Update Best
16: end for
17: return the updated population X′ where Best is the best result

6. Experimental Results

To validate the performance of our proposal, test datasets provided by https://archive.
ics.uci.edu/ (accessed on 29 October 2023) were used and compared to the Binary Sine
Cosine Algorithm and Binary Moth-Flame Optimization. Experiments using the Sine
Cosine Algorithm and Moth-Flame Optimization were run from zero without using results
from previous work. In this repository, there are several datasets where different authors
validate their algorithms that solve the Feature Selection Problem. Table 2 shows the
characteristics of the resolved instances. The first column represents the solved instance,
the second column represents the data type of the datasets, the third column refers to the
field belonging to the instance, the fourth column refers to the number of features that
compose the datasets, the fifth column refers to the number of samples in the datasets,
the sixth column represents the number of classes to be classified and the seventh column
refers to whether the dataset has missing data.

Table 2. Instances used.

Instance Data Type Area N° of Features Sample Size N° of Class Missed Value?

Breast cancer Integer Life 10 699 2 Yes
wisconsin (Original)

Divorce Integer Life 54 170 2 No
Immunotherapy Integer Life 8 90 2 No

Real
Ionosphere Integer Physical 34 351 2 No

Real
Connectionist Bench Real Physical 60 208 2 No

(Sonar, Mines vs Rocks)
Breast Cancer Real Life 32 569 2 No

Wisconsin—Diagnostic (wdbc)

The K-Nearest Neighbors (KNN), one of the most widely used classifiers in the
literature [2], was used as a classifier in the Machine Learning Module mentioned in
Figure 1. The datasets were separated into two, with 75% of the data being used as training
data and 25% of the data being used as validation data. The population size used for the
three metaheuristics is 10 individuals, and 100 iterations were performed. The rest of the
parameters are shown in Table 3.

Fitness and f-score are the metrics used to show the good performance of our proposal.
Table 4 shows the fitness obtained for each instance using the three metaheuristics under
study. The first column of this table indicates the instance under study, and the second,
third, and fourth columns are repeated for each metaheuristic. The first column indicates
the best fitness obtained; the second indicates the average obtained with the 31 independent
runs performed; the third indicates the standard deviation of the 31 runs performed. The
best result per instance is highlighted in bold type.

https://archive.ics.uci.edu/
https://archive.ics.uci.edu/
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Table 3. Configuration of parameters.

Parameter Value

Population size 10
Iterations 100

Independent runs 31
Parameter k of KNN 5
Parameter b of MFO 1
Parameter a of SCA 2

PSA has no parameteris -

Table 4. Fitness obtained.

Instance B-PSA B-SCA B-MFO
best avg std-dev best avg std-dev best avg std-dev

ionosphere 0.034 0.045 0.011 0.034 0.045 0.012 0.024 0.043 0.01
sonar 0.02 0.089 0.021 0.039 0.095 0.023 0.059 0.098 0.016

Immunotherapy 0.09 0.09 0.0 0.09 0.091 0.007 0.09 0.09 0.001
Divorce 0.0 0.025 0.01 0.0 0.021 0.009 0.0 0.014 0.011

wdbc 0.015 0.027 0.008 0.009 0.03 0.007 0.016 0.031 0.007
breast-cancer-wisconsin 0.032 0.033 0.003 0.032 0.033 0.001 0.032 0.032 0.0

In this table, we can see that B-PSA obtains good results compared to the other two
metaheuristics and is even better in the sonar instance. This indicates that our proposal
is competitive.

Additionally, Table 5 shows the f-score obtained for each instance using the three meta-
heuristics under study. The first column of this table indicates the instance under study
and the second. The third and fourth columns are repeated for each metaheuristic. The
first indicates the best f-score obtained; the second indicates the average obtained with the
31 independent runs performed; the third indicates the standard deviation of the 31 runs
performed.

Table 5. F-score obtained.

Instance B-PSA B-SCA B-MFO
best avg std-dev best avg std-dev best avg std-dev

ionosphere 0.971 0.962 0.01 0.971 0.962 0.01 0.98 0.962 0.009
sonar 0.981 0.918 0.019 0.962 0.911 0.022 0.943 0.907 0.015

Immunotherapy 0.95 0.95 0.0 0.95 0.949 0.004 0.95 0.95 0.0
Divorce 1.0 0.974 0.011 1.0 0.978 0.01 1.0 0.985 0.012

wdbc 0.989 0.979 0.006 0.994 0.978 0.006 0.989 0.976 0.006
breast-cancer-wisconsin 0.961 0.96 0.003 0.961 0.961 0.0 0.961 0.961 0.0

In this table, we can see that B-PSA obtains f-score above 95% in all instances. This
indicates that the B-PSA manages to eliminate unnecessary information correctly so that
the KNN can perform a very good classification.

Figure 5 shows the convergence graphs of the best executions performed with the
three metaheuristics used for each of the six solved instances.

From these Figures, we can observe that B-PSA has a fast convergence in four of the six
solved instances, falling in the best value before 50% of the total iterations to be executed
are reached. In particular, it is interesting the behavior obtained in the sonar instance (see
Figure 5b) where B-PSA has a fast convergence to very good results while B-MFO has a
very slow convergence and even very far from the value obtained by B-PSA.

In addition, Figure 6 shows the evolution of the f-score obtained from the best runs
performed with the three metaheuristics used for each of the six solved instances. In the
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figures, we can observe a behavior similar to those obtained in the convergence graphs,
except that for the f-score, we look for a value close to 1 as a good result.
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Figure 6. F-score graph obtained in each instance for each metaheuristic.
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Finally, Figure 7 shows the evolution of the number of features selected by the best
execution of each of the three metaheuristics used for each of the six solved instances. Here,
we can see that in four of the six instances, the behavior is similar except for two, which
are wdbc and sonar. Regarding the wdbc instance (see Figure 7e), we can observe that
B-PSA selects fewer features than the other two metaheuristics, but upon reviewing Table 4,
we can see that B-PSA’s results are very close to those obtained by B-SCA, which is the
metaheuristic that achieves the best results in that instance.

On the other hand, in the sonar instance (see Figure 7b), we can observe that B-PSA is
the metaheuristic that selects more features compared to the others. This is interesting as, de-
spite B-PSA selecting more features, it achieves better results, indicating good performance.
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Figure 7. Total Features Selected graph obtained in each instance for each metaheuristic.

7. Conclusions

The Feature Selection Problem has practical applications in the real world in various
fields such as health, engineering, telecommunications, or marketing. Given this, it is
critical to have highly reliable solutions that deliver high-quality results in reduced time.

In the present work, we demonstrate that the Binary Pendulum Search Algorithm is
competitive in solving the Feature Selection Problem, considering both the fitness obtained
and the f-score metric. With this, we were able to demonstrate how simple it can be to adapt
a continuous metaheuristic to solve binary combinatorial problems. A major advantage of
the Binary Pendulum Search Algorithm over the Binary Sine Cosine Algorithm and Binary
Moth-Flame Optimization is that it has no configurable parameters. This allows a quick
adaptation of the metaheuristic so that it can solve different optimization problems.

However, as indicated by authors in [6], there are different ways to binarize contin-
uous metaheuristics. Such as different transfer functions (U-shaped [36], O-Shaped [37],
X-Shaped [38], Z-Shaped [39], time-varying S-Shaped [40] and time-vatying V-Shaped [41]),
other binarization rules [33], clustering-based binarization techniques [42] or even bina-
rization supported by machine learning techniques such as Q-Learning [43] or SARSA [44].
The No Free Lunch Theorem [45] tells us that there is no algorithm capable of reaching the
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global optimum of all existing optimization problems. Therefore, in future work, another
binarization technique could be implemented in order to validate whether the good per-
formance obtained in the present work is maintained. In addition, our proposal could be
validated with other datasets and even applied to another combinatorial problem, such as
the Set Covering Problem or the Knapsack Problem.
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