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Abstract: DevOps methodology and tools, which provide standardized ways for continuous inte-
gration (CI) and continuous deployment (CD), are invaluable for efficient software development.
Current DevOps solutions, however, lack a useful functionality: they do not support simultaneous
project developments and deployment on the same operating infrastructure (e.g., a cluster of Docker
containers). In this paper, we propose a novel approach to address this shortcoming by defining
a multi-project, multi-environment (MPME) approach. With this approach, a large company can
organize many microservice-based projects operating simultaneously on a common code base, using
self-hosted Kubernetes clusters, which helps developers and businesses to better focus on the product
they are developing, and to reduce efforts on the management of their DevOps infrastructure.

Keywords: DevOps; CI/CD; pipeline; Docker; Kubernetes; Helm; dynamic environment;
microservices

1. Introduction

In the modern era, enterprises and organizations place significant importance on
DevOps [1,2] and continuous integration/continuous delivery [3] (CI/CD) approaches.
These methodologies aim to enhance the agility, productivity, and operational efficiency
of their businesses. Moreover, they seek to establish a reliable software development
ecosystem characterized by swift turnarounds. DevOps facilitates the convergence of
previously isolated roles, including development, IT operations, quality engineering, and
security, fostering collaboration to create products of higher quality and reliability [4]. By
embracing a DevOps mindset with its associated practices and tools, teams will be able
to address customer requirements more effectively, feel confident in the applications they
develop, and speed up the realization of business objectives [5]. The implementation of
CI/CD practices empowers development teams to deploy code changes promptly and
consistently since CI/CD and DevOps share a symbiotic relationship, mutually striving to
facilitate the common goal of expediting and streamlining software development [3,5].

By enhancing agility and flexibility, microservices and containers can be an ideal
complement to the DevOps ecosystem of an enterprise. With DevOps and microservices,
developer teams can create loosely coupled, lightweight, individually deployable services
which are easy to maintain, compile and deploy [6–8]. Containers, which are often used
in software with a microservice-based architecture, also offer platform independence and
interoperability, which align perfectly with the goals of microservice architecture [9]. Each
containerized microservice can be deployed and managed independently without being
affected by services hosted in other containers [10]. Organizations mostly use Docker
containers to package and deploy microservice-based applications because they offer a
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simple way to package the code and push it to the release pipeline, which streamlines the
DevOps workflow.

A key aspect of DevOps is the way it improves the efficiency of development by en-
abling automation. DevOps automation requires the use of a technology that can perform
tasks with reduced human assistance to processes and that facilitates feedback between
the operations team and the development team so that iterative updates can be deployed
faster to the applications in production [11]. Tools like Jenkins [12] can be used to automate
DevOps workflows by enabling continuous integration and continuous delivery (CI/CD),
leading to improved collaboration, minimized manual intervention, and accelerated soft-
ware delivery cycles.

The research presented in this paper was triggered by a technology change experiment
carried out at a large software company that adopted DevOps tools and an agile mindset
at the beginning of 2020 and was gradually heading towards a more advanced level of
DevOps processes. This paper discusses the results of the experiment and the valuable
insights gleaned. In the course of the experiment, most front-end services of the company
were migrated into containerized microservices within Docker-based Kubernetes clusters,
while the company’s core and legal systems were still operating in a traditional way. The
fundamental concepts and basic configurations had already been introduced during the ini-
tial adoption of DevOps practices and containerization technologies. Over time, as DevOps
became more widely used across the company, the number of containerized microser-
vices increased, and new projects are now regularly initiated with DevOps architecture.
However, traditional DevOps solutions encounter limitations when it comes to facilitating
simultaneous development and deployment of microservices within a shared cluster. This
limitation causes delays in product releases, a backlog of projects, and extended delivery
times. It also results in challenges such as identifying the causes of failures, increased
number of errors, decreased efficiency, and hindered collaboration between teams due to
interdependencies, etc. Typically, traditional DevOps workflows involve the establishment
of several predefined environments for the deployment pipeline, including stages like DEV,
SIT, UAT, and production, and developers deploy their changes into designated environ-
ments based on branching. However, this conventional approach imposes restrictions on
the concurrent development and deployment of microservices across various projects and
teams. Therefore, the original DevOps infrastructure encountered the following range
of challenges:

• While it is technically feasible to manually insert steps into the pipeline for each
desired environment using existing DevOps tools, this approach is suboptimal and
inefficient. The reason is that manually expanding the pipeline in this manner results
in an oversized, poorly structured, unorganized, and complex pipeline. Furthermore,
it has adverse effects on the functionality and performance of the pipeline, as well as
on its potential for future optimization.

• Within the context of continuous integration and continuous delivery (CI/CD), au-
tomation plays a pivotal role. Rather than manually adding specific environments
to the pipeline, which creates obstacles that impede the smooth flow of the CI/CD
pipeline, it becomes crucial to automate the environment provisioning process in a
more efficient and advanced manner. Therefore, there is an urge to enhance existing
DevOps and CI/CD automation processes to effectively address complex scenarios.

• To facilitate concurrent development across multiple projects, it was essential to find
a robust solution. It was imperative to establish separate and isolated environments
for each project within a shared Kubernetes cluster to mitigate the risk of conflicts.
Therefore, the proposed solution needed to be dynamic and seamlessly manageable
within the existing DevOps infrastructure.

• To effectively implement the creation process of multiple environments within the
existing DevOps infrastructure, it is crucial to methodically tackle the challenges
related to the integration of various DevOps toolchains. This requires a precise
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definition of requirements and a careful selection of compatible tools to streamline
and optimize the integration process.

• In addition to implementing the MPME approach for simultaneous development, it
is essential to adhere to best practices and stay current with advanced technologies.
In light of this, the company’s existing DevOps implementation required more so-
phisticated deployment solutions, such as Helm deployment. The complex structures
necessitated the incorporation of advanced deployment options.

The main contribution of this paper is the proposal of a new methodology to organize
project artifacts to support the multi-project multi-environment (MPME) approach while
effectively addressing the aforementioned challenges. With this approach, a large company
can organize many microservice-based projects operating simultaneously on a common
code base, using self-hosted Kubernetes clusters, which help developers and businesses
focus on the products they are building instead of managing their DevOps infrastructure.
Our proposal has been implemented and validated in a real-life industrial scenario.

The subsequent sections of this paper are organized in the following way. Section 2 is a
brief overview of the background knowledge on DevOps and containerization technologies.
Section 3 discusses related work. Section 4 outlines our defined problem statement, while
Section 5 expounds on the intricacies of our proposed approach. Section 6 provides the
detailed explanation of our customized Helm chart, and Section 7 discusses the pipeline
optimization for the MPME. The outcomes of our approach are explicated in Section 8,
whereas Section 9 contains the comprehensive conclusions based on our experiment.

2. Background

Modern software development methodologies are distinguished by their frequent and
rapid release of software changes, which facilitate immediate feedback from end users. A
key driver for organizations embracing DevOps and CI/CD methodologies is the demand
for swift, consistent, and automated software delivery immediately after changes have
been committed to the mainline. In the past few years, a wide range of tools catering for
DevOps and CI/CD practices have emerged in the field. The approach expounded in this
paper builds on top of these existing DevOps toolchains. This section concisely outlines
relevant DevOps principles and highlights the key tools associated with containerization
technologies that were used in the experiment showcased by this study.

2.1. Tools for DevOps and CI/CD Practices

A DevOps toolchain identifies the various tools, technologies, and techniques used to
support and enable DevOps practices in software development and delivery. It includes
many tools that enable and simplify various stages of the software development lifecycle
(SDLC), from code development to deployment and operations [13]. Regardless of the
specific DevOps toolchain utilized by an organization, achieving a successful DevOps
process requires the strategic use of suitable tools to effectively tackle the key phases of the
DevOps lifecycle [14]:

• Plan—The initial phase of the DevOps lifecycle focuses on gaining a deep understand-
ing of the project’s requirements to ensure the development of a high-quality product.
It provides essential inputs for the subsequent development and operations phases.
Additionally, this phase helps organizations clarify their project development and
management processes. There are various tools, such as Google Apps, Jira, Conflu-
ence, Slack, etc., available for this purpose; in our case, we used ClickUp for project
planning, tracking, and collaboration.

• Code—In the development phase of the DevOps lifecycle, the project is constructed
by creating the system infrastructure, writing code for features, and establishing
test cases and automation procedures. Developers utilize a remote code repository,
such as GitLab or Git, to facilitate code storage, collaboration, version control, and
management. Development tools like IDEs such as Eclipse and IntelliJ, as well as
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project management tools like Jira, are commonly employed. In our case, we used Git
as the version control system.

• Build—Applications are built by integrating various codes formed in the previous
steps. Frequently utilized tools include Maven, Gradle, Sonatype Nexus, and others.
In our case, we employed Maven for this task.

• Test—This represents a pivotal phase in the application development process. It
involves thoroughly testing the application and, if needed, rebuilding it. We employed
tools like Junit, Maven, and Sonarqube for testing purposes.

• Continuous integration—This phase automates code validation, building, and testing
to verify that changes are implemented correctly and to detect errors at an initial stage.
Tools like Jenkins, CircleCI, and BitBucket are employed for this purpose; we utilized
Jenkins to establish our CI/CD pipeline.

• Deployment—DevOps streamlines the automation of deployment through the utiliza-
tion of tools and scripts, ultimately aiming to automate the process by enabling feature
activation. The code is deployed either in a cloud environment or on an on-premises
cluster. The tools commonly used include Azure, AWS, Docker, Heroku, etc. For us,
we used Docker-based Kubernetes clusters for deployment.

• Operations—This phase involves adapting to changing infrastructure dynamics, which
offers opportunities to enhance availability, scalability, and product transformation.
Some tools commonly used in this phase include Loggly, Chef, Ansible, Kubernetes,
and others. Within our DevOps framework, we employed Kubernetes for container
management and Ansible for automating infrastructure and application deployment.

• Monitor—Monitoring is an ongoing and integral phase within the DevOps method-
ology. Its purpose is to continuously monitor and analyze information to assess the
status of software applications. The most common tools for this phase include Nagios,
Splunk, DataDog etc. We used Prometheus and Grafana for this purpose.

The following key concepts of DevOps and CI/CD practices need to be emphasized,
as they constitute the critical components of our MPME approach.

2.1.1. Version Control

DevOps repos encompass a collection of repositories designed for version control and
comprehensive management of project artifacts [15]. This facilitation plays a pivotal role in
coordinating code modifications across the entire team. In the context of the experiment
outlined in this study, Git [16] served as the designated version control system. Git
enables meticulous oversight of code, solutions, builds, commits, pushes, pull requests, and
branching specifics pertaining to projects. The version control system empowers seamless
tracking of every alteration made by each developer, ensuring secure integration of their
contributions, rigorous testing, and the controlled release of changes into the production
environment [17].

2.1.2. Branching Strategy

A properly implemented branching strategy will be the key to creating an efficient
DevOps process. DevOps is focused on creating a fast, streamlined, and efficient workflow
without compromising the quality of the end product [18]. A branching strategy helps
define how the delivery team functions and how each feature, improvement, or bug fix is
handled. It also reduces the complexity of the delivery pipeline by allowing developers to
focus on developments and deployments only on the relevant branches without affecting
the entire product [17]. The selection process for a branching strategy depends entirely on
the developers and the project requirements.

2.1.3. CI/CD Pipeline

A continuous integration/continuous deployment (CI/CD) pipeline is used to acceler-
ate the software development process through automation. It allows organizations to build,
test and deploy software projects continuously, making it easier for developers to integrate
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changes into the project [19]. Jenkins, which was used in this research, is an open-source
CI/CD pipeline for many combinations of languages and source code repositories. It
integrates development life-cycle processes of various kinds, including build, document, test,
package, stage, deploy, and static analyses [3,12].

2.2. Tools for Containerization
2.2.1. Container Runtime—Docker

Docker containers are isolated applications that are broken into smaller lightweight ex-
ecution environments that contain everything needed to run the code: the runtime, system
tools, and system libraries—anything that can be installed on a server [9,20]. It guarantees
that the software will always run in the same way, regardless of the environments in which
it is developed, or in which it is going to be used in the future [21]. In this study, we used
Docker as our container runtime engine.

2.2.2. Container Management System—Kubernetes

Kubernetes is an open-source container orchestration platform that is used for automat-
ing deployment and securing and scaling the application while managing and orchestrating
containerized workloads and applications [22,23]. Kubernetes supports several container
runtimes including Docker. Within a Kubernetes framework, a cluster comprises multiple
worker nodes, which are tasked with executing containerized applications, with the pri-
mary units of the application workload encapsulated within Pods. These Pods are pivotal
components, utilized by Kubernetes to enhance container management. Conceptually, a
Pod functions as a logical container, encompassing either a single container or a grouping
of closely interrelated containers [24].

2.2.3. Package Manager—Helm

Helm emerges as a highly regarded solution, advocated by industry practitioners, for
the effective packaging and deployment of intricate software applications onto Kubernetes-
powered clusters and platforms [25]. The functionality of Helm revolves around the
deployment of charts where each chart functions as a comprehensive package containing
one or more Kubernetes manifests. A chart can incorporate both child and dependent charts,
allowing for hierarchical structuring. A chart is a collection of versioned, pre-configured
application resources, which should be deployed as a single unit [26].

In practical terms, Helm’s charts streamline the process of managing, deploying, and
maintaining complex applications within Kubernetes environments, offering a comprehen-
sive solution for managing application configuration, dependencies, and updates. This
simplification contributes to enhanced productivity and consistency in deploying software
a top of Kubernetes clusters. In this study, Helm plays one of the key roles in implementing
the MPME approach.

3. Related Work

With the widespread adoption of DevOps methodology, various practical enhance-
ments and solutions have emerged to address the challenges that arise in various scenarios.
Among these challenges, the complexities associated with creating and managing multiple
environments have been solved in several ways. In this paper, we will explore known solu-
tions and emphasize their key insights and components for the establishment of dynamic
environments within a DevOps infrastructure. Here are the key aspects to consider when
implementing multiple environments, as well as potential alternative solutions, including
the integration of third-party tools:

3.1. Task Automation

Automation is at the core of DevOps ecosystems as highlighted in several research
articles and books, including the DevOps automation book by Duffy [27]. Accordingly, any
additional implementations, optimizations, or enhancements within the DevOps workflow
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should prioritize automation. We adopted this core principle to provide the level of
automation and control that were necessary to manage complex dynamic environments.
In this study, we streamlined the automation process and continuous workflow within
the CI/CD pipeline, encompassing the tasks of defining, provisioning, and configuring
environments. This strategic enhancement serves the dual purpose of reducing manual
intervention and minimizing the potential for human errors, thereby ensuring a high level
of consistency.

In their books, Been Henry et al. [28] and Brikman Yevgeniy [29] underline the impor-
tance of establishing comprehensive parameterized infrastructure-as-code (IaC) templates
to allow for easy configuration customization, including instance sizes, network settings,
and database configurations. It is also an effective way to manage multiple environ-
ments. Moreover, one needs to create automation scripts that leverage these templates and
configuration management tools to automate environment creation based on input param-
eters [30,31]. In our case, we introduced parameterization to Helm templates, enabling
the provisioning of multiple environments. Additionally, we developed scripts that were
triggered directly from the CI/CD pipeline to facilitate this process.

3.2. Customizing Helm

Helm is mostly used for deploying and packaging microservices and their associated
components within a Kubernetes cluster. Its primary advantage lies in simplifying deploy-
ment and management tasks, which enhances its adaptability for complex use cases. Many
organizations deal with unique applications, thus requiring the creation of custom Helm
charts. Helm provides robust support for customization through configuration files [32],
and its official documentation [33] offers clear guidance on how to tailor chart templates
and values.

The focus of customization frequently revolves around adjusting values, aiming to
streamline processes and increase flexibility in intricate scenarios [34]. Throughout our
research, Helm also appeared to be a pivotal player in dynamic environment creation [35].
Its customizable hierarchical architecture facilitates the management of multiple environ-
ment configurations while allowing for the utilization of shared libraries for them. The
manner in which one redefines and customizes a Helm chart is contingent upon their
specific objectives, requirements, and the design of their particular implementation.

In our experiment, we incorporated Helm as one of the key components of our
MPME approach. We customized our deployment configurations based on the architecture
outlined in our target MPME framework, utilizing the flexibility and adaptability that Helm
brings to the table.

3.3. Alternative Approach to MPME

One might attempt to address the challenge of simultaneous deployment by employing
a temporary and mechanistic approach. This could involve deploying the same code-based
applications into a single development environment with distinct prefixes or postfixes (e.g.,
change1-login-service, change2-login-service, etc.). This concept resembles Kubernetes’
default deployment strategy, known as ‘Rolling Update’ [36], which manages both old and
new versions of the application simultaneously until the new version is fully operational,
typically by assigning random postfixes [37].

In our experiments, we initially addressed the simultaneous deployment issue using
the same approach as described above. This method involved creating separate Jenkins
jobs and generating every Kubernetes object with specific prefixes for each microservice.
Consequently, the single development environment became cluttered with numerous
overlapping, modified microservices that shared the same code base. This situation led
to confusion and conflicts, making both the environment and the microservices difficult
to oversee and maintain, and created challenges for developers, QA specialists, and even
DevOps engineers, who were required to shoulder extra responsibilities in order to manage
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the disorganized environment. In our practical use cases, this approach proved to be an
unsystematic, complex, and inefficient method.

To overcome these challenges and to establish a more sophisticated, well-designed,
user-friendly, and manageable solution, we introduced the multi-project, multi-environment
(MPME) approach, which is specifically designed to create a dynamic environment for each
active project.

3.4. Integrating Additional Tools

There exist several tools for addressing the strong needs of simultaneous develop-
ment and deployment in the DevOps landscape. Here, we present some of the tools
and provide a short summary of their solutions for creating and maintaining multiple
parallel environments.

A. Qovery [38]—It is an abstraction layer on top of some popular tools (Kubernetes,
Terraform) and cloud service providers. The goal of Qovery is to provide a production-
ready platform layer which will create preview environments for every pull re-
quest. These previews provide early feedback on the application changes before
the changes are merged into production. Qovery currently supports multiple cloud
service providers including AWS, DigitalOcean, Azure, GCP, and Scaleway. If a com-
pany plans to utilize cloud-based infrastructure, Qovery may be a good choice for
managing multiple ephemeral environments throughout the software development
cycle. However, it is important to note that Qovery is not suitable for private or
self-managed DevOps infrastructure setups.

B. Octopus Deploy [39,40]—It simplifies complex deployments and makes it easy to
automate the deployment and operation runbooks from a single place, helping ship
code faster, improve reliability, and break down DevOps silos. Even though Octopus
Deploy can run on all kinds of infrastructure from on-premises to cloud-native, extra
insights and understanding are required for using Octopus Deploy for an existing
infrastructure. Some of the additional concepts, such as target, package, and packaging
standard, can be a bit complicated if one tries to follow the regular ways. Furthermore,
creating additional environments demands meticulous pipeline management, as
Octopus Deploy is primarily tailored for predefined environments rather than the
dynamic creation and administration of multiple environments.

C. Humanitec [41]—It enables platform teams to build internal developer platforms
(IDPs) on top of their existing stack. The additional configuration, pipeline main-
tenance, and the core architecture for environment provisioning in Humanitec are
different from the ones in our approach. For instance, Humanitec employs two core
components, ‘Score’ and the ‘Platform Orchestrator’, which are essential for environ-
ment creation. The Platform Orchestrator serves as the central component, generating
configurations and deploying applications based on Score workload definitions. De-
velopers use Score files to specify resource requirements in a platform-agnostic manner.
The Platform Orchestrator interprets these definitions and provisions the necessary
resources. Score itself consists of two components: the Score Specification, which
outlines how to run a workload and the Score Implementation CLI, which serves as a
conversion tool to generate platform-specific configurations. To integrate Humanitec
into the development pipeline, one needs to configure pipelines with variables and
secrets, set environment variables for new environment configuration in the Platform
Orchestrator, install the score-humanitec binary into their pipeline runner, make a
call to the Humanitec Platform Orchestrator API within the pipeline to create a new
environment, and finally, configure the pipeline to execute the score-humanitec CLI
to initiate the deployment. While this approach introduces additional concepts and
configurations, it can be a valuable choice for organizations open to this extension in
their DevOps toolchain.

D. BunnyShell [42]—It supports on-demand or automatic creation of production, devel-
opment, and staging environments. The process of creating an environment on Bun-
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nyshell requires choosing between two methods: a Helm chart or a docker-compose.
The Helm chart approach on Bunnyshell is conceptually similar to ours, as they em-
ploy a ‘bunnyshell.yaml’ file for environment definition. In contrast, their approach to
docker-compose involves the implementation of environment variables at three levels:
Project, Environment, and Component. These environment variables are inherited
automatically by all applications, services, and databases within the Environment,
which distinguishes it from our approach. BunnyShell offers seamless integration
with Kubernetes clusters from major cloud service providers like AWS, Azure, and
DigitalOcean, in addition to options for private Kubernetes clusters. They provide a
range of solutions for automatic environment creation, including Helm chart, docker-
compose, and terraform. Choosing BunnyShell might be advantageous for companies
seeking a different approach to ephemeral environment provisioning.

E. GitLab CI [43]—It is a robust solution for automating software development and de-
ployment tasks, providing features such as build automation, testing, version control,
and collaboration. However, it has some limitations when it comes to handling multi-
ple environments, especially dynamic ones. The primary challenge lies in maintaining
distinct configurations for each environment, involving the setup of various pipelines,
variables, and secrets. While GitLab CI does support dynamic environments through
‘review apps’, its design primarily focuses on managing individual applications rather
than a collective group. To address this limitation, tools like Qovery and Bunnyshell,
mentioned above, offer integration options with GitLab to simplify the management
of multiple environments. These tools can be particularly valuable if developers find
GitLab’s dynamic environment management too complex for their specific needs. Ulti-
mately, the decision to use GitLab should be based on the company’s preferences and
their intended approach to managing their development and deployment workflows.

Developers have the flexibility to select their approach for addressing challenges
related to simultaneous deployment. However, there is a crucial factor to consider: the
alignment of their choice with their specific requirements. These considerations include
various factors such as the use of a cloud service provider, the willingness to incorporate
additional tools into the existing DevOps toolchain, associated costs, compatibility with
particular frameworks and systems, and the availability of experts for solution design
and implementation. Based on these factors, one can decide to either integrate one of the
tools mentioned above or develop their own customized solution based on core DevOps
principles and best practices.

It is important to recognize that these tools may not be sufficient to address emerging
challenges in various scenarios. In our case, the aforementioned tools were still unsatisfac-
tory to fully address the simultaneous deployment challenges due to compatibility concerns
and the company’s own preferences. Consequently, we designed and implemented our
novel MPME approach, capable of addressing these challenges without the need for third-
party tool integration, all while relying on industry best practices. Our paper provides
a comprehensive explanation of the implementation of the MPME approach, which was
developed to overcome the encountered challenges related to the concurrent deployment
of multiple projects.

4. Problem Statement

Enterprises and organizations frequently manage multiple concurrent business initia-
tives. The simultaneous development of a growing number of microservices and projects
requires more intricate structures within the DevOps framework. Developers from various
teams often collaborate on projects and share workspaces. Therefore, development cycles
must maintain a continuous and iterative flow, supported by DevOps and CI/CD practices,
while bugs and errors must be addressed swiftly [44,45]. In the traditional DevOps infras-
tructure, environments are becoming more complex and with greater fault tolerance. All
developers and QA specialists use environments; however, the limitations on shared envi-
ronments result in only one of them being able to deploy to a pre-production environment
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at any given time. This situation entails waiting or competing for access to environments
when developing and testing new features. Therefore, without proper enhancement or
integration of additional tools, the traditional DevOps is inadequate for supporting simul-
taneous development and deployment of the same code-based application within a shared
environment. This limitation not only creates bottlenecks for ongoing releases but also
might result in a backlog of projects, thus extending the expected product delivery time.
This challenge is further compounded by the difficulty in pinpointing the root causes of
failures, heightened proneness to errors, reduced efficiency, and poor collaboration due to
interdependencies between teams.

To overcome these challenges and improve the landscape of concurrent development
and deployment, several obstacles must be addressed.

• Existing branching strategies and pipeline operations only allow us to deploy an
application into a single environment, and limit our opportunities for simultaneous
development and deployment.

• Well-defined automation is required for environment management to avoid manual la-
bor for operations such as creating an environment and setting up basic configurations
for it.

• The existing CI/CD process relies on static parameters designed for predefined envi-
ronments, including development (DEV), system integration testing (SIT), and user
acceptance testing (UAT). Our aim, however, is to implement a dynamic framework
that can automatically provision and configure multiple environments (multiple DEV
environments and multiple SIT environments) based on the active projects.

• Complex scenarios, like the implementation of the MPME approach for concurrent
development, demand more advanced and meticulously organized deployment solu-
tions. It is crucial to embrace best practices such as Helm for deployment and to stay
current with cutting-edge technologies.

• To establish multiple environments efficiently within the current DevOps infrastruc-
ture, it is essential to methodically tackle the challenges posed by integrating various
DevOps toolchains. This requires a precise definition of requirements and a careful
selection of compatible tools to streamline and optimize the integration processes.

To effectively address the aforementioned obstacles, we have introduced the multi-
project, multi-environment (MPME) approach. This novel methodology is designed to
seamlessly integrate with existing DevOps infrastructures. It supports the automated
on-demand creation of environments, and thus it will be easier to streamline the concurrent
development and testing across a spectrum of projects. With the MPME approach, all the
components that are required to build the dynamic environments come as a service.

5. Multi-Project Multi-Environment Approach

The results presented in this paper were implemented and validated in a real-life indus-
trial scenario. The organization engaged in this project has a workforce of approximately
120 developers. Their operational landscape hosts over a hundred front-end products, all
functioning as microservice-based container components integrated into their DevOps
infrastructure. This operational environment experiences an average of 240 planned and
emergency changes per month. Consequently, the yearly number of changes reaches a sig-
nificant count of over 2800, primarily centered around service improvements and product
developments. Moreover, a noteworthy average of eighty projects is announced annually.
All these dynamics lead to the continual involvement of development teams, engineers,
and QA specialists in parallel and concurrent tasks. They frequently transition from one
project to another due to the sheer volume of project inquiries and ongoing endeavors.
Consequently, the importance of promptly and automatically provisioning environments
in response to active projects becomes notably significant.

We have integrated the MPME approach into the pre-existing DevOps infrastructure to
bolster its capabilities for concurrent development and deployment. Our implementation
involved utilizing a non-production Kubernetes cluster, composed of a single master
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node and ten worker nodes, which were established as an integral part of the automatic
workflow within the DevOps infrastructure. To demonstrate the effectiveness of the MPME
approach, we developed Java-based front-end applications and microservices concurrently,
catering to diverse project requirements. These applications were executed within multiple
environments, which were seamlessly provisioned through the MPME approach on that
Kubernetes cluster. The principles and methodologies detailed in this study were executed
under the following setup.

- Master node: n1-standard-1 (16 vCPU, 32 GB memory)
- Worker nodes: n1-standard-2 (32 vCPUs, 125 GB memory—for each)
- Networking: calico-3.19.1
- Kubernetes Version: 1.21.3
- Docker Version: 20.10.4
- Helm Version: v3.8.0

Our container-based setups rely on Docker and Kubernetes. In the realm of the DevOps
workflow, we employ Git for source code versioning, Maven for project building, JUnit for
testing, Azure DevOps for repository management, and Jenkins as the CI/CD pipeline.

5.1. Architecture in the MPME Approach

The architecture for the multi-project, multi-environment approach allows multiple
development environments and multiple QA environments in a self-hosted Kubernetes
cluster. We have used specific project-based name components in environment names
to distinguish different uses and project teams. The number of the used project-based
name components—and hence the total number of environments—can be set based on
the available infrastructure capacity. Since we use Jenkins as a CI/CD pipeline, each
environment is created automatically using a Jenkins job. The input parameter for this job
is the environment name. This job creates and configures all the resources required for a
new environment. Once created, microservices can be directly deployed to a particular
environment. Figure 1 illustrates the architecture of the MPME approach.

Figure 1. Architecture of the MPME approach.
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In this figure, ‘M(n)’ represents a microservice, ‘Dev(n)’ is an environment used by a
given development team, and ‘SIT(n)’ is an environment assigned to a quality assurance
(QA) team for integration testing. These Dev and SIT environments contain only those
microservices which require a code change. Stable versions of all other microservices can
be found in a separate environment called ‘PA’, which stands for ‘publicly available’. This
stable environment holds the post-production deployments for production-like testing
purposes. Additionally, UAT is a staging environment where the functionality of the
microservices is checked before production deployment. Each of the above environments
can be located in the MPME Docker cluster. In our experiment, we used a separate cluster
for production code. The MPME approach defines how environments for development
and testing shall be created and deleted. Once the development and testing activities
have been completed and the project has been released to production, the environments
will be destroyed by a Jenkins job, which deletes all related resources automatically from
the cluster.

One of the crucial parts of the MPME implementation is the branching strategy, which
is tightly linked to the environment creation process. The feature, develop and master branches
had already been set up for the previously used DevOps infrastructure, and now a release
branch is introduced specifically for the MPME approach, as shown in Figure 2. The
branches [46] and their purposes are as follows.

– The feature branch is utilized in the development of new features involving specific
microservices. Any Jenkins build originating from a feature branch should be directed
into a DEV environment of the cluster.

– Once all changes are finalized within a feature branch, they are merged into the
corresponding develop branch, thus forming the pre-production code.

– The release branch is strategically designated for the upcoming release cycle, exclu-
sively accommodating bug fixes or configuration adjustments. Derived from the
develop branch, these release branches enable the quality assurance (QA) team to
rigorously assess the current release. After confirming its readiness, the release branch
is merged into the master branch and distinctly tagged with a version number.

– The master branch serves as the main branch intended for all the production code.
Once the code in a release branch is ready to be released, the changes are merged with
the master branch and used in the production deployment.

To implement the MPME approach using the Git branching strategy, a name compo-
nent like alpha, beta, gamma, . . . , pi, etc., can be incorporated into the name of a feature
branch. For instance, ‘dev-pi-login-endpoint1’ is a feature branch name for project team
‘pi’. The prefix ‘dev’ indicates that this feature branch must be deployed to one of the devel-
opment environments. The name component ‘pi’ denotes that this feature is designated
for deployment in the ‘dev-pi‘ environment of the cluster. Staying in line with DevOps
best practices to build once and deploy multiple times [47], the build is created from the
RELEASE branch and propagated across till production.

Once developers complete the several development steps of the microservices in a
single project such as ‘login-enhancement’, they will raise a pull request (PR) to merge the
changes to the develop branch. Then, a release branch needs to be created from the develop
branch for the full-cycle test. The release branch name should start with the project prefix
‘pi’, and end with the keyword ‘RELEASE‘, for example: ‘pi-login-enhancement-RELEASE‘.
This release branch can deploy the microservices from the SIT environment to the UAT
environment after the admin approval. We added an approval step before the deployment
of a microservice, so we can prevent incomplete changes from going to the production
or development environment. The environment yaml files within the Helm chart (more
explanation of yaml and Helm is provided in later sections) contain specific configurations
for the environment, like ‘sit-pi.yaml’ for one of the SIT environments, and ‘prod.yaml’ for
the production environment, etc. The same configuration file is used for the creation process
of the environment as well. QA specialists will work on testing when the microservices
are deployed into a ‘SIT’ environment. If the changes pass the testing stage, they can be
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deployed into the production environment after the current release branch is merged into
the master branch. It is important to merge back into the develop branch because critical
updates may have been added to the release branch, and they need to be accessible to
new features.

Figure 2. Workflow in the MPME approach.

The MPME approach furnishes a comprehensive solution for managing diverse dy-
namic environments within the current DevOps ecosystem while fully incorporating the
fundamental principles and workflow of the software development lifecycle in DevOps
and CI/CD practices. Here is a detailed breakdown of how the MPME approach operates
within the context of a DevOps workflow cycle:

1. Initialize Parameters: To create environments for active projects, the first step is
to define crucial parameters. These parameters include the project name, branch
name, environment type (e.g., development, testing, production), and the necessary
configuration values. To implement the MPME approach, it is essential to create a
feature branch that incorporates the project name component, such as ‘dev-pi-login-
enhancement’.

2. Development: The next step focuses on necessary code modifications and develop-
ment activities for the microservice. Developers must monitor vigilantly the changes
in the version control repository, such as Git, where the code is hosted.

3. Creating environment with MPME: Developers need to initiate the build command,
which in turn triggers a Jenkins job to verify the presence of the environment based on
the specified ‘project-naming component’. If the target environment is not found within
the cluster, this job takes over provisioning the necessary resources. This provisioning
encompasses tasks such as configuring networking, security policies, and essential
environment-specific settings. Moreover, the job applies the relevant configuration
values and secrets to ensure the environment is appropriately configured.

4. Deploying microservices: Once the environment has been successfully created, the
workflow advances to deploy microservices within that specific environment. The
MPME approach utilizes either Helm deployment or the traditional kubectl deploy-
ment, depending on the presence of Helm folders. This deployment process ensures
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that microservices are effectively deployed into the newly created environment, com-
plete with the required Kubernetes resources and configurations.

5. Running tests: Once the microservices are up and running, commence an extensive
testing phase to validate the proper functioning of both the environment and mi-
croservices. They evaluate functionality and perform testing of code changes with
client microservices located in the stable environment of MPME. This testing phase
includes a range of test types, such as unit tests, integration tests, and end-to-end tests,
as necessary.

6. Monitoring and Validation: It is essential to maintain continuous monitoring of the
health and performance of microservices within the designated environment. This
includes verifying smooth communication among microservices and ensuring the
overall stability of the environment through ongoing validation.

7. Cleaning up the environment with MPME: Upon successful project completion, or
in alignment with project lifecycle or policy guidelines, developers must trigger an
automated cleanup process. This process, which includes the systematic removal of
the project’s host environment, along with all associated Kubernetes resources and
configurations, is effectively managed through an automated Jenkins job within the
MPME approach.

This concludes our high-level discussion of the main architecture and workflow used
in the MPME approach. The following subsections cover the environment creation process,
the implementation of communication paths within a specific environment, and isolation
of environments.

5.2. Environment Creation Based on Project

In the MPME approach, environment creation is based on the branching model, and
uses a project-based naming convention. For instance, if the developer executes the build
command from the branch named ‘dev-alpha-login-change’, the corresponding ‘dev-alpha’
environment will be generated. Then, the change will be deployed into the newly created
‘dev-alpha’ environment of the MPME cluster. The branches, environment names, and
project-based name components are closely connected in an interdependent way in order
to support the creation of multiple dynamic environments for each project.

For creating environments on a Kubernetes cluster, we introduce an appropriate
section in the deployment script, as seen in Figure 3. It checks the existence of the target
environment in the cluster before any microservice is deployed into it. If the environment
exists, the deployment section of the script will be triggered, and the microservice(s) will
be directly deployed into the target environment.

Figure 3. Environment creation section in deployment bash script.

If the environment does not exist, a Jenkins job called ‘MPME-env’ is used to create it
through a curl request. While the environment is being created, the following configurations
must be set for each environment in order to safely run the privileged microservices.

1. Secrets—These contain sensitive information/data that the microservice needs to run,
such as passwords, tokens for connecting to other pods, and certificate keys. Using
a Secret means that one do not need to include confidential data in the application



Computers 2023, 12, 254 14 of 26

code. Because Secrets can be created independently of the Pods that use them, there is
less risk of the Secret (and its data) being exposed during the workflow of creating,
viewing, and editing Pods [48]. We must provide the following custom secrets for
an environment:

(a) PFX Certificate Files: These files encapsulate certificates, public and private
keys tailored for the microservice;

(b) Java Key Store (JKS) Files: These files contain a collection of encrypted keys
and certificates that ensure the proper operation of the microservice.

2. Configuration service—In the microservice world, managing configurations of each
service separately is a tedious and time-consuming task [49]. Within our Kubernetes
cluster and microservices ecosystem, we have implemented centralized configuration
servers, effectively streamlining the configuration management process. Each microser-
vice is empowered to retrieve their specific configuration from these dedicated servers.
Notably, we have established two distinct configuration servers: one exclusively for
mobile-oriented microservices, and the other catering to web-based ones. Consequently,
the following configuration services are indispensable for each environment:

(a) config-service-1: Tailored to accommodate web-based microservices, this ser-
vice assumes a modified form to align with the MPME approach;

(b) config-service-2: Designed to cater to mobile-based microservices;
(c) Logging configuration: A configuration that governs the logging of the mi-

croservices.

3. Routing external traffic to environments—Upon establishing a designated environ-
ment within the cluster, it becomes imperative to activate and inject Istio [50] into the
environment. This step empowers us to precisely direct external traffic to the intended
Pod or microservice housed within the target environment.

4. RBAC (role-based access control) policy implementation—In the context of establish-
ing multiple environments within a single cluster, the security boundary is defined
by a namespace. A service account [51] has access to only that particular namespace
with restricted RBAC [52] policy. The namespace then represents the environment,
and the limited scope (access control) of the service account prevents modifications of
the Kubernetes resources/objects of any other environment while it allows deploy-
ments only to that specific environment. The service account and RBAC policy will be
automatically applied to the target environment. So, the following three Kubernetes
resources must be created:

(a) A service account—This allows us to manage the deployment of microservices
and their resources on the cluster through a defined role and role binding;

(b) A role—This entity defines permissions within a specific environment. While
creating a role, it is necessary to specify the environment to which it per-
tains [53]; and

(c) A role binding—A role binding grants the permissions defined in a role to a user
or a set of users; it holds a list of subjects (users, groups, or service accounts),
and a reference to the role being granted [53].

When the environment is successfully created through the pipeline, the above ‘must-
have’ configurations will be automatically applied on it, and microservices can go up and
run without any issues. To reduce human interaction with the configuration-related tasks,
a default configuration set is provided, and the pipeline is optimized accordingly.

5.3. Facilitating Communication Paths across the Environments

DEV and SIT environments contain only the microservices that are being developed or
modified in a single unit of work (e.g., the introduction of a new feature). Containers of
those microservices can communicate with each other using the localhost address in the local
environment by default. We need to provide, however, a communication path across the
environment boundaries as well, specifically to the ‘publicly available’ (PA) environment, which
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holds prod-like stable microservices. Therefore, the use of the concept of external domain names
(ExternalName) is proposed (see Figure 4), which is one of the Service types of Kubernetes.

A Service is an object (the same way as a Pod or a Secret is an object) of Kubernetes,
which is a logical abstraction for a deployed group of Pods in a cluster [54]. With a Service,
the application/microservice gets a stable IP address that lasts for the lifetime of the Service
(since otherwise Pods are ephemeral and their IP addresses can change frequently) [55].
Among the five available Service types in Kubernetes, two are of particular relevance to
our case. The first is the ClusterIP (default) type, which enables internal clients to send
requests to a persistent internal IP address. The second, the ExternalName type, is vital
for our purposes. This type allows internal clients to employ the DNS name of a Service
as an alias for an external DNS name [56]. Specifically, the ExternalName service permits
the routing of traffic to an external service without necessitating the definition of selectors,
specific ports, or endpoints [57].

Upon the environment’s creation, an automated Jenkins job integrates “Service” refer-
ences into the microservices of the ‘PA’ environment, as illustrated in Figure 4. However,
when a particular microservice is deployed into the target environment, it is necessary
to remove the corresponding external “Service” reference to prevent potential conflicts
between the local microservices and external ones.

Figure 4. Communication path between MPME and ‘PA’ environment.

To address this, a script (depicted in Figure 5) can be utilized. This script performs
a critical task: it detects the type of the Service and removes the ExternalName service if
present, before the deployment procedure of the microservice starts. This preemptive
action prevents any clash between the local microservices and the external services. This
action facilitates the creation of a ClusterIP service [58] under the name of the deployed
microservice, ensuring smooth local communication within the environment.

As mentioned earlier, our proposal introduces a stable environment labeled ‘PA’
within the MPME cluster. This environment serves as a repository for post-production
deployments, housing the latest stable releases of microservices. The ‘PA’ environment
significantly enhances testing capabilities by providing a platform for comprehensive
end-to-end tests using production-like microservices. Furthermore, this approach con-
tributes to optimizing resource utilization by eliminating the need to deploy essential stable
microservices in every provisioned environment.
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Figure 5. Bash script fragment for removing External Name.

Consider a scenario where microservices are distributed across various DEV environ-
ments within the MPME cluster, as depicted in Figure 6. Each microservice corresponds to
a distinct part of development. For instance, the M1 microservice resides in the “dev-alpha”
environment, while the M2 microservice is deployed in the “dev-beta” environment. If
M1 in the “dev-alpha” environment needs to communicate with M2, but M2 is not present
in the local environment, then M1 must discover the M2 from the stable environment. To
prevent locating M2 from improper environments like the “dev-beta” or “dev-gamma”,
which hold underdeveloped versions of M2, careful measures should be taken to enable
communication only with the stable ‘PA’ environment.

Figure 6. External Name pointing.

To sum up, each environment can house multiple identical microservices originating
from distinct teams and projects, each engaged in diverse developmental activities. When
QA specialists undertake comprehensive testing for a specific microservice, it is imperative
to establish communication with the stable version of the target microservice. This method-
ology greatly diminishes the risk of production deployment failures, unexpected service
interruptions, errors, and ultimately safeguards the quality of the end-user experience.

5.4. Isolating the Environments in a Shared Cluster

The MPME approach ensures isolation and security through containerization, which
involves segregating the microservices into distinct containers within their respective
project-specific development environments. Furthermore, we implement security measures
such as access controls, network segmentation, and encryption in the shared infrastructure
when multiple projects are involved. In containerization technology, environment isolation
is achieved through cgroups and namespaces [59]. The MPME approach aligns with this
same level of environment isolation seen in containerization. Each project operates within
its dedicated environment, represented as a namespace within the Kubernetes cluster. This
stringent isolation ensures that projects remain autonomous and secure within the shared
cluster environment, effectively preventing conflicts and ensuring consistent performance.



Computers 2023, 12, 254 17 of 26

6. Customized Helm Deployment Strategy for MPME

Helm, a Kubernetes package manager, streamlines the deployment and administration
of Kubernetes manifests and applications by enabling the creation of comprehensive pack-
ages that can be seamlessly promoted to the cluster [25]. This tool furnishes a structured
approach to define, install, and upgrade applications within a Kubernetes cluster while
facilitating the management of versioned templates. The core unit of Helm packaging is
called a chart. A chart is a collection of files that describe the Kubernetes resources required
to run an application. It typically includes a set of Kubernetes YAML [60] files for deploy-
ment, services, configuration maps, and other resources [61,62]. Leveraging Go templates,
Helm efficiently generates Kubernetes manifests from the chart’s templates. Templates
allow one to parameterize the deployments and make them configurable and customiz-
able. By using values, one can provide input parameters to the templates, facilitating
customization of deployments to meet specific needs [61].

Implementing MPME introduces inherent complexities, particularly in the autonomous
management of configurations, secrets, access policies, and Kubernetes manifest files for
distinct projects and their respective environments. While Helm can address these chal-
lenges, its potential can be fully utilized through customization. Consequently, we have
introduced a tailored Helm chart that capable of supporting dynamic environment creation.
Each environment can have its own set of configuration values, and the deployment tem-
plates will select the appropriate values for a particular environment. This allows us to
easily manage multiple environments with different configurations using a single Helm
chart. We redesigned the hierarchical structure in which Helm stores the configuration
values, with a microservice at the top, and the various environments organized below. This
structure is illustrated in Figure 7. The project repository of a microservice may contain
a Helm chart folder, and a K8S folder within it; in such a case, the microservice can be
deployed into a Kubernetes cluster through Helm deployment.

Figure 7. Customized hierarchical structure of Helm for MPME approach.

Values files are crucial for Helm’s install/upgrade commands [63]. To minimize
redundancy and the need to make changes in the values at multiple places, we split the
values file into levels: we place a values file at the root level, and we provide environment-
specific values at the environment level, such as in values/prod.yaml. Ports and probes
that are common to all environments should be specified at the root level. Entries with
default values can also be provided here, and possibly be overridden in the environment-
specific values files. This hierarchical approach ensures consistency while allowing for
environment-specific configurations.

Figure 8 shows the basic commands for Helm deployment. These can be run with a
hard-coded path to the environment configuration file.
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Figure 8. Helm deployment command of the DEV environment.

To enhance the flexibility and adaptability of the workflow, it is imperative to eliminate
any hard-coded paths and fixed parameters. As a solution, we propose a more versatile
Helm deployment command, illustrated in Figure 9, that harmonizes with the dynamic
nature of the MPME approach.

Our proposed customization to Helm introduces the capability of deploying a microser-
vice across various environments with distinct versions and configurations, all achieved
through a single build command within the CI/CD pipeline. This advancement reduces the
necessity for manual command execution for each microservice configuration, streamlining
the process. Moreover, in cases where a microservice necessitates interaction with persistent
storage for data reading or writing, additional enhancement can be effortlessly implemented.
This enhancement entails extending the configuration of the Helm chart to encompass the cre-
ation of a persistent volume (PV), a storage resource within the Kubernetes cluster [64], as well
as a persistent volume claim (PVC), representing a storage request from a user or service [65,66].
Additionally, the Helm chart can be configured to automatically mount the PV as required.

Figure 9. More flexible command for Helm deployment.

To support the MPME approach (including the automatic creation of PV and PVC,
and the deployment of microservices with various configurations, etc.), changes have
been proposed in Helm charts, and integration within the pipeline has been worked out.
Furthermore, the configurability of the pipeline has been considered to allow for the choice
between utilizing Helm install or kubectl install.

7. Pipeline Optimization

DevOps and CI/CD practices allow companies to develop software faster and to make
it deployable for production in a short time frame [67]. The CI/CD approach involves a
series of stages. Commencing with a product request and a comprehensive plan, the subse-
quent phases involve coding, building, and subjecting the product to testing [5,68]. When
testing is completed, the system will switch from continuous integration to continuous
deployment. This starts with the specification of the release, followed by deployment, and
then operation—with monitoring the application continuously [69]. This entire sequence is
cyclically repeated through the CI/CD pipeline.

The CI/CD pipeline is a series of automated steps for delivering a new version of the
software [70]. It is focused on improving software delivery by automating the software
development lifecycle. Pipelines are composed of stages, which are composed of steps
(commands) to be run in sequence. The stages of a pipeline are built according to some
given rules, which depend on the current workflow. Some are run in parallel, while others
are run in a sequential order.

Figure 10 shows the general steps of a CI/CD pipeline:

• A clone step that fetches the code from Git when a commit is pushed.
• A test step in which smoke, unit, and integration tests are executed.
• A build step that creates a docker image and pushes it into a private registry.
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• A deploy step that deploys to production if the branch is “master”. If the branch is
not “master”, then it deploys to a pre-production environment such as “DEV”,“SIT”,
or “UAT”.

Figure 10. Workflowof CI/CD pipeline in the MPME approach.

The environment lifecycle in the MPME approach should also be managed through the
pipeline. A defined set of operations will be run for every action which can be performed
on an environment, such as:

• Deploying an environment;
• Destroying an environment;
• Starting an environment;
• Configuring an environment.

To facilitate these actions, we propose an extension to the CI/CD pipeline with the
following key functionalities, which have proven instrumental in the successful implemen-
tation of the MPME approach:

1. Integration—The branch-naming strategy of the MPME approach should be seam-
lessly integrated into the pipeline operations. This integration ensures the creation of
environments without any naming conflicts, thereby enabling unified and easy-to-
parameterize access across the pipeline.

2. Creation of MPME environments—A dedicated job (e.g., Jenkins job) has been defined
exclusively for environment creation. This job will be automatically triggered by the
CI/CD pipeline, which allows us to apply the required configuration, bind Kubernetes
resources, and provisioning of default secrets within the environment.

3. Workflow Segregation—To maintain pipeline clarity and prevent unwieldy complexity,
a dedicated workflow should be established for Helm deployment. This approach
ensures that the pipeline remains organized and manageable, even as deployment
processes evolve.

4. Modifications—The CI/CD pipeline should be adapted to accommodate specific
scenarios, such as the multi-version deployment of a microservice with different
configurations, as well as options for the deployment using Helm or kubectl, and
so on. We have provided a script that determines the number of versions requiring
deployment for each specific case.

5. Automatic Deletion—As part of resource optimization, the MPME approach integrates
an automated mechanism for environment cleanup and removal. Upon the successful
completion of a project, the related environments and branches are automatically



Computers 2023, 12, 254 20 of 26

eradicated. This process involves the comprehensive purging of associated Kubernetes
objects, ensuring the systematic removal of the environment from the cluster.

By incorporating these enhancements, the CI/CD pipeline can seamlessly support the
robust functionalities and requirements of the MPME approach.

8. Results and Discussion

We have introduced the MPME approach as an augmentation to the existing DevOps
infrastructure because it offers a solution that enables seamless concurrent deployment of
microservices across various teams and projects, eliminating unnecessary delays between
stages. Within the MPME approach, simultaneous code changes and end-to-end tests
are fully independent for each project, fostering a more confident and expedited path to
production-ready releases.

In the context of the MPME approach, we have introduced the following fundamental
concepts for the implementation phases:

• Automated Environment Provisioning: To streamline the creation of environments
within the existing DevOps infrastructure, we proposed project-based name compo-
nents for the MPME approach. This concept integrates project-naming components
into the branching strategy within the CI/CD pipeline. It helps to enable the automatic
creation of multiple development and testing environments simultaneously for each
project within a shared cluster.

• Efficient Resource Allocation: To optimize resource allocation across multiple projects
and microservices, we have proposed the concept of a stable environment called
‘PA’. This environment holds the latest post-production releases of the microservices.
Rather than each project maintaining its own set of client microservices for testing
purposes, a centralized stable ‘PA’ environment serves as a comprehensive repository.
This stable environment enhances resource efficiency by eliminating the necessity to
run multiple client microservices within each development environment.

• Enabling Communication Path: To establish a communication path between the
stable environment (PA) and other development environments, we have adopted the
Kubernetes concept of “ExternalName” service. This allows smooth communication
between environments, promoting efficient intercommunication and testing.

• Customized Helm Deployment: To mitigate the complexities associated with man-
aging and provisioning multiple environments, we introduce a customized Helm
chart for the MPME approach. This custom Helm is designed to seamlessly align
with our objective of enabling dynamic environment provisioning and configuration.
Our refinement of Helm charts involves storing configuration values at two different
levels, thus supporting the creation of multiple environments without the need for
redundant adjustments to configuration values in multiple places. When a project
includes a Helm chart folder, Helm is utilized for packaging, deploying, and managing
microservices and Kubernetes resources.

• Streamlining CI/CD Pipeline: Throughout the implementation phase of the MPME
approach, we ensured the incorporation and refinement of the CI/CD pipeline in
alignment with the principles outlined above. This extensive work was focused on
optimizing the pipeline to effectively manage the dynamic processes of multiple
environments such as their creation, configuration, and decommissioning.

The MPME approach has provided simultaneous development and parallel testing
opportunities, as demonstrated in Table 1. This allows multiple deployments of microser-
vices with the same codebase into a single cluster, a capability that was not feasible within
the confines of the traditional DevOps infrastructures.
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Table 1. Comparison between the MPME approach and the traditional approach.

Traditional Approach MPME Approach

Environment isolation Yes Yes

Simultaneous deployment to
single cluster No Yes

Availability for parallel testing No Yes

Process automation Yes Yes

Real-time monitoring Yes Yes

Automated environment
creation and configuration No Yes

Integration with existing
DevOps tools Yes Yes

8.1. Performance Evaluation

The MPME approach can operate in a fully automatic manner in alignment with the
continuous nature of DevOps. Therefore, developers do not need to manually manage
Dockerfile or Kubernetes manifest files, which enables them to focus more on development
tasks. Moreover, the performance of the management of the environment lifecycle is
significantly improved with the MPME approach, as discovered in our observation-based
measurements. We gathered data from eight DevOps engineers who manually created and
configured environments, and then we compared the average time spent on these activities
to that of the automatic creation and configuration of environments in the MPME approach.

8.1.1. Measurement on Environment Management

The bar chart in Figure 11 illustrates the comparative time taken for environment
creation with essential configurations under two scenarios: the MPME approach and the
traditional approach. As seen on the chart, environment creation in the MPME approach
takes around 58 s, while using the traditional approach, it takes 4.7 times more (270 s). If
the default configurations of the microservices are manually set in the environment, the
process will require around 8 min. In contrast, using the MPME approach, we were able
to cut that time down to 1.5 min on average. Moreover, the complete startup time of the
environment with MPME stands at approximately 4 min, which is a remarkable reduction
of 3.5 times in comparison to the traditional approach.

Figure 11. Measured time for the environment management.
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8.1.2. Resource Consumption

In this subsection, we focus on the resource utilization of both approaches within a
computing environment. The primary objective of this analysis is to evaluate the impact of
each approach on memory and CPU utilization.

In the traditional approach, resource allocations are determined based on the average
number of microservices required to execute a full-cycle test for developed microservices.
According to the experimental data of the company participating in our research, each
development environment typically required 12 client microservices to support the testing
process for code-changed microservices within that environment. Therefore, our calcula-
tions are based on the current number of concurrent environments and the average number
of the required client microservices, along with their respective resource consumption. In
this context, the minimum memory allocation per microservice is currently set at 300 MB,
while CPU allocation stands at 0.1 core.

By contrast, the MPME approach introduces the concept of a stable environment
designed specifically for full-cycle testing. This stable environment serves as a dedicated
repository for post-production deployments, housing the latest stable releases of microser-
vices. As a result, it helps to eliminate the need for excessive resource allocation for multiple
overlapping instances of running microservices in various development environments.

The advantages of the MPME approach become apparent when examining resource
utilization, as it significantly reduces resource consumption by a factor of 24 in comparison
to the traditional approach. To be precise, memory utilization decreases to 3600 MB, a
substantial reduction from that of the traditional approach, 86,400 MB. Additionally, CPU
utilization is streamlined to 1.2 cores, a significant decrease from the 28.8 cores of the
traditional approach. The stable environment within the MPME approach offers efficient
resource management in both memory and CPU utilization, making it an ideal choice for
clusters with limited capacity, especially in resource-constrained shared environments.

8.2. Scalability of Multi-Environments and Applications

In the MPME approach, the scalability of environments, both in terms of scaling up
and down, relies on the availability of cluster resources. Our current implementation of the
MPME approach can efficiently support up to 24 concurrent environments, accommodating
the company’s cluster capacity and ongoing project activities. However, this scalability is
not fixed and can be dynamically adjusted to accommodate more concurrent environments
if additional cluster capacity becomes available.

To address the scalability of application instances within these environments, we
have adopted an autoscaling strategy [71]. We defined specific CPU utilization thresholds
for each microservice by leveraging Kubernetes’ horizontal autoscaler [72]. When a mi-
croservice experiences a significant increase in load, the horizontal autoscaler automatically
increases the number of instances by up to three, as required. This ensures that the microser-
vices will be able to smoothly adjust to fluctuating workloads and resource requirements.

8.3. Practical Implementation Challenges

When considering the adoption of the MPME approach, certain challenges may arise.
These challenges may require the adaptation of the already existing processes, an efficient
orchestration of resource allocation, potential performance overhead associated with container-
ization, the complexity of managing multiple project requirements, and ensuring compatibility
with the already existing tools. To address these challenges effectively and mitigate potential
issues, strategies such as automated scaling, performance tuning, comprehensive monitoring,
well-defined requirements, and a gradual adoption can be implemented.

Furthermore, the increased number of application containers and the associated Ku-
bernetes resources, especially numerous ExternalName service objects, can have a notable
impact on the management pods at the core of the cluster. In our experience, the perfor-
mance issues encountered were related to service discovery and DNS management due
to the proliferation of ExternalName service objects for each environment. Initially, this
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led to occasional malfunctions in the CoreDNS [73] pod. Over time, as the project activity
increased, this issue escalated, causing the CoreDNS pod to frequently crash and restart
due to out-of-memory issues. The pod struggled to handle the high volume of DNS queries
with its initial resource allocation.

To address this challenge, we undertook performance-tuning measures. We carefully
calculated the required resources and substantially increased the resource allocation for the
CoreDNS pod. Additionally, we scaled up the number of CoreDNS pods to five, distributed
across the five worker nodes. Moreover, we implemented a strategy to mitigate the load
of constant DNS search queries by defining search sequences for DNS queries. A detailed
description of this implementation can be found in our recent research paper [74].

It is vital to address potential resource challenges in the cluster resulting from the
growing number of applications in multiple environments. We strongly advise defining
and assigning the optimal amount of resources for each microservice based on its spe-
cific requirements. In this way, we can avoid the allocation of excessive or unnecessary
resources, as well as steering clear of relying solely on bare minimum or default resource
settings. Over-allocating resources can monopolize cluster capacity with underutilized
tasks, whereas under-allocating resources may result in component instability and fre-
quent failures. Achieving the optimal balance and allocating resources according to each
microservice’s needs are critical for enhancing cluster performance and resource utilization.

9. Conclusions

As the DevOps and CI/CD practices become increasingly prevalent, a multitude of
practical improvements and solutions have already emerged to tackle the challenges that
arise in various scenarios. This paper proposed the MPME approach, which is designed to
handle multiple dynamic environments for the simultaneous deployment of microservices
in various and potentially overlapping projects in a single cluster. We have used wide-
spread and popular DevOps tools and containerization technologies to carry out our
experiment, but the approach is general enough to accommodate to various circumstances.
Besides effectively eradicating bottlenecks within the software development cycle, the
MPME approach simplifies and automates the intricate process of creating and managing
numerous environments within a self-managed private DevOps infrastructure.

To facilitate the implementation of the MPME approach, we introduced a project-
naming component. This component plays a pivotal role in enabling the creation of
dynamic environments to support multiple concurrent project activities. It seamlessly
integrates into the entire DevOps workflow, encompassing project initiation, branching
strategies, version control systems, repositories, and the CI/CD pipeline workflow.

Another noteworthy aspect of our MPME approach is the establishment of a stable
environment that consistently hosts the latest releases of the post-production microservices
for comprehensive cycle testing. This innovative concept has not only helped us to save
cluster resources, but has also paved the way for the development of high-quality produc-
tion applications. Furthermore, our customized Helm chart streamlines the implementation
process, rendering it more efficient, smooth, and well-organized.
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