
Citation: Lee, Y.; Youn, J.; Nam, K.;

Oh, H.; Paek, Y. Optimizing

Hardware Resource Utilization for

Accelerating the NTRU-KEM

Algorithm. Computers 2023, 12, 259.

https://doi.org/10.3390/

computers12120259

Academic Editors: Osvaldo Gervasi

and Damiano Perri

Received: 15 November 2023

Revised: 5 December 2023

Accepted: 7 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Optimizing Hardware Resource Utilization for Accelerating the
NTRU-KEM Algorithm †

Yongseok Lee 1,‡ , Jonghee Youn 2,‡ , Kevin Nam 1 , Hyunyoung Oh 3,* and Yunheung Paek 1,*

1 Department of Electrical and Computer Engineering and Inter-University Semiconductor Research Center,
Seoul National University, Seoul 08826, Republic of Korea; yslee@sor.snu.ac.kr (Y.L.);
kvnam@sor.snu.ac.kr (K.N.)

2 Department of Computer Engineering, Yeungnam University, Gyeongsan-si 38541,
Republic of Korea; youn@yu.ac.kr

3 Department of AI·Software, Gachon University, Seongnam-si 13120, Republic of Korea
* Correspondence: hyoh@gachon.ac.kr (H.O.); ypaek@snu.ac.kr (Y.P.)
† This paper is an extended version of our paper published in ICCSA 2023: Proceedings of the 24th

International Conference on Computational Science and Its Applications, 1–4 July 2023.
‡ These authors contributed equally to this work.

Abstract: This paper focuses on enhancing the performance of the Nth-degree truncated-polynomial
ring units key encapsulation mechanism (NTRU-KEM) algorithm, which ensures post-quantum
resistance in the field of key establishment cryptography. The NTRU-KEM, while robust, suffers
from increased storage and computational demands compared to classical cryptography, leading
to significant memory and performance overheads. In environments with limited resources, the
negative impacts of these overheads are more noticeable, leading researchers to investigate ways
to speed up processes while also ensuring they are efficient in terms of area utilization. To address
this, our research carefully examines the detailed functions of the NTRU-KEM algorithm, adopting a
software/hardware co-design approach. This approach allows for customized computation, adapting
to the varying requirements of operational timings and iterations. The key contribution is the
development of a novel hardware acceleration technique focused on optimizing bus utilization. This
technique enables parallel processing of multiple sub-functions, enhancing the overall efficiency of
the system. Furthermore, we introduce a unique integrated register array that significantly reduces
the spatial footprint of the design by merging multiple registers within the accelerator. In experiments
conducted, the results of our work were found to be remarkable, with a time-area efficiency achieved
that surpasses previous work by an average of 25.37 times. This achievement underscores the
effectiveness of our optimization in accelerating the NTRU-KEM algorithm.

Keywords: post-quantum security; NTRU; key encapsulation mechanism; hardware architecture;
ASIC

1. Introduction

The advent of quantum computing marks a revolutionary leap in computational tech-
nology, characterized by its ability to perform complex calculations at speeds unattainable
by classical computers. This breakthrough is driven by the principles of quantum mechan-
ics, enabling quantum computers to process vast amounts of data simultaneously and solve
problems that are currently intractable for traditional computing systems [1]. Despite its
promising advancements, quantum computing poses significant security risks, particularly
to traditional cryptographic systems used in classical computing, as illustrated by past
research revealing susceptibilities in classical key establishment methods when faced with
quantum computing [2]. In response to these challenges, a new wave of algorithms, known
as post-quantum cryptography (PQC), has been developed as a countermeasure to with-
stand cryptoanalytic attacks facilitated by quantum computing [3–5]. These algorithms

Computers 2023, 12, 259. https://doi.org/10.3390/computers12120259 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12120259
https://doi.org/10.3390/computers12120259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-9717-620X
https://orcid.org/0000-0001-7408-3804
https://orcid.org/0000-0002-4621-2434
https://orcid.org/0000-0001-5123-4921
https://orcid.org/0000-0002-6412-2926
https://doi.org/10.3390/computers12120259
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12120259?type=check_update&version=1

Computers 2023, 12, 259 2 of 14

are designed to provide security in the age of quantum computing. Among the array of
PQC algorithms tailored for key establishments [6], the Nth-degree truncated-polynomial
ring units (NTRU) [7] approach has emerged as an especially promising cryptosystem.
Impressively, since its inception in 1996, NTRU has demonstrated resilience and remains
uncompromised. Diverging from classical key establishment algorithms [8,9], NTRU em-
ploys a key encapsulation mechanism (KEM). This mechanism utilizes an asymmetric key
to encrypt a symmetric key, such as a session key, establishing a secure communication
channel. This strategy aligns with the overarching objective of ensuring security in the
realm of quantum computing, positioning NTRU as a robust solution within the domain of
post-quantum cryptography.

However, like other PQC algorithms, NTRU-KEM requires increased storage space
and computation resources compared to classical cryptosystems, resulting in substantial
memory and performance overheads [10–12]. To address these overheads, researchers
have focused on enhancing the efficiency of the NTRU-KEM algorithm, particularly in
encapsulation and decapsulation functions [13–15]. Previous studies exclude the third
function, key generation (KEYGEN), proposing that keys can be generated in advance and
stored for repeated use. While this approach limits NTRU-KEM to a long-term key scenario,
previous research relying on software for KEYGEN in a session-key context has led to a
significant increase in latency.

Our approach differs, aiming to implement an efficient NTRU-KEM algorithm with full
functionality, including KEYGEN. We adopt a hardware and software co-design methodol-
ogy, a well-established platform for PQC algorithm accelerators [16,17], proven effective in
addressing challenges associated with NTRU-KEM. This approach combines the strengths
of both hardware and software components. Our implementation strategy aims to acceler-
ate repetitive and parallelizable operations through hardware, focusing on increasing the
utilization of limited hardware resources. Functions with high inherent parallelism and
significant execution time are implemented in hardware, utilizing available resources for
substantial performance gains. In contrast, functions with no repetitions or minor execution
time are implemented in software to avoid unnecessary hardware resource allocation.

In our previous work [18], we concentrated on operating the NTRU-KEM functions
using as few hardware resources as possible. However, this approach led to relatively high
latencies, limiting the performance efficiency in terms of area. We also observed that during
approximately 55% of the NTRU-KEM function’s processing time, hardware components
like the bus interface were idle. To improve this, we explored in a more in-depth way the
data dependencies between the various sub-functions, identifying opportunities for greater
parallelism. This led to the development of a new scheduling technique that maximizes the
use of hardware resources, including bus interfaces and ALUs. Our approach allows for
different ALU operations, such as addition and multiplication, to be executed concurrently.
However, running these operations simultaneously necessitates an increase in the number
of registers to prevent data overwriting. To address this without significantly increasing
the hardware size, we designed an integrated register array that can be efficiently reused
throughout NTRU-KEM processes. The specifics of this implementation are detailed in
Section 4.

Our implementation is designed to run on 45 nm process technology at a 1 GHz clock
frequency for the hardware components, and a CPU (i5-8550) operating at 2.5 GHz for
the software components. In our experimental comparisons, our implementation demon-
strates higher efficiency in hardware resource usage compared to previous studies that
implemented only the encapsulation and decapsulation functions, leaving out KEYGEN.
We achieved this by optimizing the utilization of a smaller area, resulting in an improved
performance ranging from 1.82 to 51.38 times greater per area.

A list of the contributions of this work is provided below:

• Efficient full-functionality implementation: Unlike previous studies that focused
only on encapsulation and decapsulation functions, this work aims to efficiently

Computers 2023, 12, 259 3 of 14

implement the entire NTRU-KEM algorithm, including the key generation (KEYGEN)
function, using a hardware and software co-design methodology.

• Optimized use of hardware resources: Our work addresses the challenge of high
latencies and underutilized hardware resources (like bus interfaces) observed in
previous work [18]. Our approach achieves this by developing a new scheduling
technique that maximizes hardware resource usage, particularly for cross-functional
operations that can be executed in parallel.

• Minimized area for registers: To run concurrent operations without data overwriting,
we design an integrated register array. This design allows for efficient reuse of registers
throughout NTRU-KEM processes, minimizing hardware size while maintaining
performance.

• Enhanced performance efficiency: Our implementation demonstrates a significant
improvement in hardware resource efficiency, showing a performance increase of 1.82
to 51.38 times per area compared to previous work.

2. Background

This section provides a brief introduction to the fundamentals of the NTRU-KEM
algorithm, as well as lattice-based cryptography as the theoretical basis of NTRU.

2.1. Lattice-Based Cryptography

Lattice-based cryptography refers to a cryptosystem constructed over mathemati-
cal grounds that involves lattices in the security proof. It is currently widely used for
PQC and other cryptosystems, including NTRU. A lattice L(B) in an n-th dimension
refers to the end-points of vectors that can be formed by linear combinations of a given
basis B = (b1, b2, . . . , bn). The security guarantees of cryptosystems over the lattice are
bound to hardness based on problems such as the shortest vector problem or the closest
vector problem.

In several cryptosystems, such n-th dimension vectors are interpreted as polynomials
bound in integer rings. Lattice-based encryption schemes are constructed by adding
a random lattice point to a plaintext vector and the resulting ciphertext is sent to the
receiver, who decrypts it using their private key to find the lattice point closest to the
ciphertext. Lattice-based cryptography is resistant to quantum attacks due to the hardness
of the underlying problems, even for quantum computers, which makes it superior to
other public-key cryptosystems. Furthermore, the efficiency properties of lattice-based
cryptographic schemes make them suitable for resource-constrained environments like the
Internet of Things (IoT).

2.2. NTRU Cryptosystem

NTRU is a latticed-based public-key cryptosystem that was first introduced in 1996 [7].
The NTRU cryptosystem is based on operations between polynomials over integer quotient
rings Rq = Zq[x]/(xn − 1), Sq = Zq[x]/Φn, and Sp = Zp[x]/Φn, where n and p are prime
integers and q is coprime with both p and n while p << q, Φ1 = x − 1 ∈ Z[x] and
Φn = xn−1 + xn−2 + · · · + x + 1 ∈ Z[x]. The coefficients of Rq and Sq are encoded in
two’s complement modulo q. The existing variants of NTRU [7] use p = 3, which leads
rings and polynomials to have coefficients using 2 bits, −1, 0, or 1. Let Γ be the set of
ternary polynomials in Z3[x]/(xn − 1) with at most n− 2 degrees of order. The NTRU
cryptosystem samples four polynomials, f , g, r, and m from Γ, which are used as will be
described in Section 2.3.

2.3. NTRU-KEM Algorithm

NTRU-KEM consists of three functions, KEYGEN, encapsulation, and decapsulation.
KEYGEN generates a key pair Kpriv = (f , fp, hq) and Kpub = h. The process starts by sampling
the four polynomials and then computing fp = f−1 mod(3, Φn) and fq = f−1 mod (q, Φn).
The public key h is a polynomial in Rq calculated from h = (3 · g · fq) mod (q, xn − 1). The

Computers 2023, 12, 259 4 of 14

last component of the private key, hq, is a precomputed polynomial hq = h−1 mod (q, Φn).
Using the polynomials above, encapsulation and decapsulation are computed as depicted
in Figure 1.

KeyGen(seed) Encapsulate(h) Decapsulate((f, fp, hq, s), h)
1. ((f, fp, hq), h)← KeyGen′(seed) 1. coins←${0, 1}256 1. (r, m, fail)← Decrypt((f, fp, hq), c)
2. s←${0, 1}256 2. (r, m)← Sample_rm(coins) 2. k1 ← H1(r, m)
3. return ((f, fp, hq, s), c) 3. c← Encrypt(h, (r, m)) 3. k2 ← H2(s, c)

4. k← H1(r, m) 4. if f ail = 0 return k1
5. return (c, k) 5. else return k2

Figure 1. The three functions of NTRU-KEM.

Table 1 depicts the four parameter sets considered as standards for NTRU. The HPS
and HRSS parameters show small difference in the preprocessing of the algorithm (e.g.,
sorting the seed data before the start of the KEM function itself). All parameters have
distinct polynomial degree N and modulus prime q. Accordingly, they have different
security strengths and computational complexity, for which reason users should choose
parameters with care, according to their need.

Table 1. Parameter sets of NTRU-KEM.

Parameter
NTRU Variant

HPS2048509 HPS2048677 HPS4096821 HRSS701

N 509 677 821 701
q 2048 2048 4096 8192

3. Design Overview

Our work focuses on designing a single ASIC accelerator for a generic purpose—to be
able to compute all four parameters in Table 1. We focused on an area of the ASIC design
and maximizing the utilization. This approach aligns with the goal stated in our paper,
which is to maximize the area efficiency. This design allows for efficient implementation
without the need to aggregate separate hardware modules designated for each parameter
set to support each function, such as KEYGEN, encapsulation and decapsulation in Figure 1.
Our hardware design methodology focuses on area efficiency and hardware utilization,
including the memory bus and ALU.

Figure 2 illustrates the design overview of our hardware implementation. At the
center of our hardware setup, we have two ALUs responsible for executing arithmetic
operations, and finite state machine (FSM) modules that manage and orchestrate the
ALUs to perform the NTRU-KEM functions. Communication between these components
is facilitated through a 64-bit bus interface, which transmits control and data signals.
Specifically, each ALU is equipped with 64 instances of both multipliers and adders,
handling 16-bit integers for input and output data types. The bus interface serves as a
crucial path for all data that needs to be read or written. In addition to this, our design
includes a general purpose register array with 56 entries, used for storing intermediate
values during the execution of various sub-functions. These register entries are directly and
in parallel connected to the ALUs to enable simultaneous computing. A key aspect of our
design is the balanced allocation of resources across each module, ensuring an optimized
trade-off between the area and performance. The specifics of this resource allocation are
detailed in subsequent sections.

Computers 2023, 12, 259 5 of 14

CPU

Internal Memory

Host I/F

poly_mul

FSM

poly_inv

crypto_sort_int32

2B_conversion

General Purpose Register Array

B
u
s In

terface

Adder

Array

Mult

Array

1-ALU (Arithmetic Unit)

Adder

Array

Mult

Array

1-ALU (Arithmetic Unit)

Figure 2. Overview of our hardware implementation.

4. Implementation

This section presents the details of our accelerator and the design of the modules. Our
architecture targets a hardware and software co-design, emphasizing area-efficient hard-
ware design. First, we profiled the sub-functions to select the portions to be implemented as
dedicated hardware modules. In other words, we selected heavy tasks to be implemented
as dedicated hardware and let small tasks be implemented as the software part. As such,
we designed four separate FSM modules, each dedicated to a specific sub-function: poly-
nomial multiplication (poly_*_mul), polynomial inversion (poly_*_inv), integer sorting
(crypto_sort_int32), and binary conversion (2B_conversion). These FSMs were designed
based on their respective common arithmetic patterns. poly_*_mul includes poly_Rq_mul,
poly_S3_mul, poly_Sq_mul, and poly_R2_inv_to_Rq_inv sub-functions for polynomial
multiplication with specific ring modulus. And poly_*_inv includes poly_R2_inv and
poly_S3_inv sub-functions for polynomial inverse operation. This approach is similar to
our previous work [18]. However, we observed that while our previous work was efficient
in terms of area, its use of resources was not optimal. This was due to uneven allocation
of resources, leading to time-related bottlenecks. For example, the bus bandwidth was
underutilized, using less than half of its capacity when the ALU was busy, which negatively
affected the overall performance and efficiency. To address such issues, we adopt a different
approach that aims to maximize resource utilization while still maintaining the design’s
compact area efficiency.

4.1. FSM-Oriented Hardware Design

As implied by its name, poly_Rq_mul includes multiplications between polynomials
on a ring Rq. To ease the complexity of the multiplications, conventional methods employ
fast Fourier transform (FFT) or number theoretic transform (NTT) [19–25]. However, NTRU
does not use such operations for two major reasons. First, the quotient rings used in
NTRU exhibit properties that are not directly supportive of FFT/NTT, as such approaches
demand polynomials to have degrees of power of two [26,27]. However, NTRU variants
use polynomials with degrees that are prime numbers, thus not powers of two. Previous
research [28] extends the polynomials to higher degrees of powers of two but results in
more computation than the naive multiplications. The second reason is that the predefined
modulus used in NTRU is rather simple and can be efficiently computed using specialized
operation sequences. For instance, NTRU frequently uses the modulo 3, which only uses 1,
0, and −1 as coefficients, so any computation between such values can be easily managed
by zeroization and bit-flip operations.

Computers 2023, 12, 259 6 of 14

We, therefore, choose to naively compute polynomial operations, instead of employing
additional techniques as prior work did, by extending the polynomials and using FFT/NTT.
The obvious but crucial bottleneck of our approach is the increase in conditional branches
within the algorithm, which are needed in finding the inverse polynomials and coefficient
swappings. This is the reason why we select FSM-oriented designs. To efficiently handle
these conditional branches, our hardware implementation of NTRU leverages finite state
machines (FSMs) for the computation of sub-functions. Each FSM manages a pool of basic
arithmetic units (i.e., multipliers and adders) to process internal operations in parallel. We
carefully select the number of basic arithmetic units by a cycle-accurate analysis of a group
of internal operations within sub-functions. The group of internal operations is based on
the conditional branches within the sub-function, resulting in a more fine-grained analysis.
In cases where the inherent parallelism of the internal operations is less than the number of
available units, all the needed arithmetic units are allocated to maximize parallel processing.
Otherwise, although the sub-function cannot be processed as a full parallel, all the units in
the pool are pipelined so that multiple operations can be processed in each cycle, thereby
minimizing the latency. Our FSM-oriented design enabled us to achieve a balance between
performance and the hardware area, resulting in an efficient implementation.

4.2. Latency Profiling Sub-Functions for Acceleration

In the context of hardware acceleration, the process of choosing a specific sub-function
to be optimized and sped up through hardware is an essential task that needs to be per-
formed first. To identify the specific sub-functions that have the potential to significantly
reduce the overall execution time of NTRU-KEM, a comprehensive latency profiling anal-
ysis was conducted on four distinct variants of NTRU-KEM with different parameter
configurations. This process involved a detailed examination of the performance charac-
teristics of each sub-function, intending to determine which ones may be optimized for
improved efficiency. We used the NIST submission version of NTRU-KEM with an i5-8500
CPU at 2.5 GHz clock frequency.

Table 2 describes the result of the profiling. For each variant, we analyzed the runtime
latency of each of the three main functions and all of their sub-functions that reside within
them. For en/decapsulation, poly_Rq_mul, poly_S3_mul, and poly_Sq_mul account for
between 83 and 97% of the total runtime. Accordingly, the aforementioned existing NTRU-
KEM accelerators that only accelerated these two functions [13–15] aimed to boost the
performance of the polynomial multiplication. However, in the case of KEYGEN, other sub-
functions, poly_Rq_inv and poly_S3_inv, account for the biggest portion, over 86%, while
poly_Rq_mul only accounts for 12%.

Therefore, to accelerate the entire NTRU-KEM algorithm, poly_Rq_inv and
poly_S3_inv also need to be taken into consideration when designing the hardware. It
is worth noting that all the poly_*_inv and poly_*_mul sub-functions inherently involve
parallelism since the computation of each term in the resulting polynomial can be per-
formed independently of the others. In addition, crypto_sort_int32 in encapsulation and
KEYGEN is also selected to implement in the hardware since it can be processed in a parallel
manner. Conversely, the sub-function named randombytes within the encapsulation and
KEYGEN function is predominantly comprised of sequential operations. Also, due to its
relatively minor contribution to the overall execution time, it has not been implemented
as hardware. The randombytes sub-function is used or the seed generation before the
KEYGEN and encapsulation function. And the SHA3-hash sub-function is also left to the
software part because of the small execution time in the CPU. To efficiently process the
above-selected two kinds of polynomial operations, the optimizations that we have devised
will be presented in the following subsections.

Computers 2023, 12, 259 7 of 14

Table 2. NTRU-KEM latency profiling results in CPU (i5-8500).

NTRU-KEM Variant
Function

HPS2048509 HPS2048677 HPS4096821 HRSS701

Key Generation 43.8088 ms 100% 77.0217 ms 100% 114.3290 ms 100% 82.5875 ms 100%

poly_Rq_inv 20.7199 47.30 36.4755 47.36 53.7846 47.04 39.3617 47.66
poly_R2_inv
poly_R2_inv_to_Rq_inv

poly_S3_inv 17.3077 39.51 30.4974 39.60 44.8878 39.26 32.7177 39.61
poly_Rq_mul 5.4949 12.54 9.7996 12.72 14.2652 12.48 10.3971 12.59
crypto_sort_int32 0.1359 0.31 0.1999 0.26 0.2534 0.22 - -
randombytes 0.0407 0.09 0.0493 0.06 0.0605 0.05 0.0236 0.03

Encapsulation 1.3186 ms 100% 2.2319 ms 100% 3.2032 ms 100% 2.1644 ms 100%

poly_Rq_mul 1.0974 83.23 1.9365 86.76 2.8308 88.37 2.0700 95.64
crypto_sort_int32 0.1333 10.11 0.1985 8.89 0.2520 7.87 - -
randombytes 0.0374 2.84 0.0483 2.16 0.0586 1.83 0.0217 1.00
SHA3-hash 0.0076 0.57 0.092 0.41 0.0098 0.30 0.0094 0.43
etc. 0.0430 3.26 0.0395 1.77 0.0520 1.62 0.0633 2.92

Decapsulation 3.3900 ms 100% 5.9193 ms 100% 8.6410 ms 100% 6.3532 ms 100%

poly_Rq_mul 1.0936 32.26 1.9678 33.24 2.8410 32.88 2.0849 32.82
poly_S3_mul 1.1082 32.69 1.9434 32.83 2.8354 32.81 2.0797 32.73
poly_Sq_mul 1.1032 32.54 1.9404 32.78 2.8310 32.76 2.0727 32.62
SHA3-hash 0.0207 0.64 0.0269 0.45 0.0282 0.33 0.0294 0.46
etc. 0.0644 1.90 0.0408 0.69 0.1054 1.22 0.0866 1.36

4.3. Optimizing Bus Utilization

In our previous work [18], we had allocated a computation array and a sufficient num-
ber of registers to prevent delays in the operations, focusing on operational efficiency. This
setup allowed continuous computation in each clock cycle, especially during polynomial
multiplication, involving both multiplication and addition operations. However, upon
shifting our focus to the bus interface in this study, we discovered that its utilization was
quite low. For instance, Figure 3 shows that the bus utilization ratio was only about 25%
during the poly_Rq_mul sub-function using 1-ALU.

R R R WR R R

M M M M M M M M M MM M

A A A A A A A A A A

R WR W

M M M M M M M M M MM M M M M

A A A A A A A A A AA A A A A

Bus Interface

Clock Cycle

Mult Array

Add Array

Figure 3. Example of bus utilization in poly_Rq_mul sub-function with 1-ALU.

Given that polynomial multiplication is a significant part of the NTRU-KEM functions,
requiring around 80,000 cycles for a single sub-function operation, this low bus utilization
was a concern. To address this issue, we decided to make constructive use of the underuti-
lized bus interface during these computational periods. Our strategy involved increasing
both the computation array and the number of registers to expedite the operational time.
In the 1 × 16 computation array of 1-ALU, the upper and lower 16-bit operations were
processed sequentially. By doubling this array to a 2-ALU array, we could simultaneously
process the upper and lower bits, allowing sequential operation of the corresponding
addition array. As a result, utilizing the 1 × 16 computation array in this manner reduced

Computers 2023, 12, 259 8 of 14

the operational cycles to half. Not only did this modification reduce the cycles needed
for operations by half, but it also increased the frequency of bus interface usage during
the shorter operational cycle. Consequently, we achieved a 50% bus utilization rate and a
50% reduced clock cycle. To further maximize bus utilization, we applied the additional
techniques detailed in Section 4.4.

4.4. Parallel Sub-Function Scheduling

To minimize the overall processing time with limited resources in the NTRU-KEM
function, we developed a parallel sub-function scheduling technique. This technique allows
two different sub-functions to be executed simultaneously. For example, it is possible to
perform polynomial multiplication while also carrying out polynomial inversion or sorting
tasks concurrently. This not only enables parallel execution but also makes efficient use
of previously underutilized bus interfaces during polynomial multiplication tasks. To
achieve this, we conducted an in-depth data flow analysis of each sub-function, synchro-
nizing the timing of the bus interface usage across different sub-functions. The goal was to
optimize resource utilization, particularly during the execution of the polynomial multipli-
cation sub-function. The next three subsections provide a comprehensive explanation of
the techniques.

4.4.1. Key Generation Scheduling

The KEYGEN function in NTRU-KEM includes a series of poly_inv and poly_mul sub-
functions. NTRU utilizes an efficient almost inverse algorithm [29], which calculates almost
an inverse of a polynomial that yields an exact result across all NTRU-KEM functions.
This inverse calculation primarily consists of iterating a swap operation based on the
highest degree of a non-zero coefficient in each polynomial. Notably, the poly_inv sub-
function does not require the use of multiplication or addition arrays. This is because it
operates on coefficients that are only 1 or 2 bits in size associated with the polynomial
inverse sub-functions within the R2 or S3 ring modulus. For the polynomial inverse in
the Rq ring modulus, the poly_Rq_inv result is achieved by combining the poly_R2_inv
and poly_R2_inv_to_Rq_inv sub-functions. In these processes, we primarily use bit
operations, reg_array, and the swap operation within the FSM.

4.4.2. Encapsulation Scheduling

In the encapsulation function of our design, we implemented a parallel scheduling
strategy for both the poly_mul and crypto_sort_int32 sub-functions. Initially, the func-
tion receives seed data (r, m) and public key data pk. The poly_mul sub-function works
with r and pk, while the crypto_sort_int32 processes m, making it feasible for these func-
tions to operate simultaneously. However, efficient parallelization is challenging due to the
limitations of the bus interface. Both sub-functions have idle time in the bus interface. The
bus utilization rates are 50% for poly_mul and 80% for crypto_sort_int32. To manage
their scheduling, the intervals of bus usage for poly_mul are spaced out in two-cycle units.
Although the ALU operates every cycle, the output is stored in memory every four cycles,
with one cycle for loading new data and another for storing results.

As depicted in Figure 4, we maximized bus utilization by aligning the scheduling
of the poly_mul and crypto_sort_int32 sub-functions. This was performed by creating
two-cycle intervals in which the bus interface is idle, during which the crypto_sort_int32
sub-function operates. The bus interface for crypto_sort_int32 was designed to match
these two-cycle intervals of the poly_mul sub-function for optimal scheduling. By thor-
oughly analyzing the bus interface requirements of both sub-functions, we achieved effi-
cient parallel scheduling. This led to a remarkable bus utilization rate of approximately
97% for the encapsulation function using the HPS4096821 parameter. This optimization
significantly improved our design’s performance, eliminating the need for extra resources
to increase the bus interface’s bit-width.

Computers 2023, 12, 259 9 of 14

Clock Cycle

M M M M M M M M M MM M

A A A A A A A A A AA

R R R W W W R R R W RR R R R R W W W W W W R R R WR R R W R

M M M M M M M M M MM M M M M

A A A A A A A A A AA A A A A

Shared

Bus Interface

2-Mult Array

2-Add Array

S S SS
Reg Swap

Operation

Figure 4. Parallel sub-function scheduling between poly_Rq_mul and crypto_sort_int32 with 2-ALU.

4.4.3. Decapsulation Scheduling

In the decapsulation function, poly_Rq_mul, poly_S3_mul, and poly_Sq_mul sub-
functions are scheduled in a parallel and pipelined manner. Each of these sub-functions,
which perform polynomial multiplication, has a bus interface utilization rate of about 50%.
A key challenge is simultaneously executing two polynomial multiplication sub-functions,
as this not only requires bus utilization but also additional ALU resources.

On analyzing these sub-functions, we found that they operate with different ring
moduli. The Rq and Sq rings require a 16-bit integer multiplier and adder, while the S3 ring
works with 2-bit data and coefficients in the range [0,1,2]. This allows the poly_S3_mul sub-
function to be executed using bitwise operators, eliminating the need for an ALU. Using
this knowledge, we parallelized the poly_S3_mul operation with the textttpoly_Rq_mul
and poly_Sq_mul sub-functions. Despite sharing the same bus utilization rate, the unique
characteristics of the poly_S3_mul allowed for efficient parallel scheduling.

Moreover, the data for the poly_S3_mul sub-function become available from the tim-
ing of completing half of the poly_Rq_mul sub-function, allowing for immediate input
to the subsequent poly_S3_mul sub-function. Similarly, starting from the timing of com-
pleting half of the poly_S3_mul sub-function, the input data for the poly_Sq_mul sub-
function could be obtained. We applied a pipelined approach to coordinate these three
sub-functions effectively.

4.5. Optimizing Reg_Array Utilization with Combined Structure

In this section, we aim to explain our techniques that reduce the design area while
preserving the performance enhancements achieved in the earlier sections. Our goal is to
develop an area-efficient design that balances both performance improvement and area
conservation. We implemented an integrated management approach for controlling the
registers in FSMs. This involved allocating registers to arrays that were not in use at a
particular time. This strategy, linked to the parallel sub-function scheduling technique
described previously, effectively reduces the number of control registers needed. For
instance, in the KEYGEN and encapsulation functions, the polynomial inversion and sorting
sub-functions are never executed simultaneously as they are both scheduled alongside
polynomial multiplication sub-functions. Thus, combining the control registers for these
sub-functions does not hinder performance.

In the decapsulation function, we initially allocated a register array of 56 for storing
intermediate data during the parallel and pipelined scheduling of polynomial multipli-
cation sub-functions. However, we found that in various scenarios, such as in KEYGEN for
polynomial inversion and multiplication, in encapsulation for sorting and polynomial mul-
tiplication, and in decapsulation for two parallel polynomial multiplication sub-functions,
fewer registers were used (44, 40, and 56, respectively). Consequently, we were able to com-
bine the control registers for two sub-functions into these 12 unused register arrays. This

Computers 2023, 12, 259 10 of 14

approach not only reduced the total number of registers required in the entire accelerator
but also improved the utilization rate of the existing registers. Through this integrated
management, we achieve a decrease in the design area without compromising performance,
aligning with the goal of an area-efficient design.

5. Evaluation

To evaluate our design, we integrated the hardware part as an ASIC operation at
1 GHz over 45 nm processing technology. We used HDL language and the Design Compiler
2017.09-SP2 tool to design and obtain the synthesized results. For the software part, we
evaluated over an Intel core i5-8500 CPU @2.5 GHz with 32 GB main memory, using a
single core only.

5.1. Impact of Our Optimization Methods

Table 3 shows a gradual representation of our optimization process for our hardware
implementation starting from our previous work’s design (v1 [18]) (i.e., how we reached
our optimal design). Note that all but the three functions performed by our hardware
part are executed by our software part with consistent performance, no matter which
entry of Table 3 is used. Each ALU consists of an array of 16 multipliers and 16 adders.
Each multiplier can perform 1 × 16-bit multiplications, while the adder can handle 16-bit
additions. Note that the number of registers mentioned in the table only refers to the general
purpose registers—some extra registers are used in the FSMs.

Table 3. Performance comparison with variable optimization options in our design.

Description Parameters Register Area tKeygen tEnc tDec Time × Area
(16-bit) (103 µm2) (ms) (ms) (ms)

v1 [18] Reference
(1-ALU)

HPS2048509

28 29.82

0.6671 0.0507 0.0993 4.47
HPS2048677 1.1994 0.0845 0.1768 7.79
HPS4096821 1.7418 0.1187 0.2587 11.25

HRSS701 1.2598 0.0624 0.1873 7.45

v2 2-ALU

HPS2048509

56 45.15

0.4555 0.0341 0.0497 3.78
HPS2048677 0.8228 0.0551 0.0884 6.48
HPS4096821 1.1908 0.0755 0.1294 9.25

HRSS701 0.8609 0.0312 0.0936 5.64

v3 4-ALU

HPS 048509

112 60.48

0.3497 0.0258 0.0248 3.07
HPS2048677 0.6346 0.0403 0.0442 5.11
HPS4096821 0.9152 0.0540 0.0647 7.18

HRSS701 0.6615 0.0156 0.0468 3.77

v4
2-ALU +

Parallel Sub-Function
Scheduling

HPS2048509

56 45.15

0.4452 0.0238 0.0331 2.57
HPS2048677 0.8044 0.0367 0.0589 4.32
HPS4096821 1.1638 0.0486 0.0862 6.09

HRSS701 0.8414 0.0312 0.0624 4.23

v5

2-ALU + HPS2048509

56 39.60

0.4452 0.0238 0.0331 2.25
Parallel Sub-Function HPS2048677 0.8044 0.0367 0.0589 3.79

Scheduling HPS4096821 1.1638 0.0486 0.0862 5.34
+ Combined Register HRSS701 0.8414 0.0312 0.0624 3.71

ALU: One ALU includes 16-multiplication and 16-addition array modules used in this design. Time× Area =
(Encap time + Decap time)× Area.

Increasing the number of ALUs to four enables 1.33× better efficiency on average, in
terms of the time × area metric compared to the single ALU reference. The number of
registers is increased accordingly to meet the maximum needs of the overall computation
(i.e., it cannot be reduced). However, note that such an approach induces a linear increase in
the area usage, while the latency of each function is reduced with a smaller scale. This is due
to the bottleneck induced at the bus interface, as its bandwidth is fixed at 64 bits. Increasing

Computers 2023, 12, 259 11 of 14

the number of ALUs requires more data movement—having four ALUs demands almost
full bandwidth usage to compute the multiplications during poly_mul, making it difficult
to perform other tasks since all tasks need data to pass the bus interface. Consequently,
parallelizing the sub-function scheduling becomes infeasible and leaves several registers
unused, which, in turn, leads to reduced resource utilization.

We, therefore, select a design with 2 ALUs (v4) and apply parallel sub-function
scheduling, maintaining the same design area as v2 but with enhanced bus interface
utilization. As a result, we obtained even better performance compared to the 4-ALU
design (v3) for all sub-functions. As a final stage, we also added our reg_Array technique
and reached our optimized design (v5). While the overall latency remains similar, the area
is reduced, thus resulting in better performance in terms of time × area compared to all the
other variants.

5.2. Performance Comparison with Prior Work

When comparing with prior work [15], we assumed that the pre-/post-processing
steps, such as generating seed and hashing, are executed in the software part, which also
has the small execution time discussed in Section 4.2. Prior work considered only the
seed generation as a software part. In our approach, hashing is considered as a pre-/post-
processing step, because it is performed either before encapsulation or after decapsulation,
rather than during the hardware operation. Therefore, for a fair comparison, we included
the time taken for hashing in our latency calculations, as shown in Table 4.

Table 4. Performance and area comparisons with hardware for various parameters.

Parameters
Latency (ms) Area

(103 µm2) Time × Area
Encap Decap

Ours
(SW-SHA3 +
HW-Ours-v5)

HPS2048509 0.0313 0.0538

39.60

3.37 -
HPS2048677 0.0458 0.0858 5.21 -
HPS4096821 0.0583 0.1145 6.84 -

HRSS701 0.0443 0.0918 5.39 -

x-net [15]

HPS2048509 0.0062 0.0071 460.25 6.12 1.82×
HPS2048677 0.0084 0.0094 580.47 10.33 1.98×
HPS4096821 0.0102 0.0115 728.85 15.82 2.31×

HRSS701 0.0041 0.0117 762.17 12.04 2.24×

comba [15]

HPS2048509 0.3492 1.0471 102.97 143.78 42.65×
HPS2048677 0.6161 1.8476 101.04 245.62 47.75×
HPS4096821 0.9047 2.7135 99.99 361.79 52.87×

HRSS701 0.6604 1.9834 104.69 276.78 51.38×
Time× Area = (Encap time + Decap time)× Area.

Table 4 shows the performance of our design and existing ASIC accelerators, with
ours outperforming the others by 1.82×–52.87× in terms of the time × area metric. Antog-
nazza et al. [15] focused on accelerating the encapsulation and decapsulation functions of
NTRU-KEM. They proposed two sets of designs: x-net, which is a performance-centric
design set, and comba, one that focuses on area efficiency. For each set, these authors
designed separate accelerators for each of the four parameters; thus, single designs cannot
be used for a generic purpose (i.e., supporting all parameters). Their design areas for
each parameter of NTRU-KEM ranged from 99.99 × 103 µm2 to 762.17 × 103 µm2 when
combining the encapsulation module and the decapsulation module together.

In contrast, our optimized design (v5) can perform NTRU computation over all
four parameters, offering a more generic purpose usage. Our design also supports not
only encapsulation and decapsulation but also KEYGEN. All the above extra features are
supported in a single design with an efficient area usage of 39.60 × 103 µm2. Note that
even when compared to the area efficient version of comba, our design uses at least 2.87×
less area, while demonstrating, on average, 17.66× faster performance in terms of latency.

Computers 2023, 12, 259 12 of 14

Compared to the x-net version, our accelerator exhibited an average performance that
was 7.69 times slower but achieved an average design area that was 15.98 times smaller. In
terms of the time× area, our accelerator exhibits superior efficiency, surpassing that of both
the x-net and comba accelerator versions by average factors of 2.09 and 48.66 across all
parameters, respectively. It is worth noting that the mitigation of side-channel attacks (SCA)
is beyond the scope of this work. However, future research could explore applying and
optimizing the methods mentioned in [30] to mitigate SCA. Given our design’s efficiency
in terms of the time × area metric compared to previous works, we believe that our design
will outperform others even after incorporating methods to mitigate SCA.

6. Conclusions

This paper proposes an area-efficient accelerator for the NTRU-KEM algorithm based
on a hardware and software co-design. Unlike prior work that requires separate designs
for each of the parameters, our solution supports all four standard parameters in a single
design. Our optimizing methodology focuses on maintaining minimal area usage while
maximizing hardware resource utilization by implementing parallel sub-function execution
and the combined use of registers. Our approach achieves 52× better efficiency in terms of
the time × area metric compared to previous works. Overall, our design offers a generic
NTRU-KEM accelerator supporting all four standard parameters using a small hardware
area, while achieving competitive performance.

Author Contributions: Conceptualization, H.O. and Y.P.; methodology, J.Y.; software, K.N.; valida-
tion, Y.L., J.Y. and K.N.; formal analysis, H.O.; investigation, Y.L.; resources, J.Y.; data curation, Y.L.;
writing—original draft preparation, Y.L.; writing—review and editing, H.O. and Y.P.; visualization,
K.N.; supervision, Y.P.; project administration, H.O.; funding acquisition, H.O. and Y.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the BK21 FOUR program of the Education and
Research Program for Future ICT Pioneers, Seoul National University in 2023, the Inter-University
Semiconductor Research Center (ISRC), the Institute of Information and Communications Technology
Planning and Evaluation (IITP), grant funded by the Korean Government (MSIT) (No. 2020-0-
01840 Analysis on technique of accessing and acquiring user data in smartphone), the Institute of
Information and Communications Technology Planning and Evaluation (IITP) under the artificial
intelligence semiconductor support program to nurture the best talents (IITP-2023-RS-2023-00256081),
grant funded by the Korean Government (MSIT), the National Research Foundation of Korea (NRF),
grant funded by the Korean Government (MSIT) (No. RS-2022-00166529), the Gachon University
research fund of 2022 (GCU-202208860001), and the National Research Foundation of Korea (NRF),
grant funded by the Korean Government (MSIT) (RS-2023-00277326). The EDA tool was supported
by the IC Design Education Center (IDEC), Republic of Korea.

Data Availability Statement: Research data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press:

Cambridge, UK, 2011.
2. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,

41, 303–332. [CrossRef]
3. Kumar, M.; Pattnaik, P. Post quantum cryptography (PQC)-An overview. In Proceedings of the 2020 IEEE High Performance

Extreme Computing Conference (HPEC), Waltham, MA, USA, 22–24 September 2020; pp. 1–9.
4. Raheman, F. The future of cybersecurity in the age of quantum computers. Future Internet 2022, 14, 335. [CrossRef]
5. Shinohara, N.; Moriai, S. Trends in Post-Quantum Cryptography: Cryptosystems for the Quantum Computing Era. The Magazine

of New Breeze, 2019; pp. 9–11. Available online: https://www.ituaj.jp/wp-content/uploads/2019/01/nb31-1_web-05-Special-
TrendsPostQuantum.pdf (accessed on 14 November 2023).

6. Yaman, F.; Mert, A.C.; Öztürk, E.; Savaş, E. A hardware accelerator for polynomial multiplication operation of CRYSTALS-KYBER
PQC scheme. In Proceedings of the 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble,
France, 1–5 February 2021; pp. 1020–1025.

http://doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.3390/fi14110335
https://www.ituaj.jp/wp-content/uploads/2019/01/nb31-1_web-05-Special-TrendsPostQuantum.pdf
https://www.ituaj.jp/wp-content/uploads/2019/01/nb31-1_web-05-Special-TrendsPostQuantum.pdf

Computers 2023, 12, 259 13 of 14

7. Hoffstein, J.; Pipher, J.; Silverman, J.H. NTRU: A ring-based public key cryptosystem. In Algorithmic Number Theory, Proceedings of
the Third International Symposiun, ANTS-III, Portland, OR, USA, 21–25 June 1998; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 267–288.

8. Rivest, R.L.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM
1978, 21, 120–126. [CrossRef]

9. Diffie, W.; Hellman, M.E. New directions in cryptography. In Democratizing Cryptography: The Work of Whitfield Diffie and Martin
Hellman; Morgan & Claypool: San Rafael, CA, USA , 2022; pp. 365–390.

10. Dang, V.B.; Farahmand, F.; Andrzejczak, M.; Gaj, K. Implementing and benchmarking three lattice-based post-quantum
cryptography algorithms using software/hardware codesign. In Proceedings of the 2019 International Conference on Field-
Programmable Technology (ICFPT), Tianjin, China, 9–13 December 2019; pp. 206–214.

11. Kannwischer, M.J.; Rijneveld, J.; Schwabe, P. Faster multiplication in on Cortex-M4 to speed up NIST PQC candidates. In
Proceedings of the International Conference on Applied Cryptography and Network Security, Bogota, Colombia, 5–7 June 2019;
pp. 281–301.

12. He, P.; Tu, Y.; Khalid, A.; O’Neill, M.; Xie, J. HPMA-NTRU: High-Performance Polynomial Multiplication Accelerator for NTRU.
In Proceedings of the 2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Austin, TX, USA, 19–21 October 2022; pp. 1–6.

13. Qin, Z.; Tong, R.; Wu, X.; Bai, G.; Wu, L.; Su, L. A compact full hardware implementation of PQC algorithm NTRU. In Proceedings
of the 2021 International Conference on Communications, Information System and Computer Engineering (CISCE), Beijing,
China, 14–16 May 2021; pp. 792–797.

14. Farahmand, F.; Dang, V.B.; Nguyen, D.T.; Gaj, K. Evaluating the potential for hardware acceleration of four NTRU-based
key encapsulation mechanisms using software/hardware codesign. In Proceedings of the Post-Quantum Cryptography:
10th International Conference, PQCrypto 2019, Chongqing, China, 8–10 May 2019; pp. 23–43.

15. Antognazza, F.; Barenghi, A.; Pelosi, G.; Susella, R. A Flexible ASIC-oriented Design for a Full NTRU Accelerator. In Proceedings
of the 28th Asia and South Pacific Design Automation Conference, Tokyo, Japan, 16–19 January 2023; pp. 591–597.

16. Kostalabros, V.; Ribes-González, J.; Farràs, O.; Moretó, M.; Hernandez, C. Hls-based hw/sw co-design of the post-quantum
classic mceliece cryptosystem. In Proceedings of the 2021 31st International Conference on Field-Programmable Logic and
Applications (FPL), Dresden, Germany, 30 August–3 September 2021; pp. 52–59.

17. Schöffel, M.; Feldmann, J.; Wehn, N. Code-based Cryptography in IoT: A HW/SW Co-Design of HQC. arXiv 2023, arXiv:2301.04888.
18. Lee, Y.; Nam, K.; Joo, Y.; Kim, J.; Oh, H.; Paek, Y. Area-Efficient Accelerator for the Full NTRU-KEM Algorithm. In Proceedings of

the International Conference on Computational Science and Its Applications, Athens, Greece, 3–6 July 2023; pp. 186–201.
19. Riazi, M.; Laine, K.; Pelton, B.; Dai, W. HEAX: An Architecture for Computing on Encrypted Data. In Proceedings of the

Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 16–20 March 2020. [CrossRef]

20. Nam, K.; Oh, H.; Moon, H.; Paek, Y. Accelerating N-Bit Operations over TFHE on Commodity CPU-FPGA. In Proceedings of
the 41st IEEE/ACM International Conference on Computer-Aided Design, San Diego, CA, USA, 30 October–3 November 2022;
pp. 1–9.

21. Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Homomorphic Encryption for Arithmetic of Approximate Numbers. In Proceedings
of the International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong, China,
3–7 December 2017; pp. 409–437.

22. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast Fully Homomorphic Encryption over the Torus. J. Cryptol. 2020,
33, 34–91. [CrossRef]

23. Prest, T.; Fouque, P.A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z.
Falcon. Post-Quantum Cryptography Project of NIST. 2020 . Available online: https://csrc.nist.gov/projects/post-quantum-
cryptography/selected-algorithms-2022 (accessed on 14 November 2023).

24. Zhang, N.; Yang, B.; Chen, C.; Yin, S.; Wei, S.; Liu, L. Highly efficient architecture of NewHope-NIST on FPGA using low-
complexity NTT/INTT. In IACR Transactions on Cryptographic Hardware and Embedded Systems; IACR: Santa Barbara, CA, USA,
2020 ; pp. 49–72. Available online: https://ches.iacr.org/2020/index.php (accessed on 14 November 2023).

25. Bisheh-Niasar, M.; Azarderakhsh, R.; Mozaffari-Kermani, M. High-speed NTT-based polynomial multiplication accelerator
for post-quantum cryptography. In Proceedings of the 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH), Lyngby,
Denmark, 14–16 June 2021; pp. 94–101.

26. Cooley, J.W.; Lewis, P.A.W.; Welch, P. The fast Fourier transform algorithm: Programming considerations in the calculation of
sine, cosine and Laplace transforms. J. Sound Vib. 1970, 12, 315–337. [CrossRef]

27. Becoulet, A.; Verguet, A. A depth-first iterative algorithm for the conjugate pair fast fourier transform. IEEE Trans. Signal Process.
2021, 69, 1537–1547. [CrossRef]

28. Chung, C.M.M.; Hwang, V.; Kannwischer, M.J.; Seiler, G.; Shih, C.J.; Yang, B.Y. NTT multiplication for NTT-unfriendly rings:
New speed records for Saber and NTRU on Cortex-M4 and AVX2. In IACR Transactions on Cryptographic Hardware and Embedded
Systems; ICAR: Santa Barbara, CA, USA, 2021 ; pp. 159–188. Available online: https://ches.iacr.org/2021/index.php (accessed on
14 November 2023).

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/3373376.3378523
http://dx.doi.org/10.1007/s00145-019-09319-x
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://ches.iacr.org/2020/index.php
http://dx.doi.org/10.1016/0022-460X(70)90075-1
http://dx.doi.org/10.1109/TSP.2021.3060279
https://ches.iacr.org/2021/index.php

Computers 2023, 12, 259 14 of 14

29. Schroeppel, R.; Orman, H.; o’Malley, S.; Spatscheck, O. Fast key exchange with elliptic curve systems. In Proceedings of the
Advances in Cryptology—CRYPT0’95: 15th Annual International Cryptology Conference, Santa Barbara, CA, USA, 27–31 August
1995; Proceedings; Springer: Berlin/Heidelberg, Germany, 2001; pp. 43–56.

30. Standaert, F.X. Introduction to side-channel attacks. In Secure Integrated Circuits and Systems; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 27–42.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Background
	Lattice-Based Cryptography
	NTRU Cryptosystem
	NTRU-KEM Algorithm

	Design Overview
	Implementation
	FSM-Oriented Hardware Design
	Latency Profiling Sub-Functions for Acceleration
	Optimizing Bus Utilization
	Parallel Sub-Function Scheduling
	Key Generation Scheduling
	Encapsulation Scheduling
	Decapsulation Scheduling

	Optimizing Reg_Array Utilization with Combined Structure

	Evaluation
	Impact of Our Optimization Methods
	Performance Comparison with Prior Work

	Conclusions
	References

