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Abstract: This document seeks to model the behavior of drivers on urban roads considering different
environmental factors using a Mamdani-type fuzzy system. For this, a leader-following traffic model
and a fuzzy logic system are used to characterize the behavior of drivers. Real data are obtained
using a camera in the roads under consideration, and these data and an optimization process are
employed to fit the fuzzy model. For the optimization process, the fuzzy logic system used to model
the driver’s behavior is incorporated into a dynamic vehicle tracking model where the fuzzy system
allows considering different environmental factors in the traffic model simulation. After carrying
out the optimization process, it is possible to assign linguistic labels to the fuzzy sets associated with
the output. In this way, the interpretability of the proposed fuzzy system is achieved by assigning
labels (concepts) to the fuzzy sets. The results show that the proposed model fits the real data, and
the fuzzy sets are adjusted according to the measured data for the different considered cases.

Keywords: model; optimization; fuzzy logic; traffic

1. Introduction

The scientific study of traffic flow began in the 1930s with the implementation of the
probabilistic theory for describing vehicular traffic jointly with the research undertaken by
Bruce D. Greenshields at the Yale Highway Traffic Bureau, including employed research on
traffic’s behavior when having intersections and integrating volume and speed models [1].
The rise of automobile usage and the increase in highway systems that took place after World
War II were boosters that escalated the analysis of traffic characteristics and theories about
traffic flow. Therefore, the 1950s represents advancements of theoretical developments from
diverse approaches, including motorcar tracking [1].

There are different microscopic models representing different tasks or problems that
a car faces during its travel; one approach is vehicle tracking models. There are also lane
change models to determine the decision of a driver to change lanes or not during his
trip. Usually, through a logical sequence of questions, these models are capable of making
decisions based on the desired speed of the car and the situation of the preceding one,
inducing a lane change when there are gaps between the circulating cars and allowing a
safe maneuver [2,3].

There are also gap acceptance models to represent the decisions faced by a driver
when choosing to maneuver at a priority intersection or in the process of changing lanes.
Vehicle tracking models, which correspond to the best-known microscopic models, are
those that show the tracking of a car, usually limited by the preceding automobile; therefore
these models correspond to a set of equations to determine how each car performs its
tracking, taking into account the behavior of the preceding vehicle [3,4]. There are different
approaches to model the path traveled by one car when following another. There are
approaches where the model seeks to establish that the driving response is proportional to
the stimulus that an individual or a car may receive. In the case of the vehicle following
model, braking or acceleration is taken as the response to a stimulus, which corresponds to
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the difference in relative speed between two cars and their corresponding relative distance,
i.e., the difference in speeds of the leading and the following car over the difference in
relative distance of the car in front and the one behind multiplied by a parameter that
relates the driver’s own characteristics (fatigue, sleep, distractions, sight-hearing, mood,
alcohol, cell phone use, smoking, GPS, drugs, medication, stress, depression, habits, skill,
and caution) as well as some characteristics of the environment (road conditions, weather,
road lighting), which influence the driver’s behavior [5,6].

By representing each car with its own equation that defines its progress, among other
factors, microscopic models require significant computational power to be solved.
Currently, there are a number of computational packages that solve these models by
simulation with a user interface known as “micro traffic simulators”, and although some of
them are intended for purely academic use, most of them are commercial products used in
consulting. A relevant consideration when using these micro-simulators is their adaptabil-
ity to the local conditions where they are to be implemented. It is important to emphasize
that the fact that they are models with a high level of detail does not imply that their power
or capacity to replicate reality is high or better than that of macroscopic models [7–9]. How
appropriate one model or the other is will depend on what is sought with the modeling.
In many cases, simplicity, in terms of the parameters to be calibrated and accuracy of the
macroscopic models, is an important factor to be considered. In any case, it should always
be kept in mind that these models are only a simplified representation of reality and that
there is no perfect model [7–9].

According to [5], “social effects” are scarcely portrayed as models in the description of
microscopic driving conducts in terms of driver’s decisions while driving. Nevertheless,
a vehicle’s social effect interactions can be compiled when compared to other vehicles to
see the affectations in the driver’s behaviors when, for instance, such interactions are the
consequence of imitating other drivers. Thus, instant response behavior is influenced by
both peer drivers and the social environment.

Regarding driving style, the way a driver performs is a complex issue that depends
on different factors, such as psychophysical characteristics, as well as the type of vehicle
used and the characteristics of the road [10]. Several investigations have considered factors
such as knowledge, mental state, and physical conditions, among others. A parameter
regarded as significant is the reaction time for defensive maneuvers (obstacle avoidance and
braking) [11]. In this way, an important aspect is the hand-eye coordination of the driver,
which may be subject to visibility (illumination), which may depend on the time of day, the
proper functioning of the vehicle’s lights, or even related eye diseases. Factors of influence
may include exhaustion of the driver and stress, among other aspects [12].

Regarding a related work, in [13], a review on the incorporation of human factors in
car-following models is carried out. Particularly, [5] inquires into the empirically evident
existence of the social effect when a faster vehicle overtakes the other under consideration,
determining if the driver displays any form of imitation regarding the overtaker vehicle.
The gathered information refers to 63 host vehicles by checking on accelerations, posi-
tions, and velocities, with specific information of the environment in a frequency of 10 Hz.
Additionally, the authors included models to draw heterogeneity in the observations to
examine positive and negative variations in the social effect using “logit” models. Con-
sequently, the resulting outcomes showed that drivers display identical behaviors to the
passing vehicles.

Another related work can be seen in [14], where a five-parameter social force car
tracking model was established. When it comes to studying well-founded alternatives to
solve the issue of vehicle trajectories, the authors determined a hysteresis with clockwise
and counterclockwise movement according to the model parameters. The model was
also capable of reproducing waves intermittently to periods and amplitudes according
to field observations when combining stochastic vehicle dynamics in the trajectory of the
leading vehicle. In addition, such a model is suitable to generate waves intermittently
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to periods and amplitudes according to field observations when combining stochastic
vehicle dynamics.

1.1. Traffic Models at the Microscopic Level

The method of replication of traffic scenarios is extensively employed in researching
systems and networks of traffic and developments and planning alike. Currently, literary
sources offer numerous schemes of traffic simulations in the realm of experimentation,
aiming to measure operations in real traffic. Such traffic scenarios can be divided as micro-
scopic modeling, macroscopic modeling, and mesoscopic modeling [15]. Microscopic traffic
modeling analyzes each car individually and investigates the relationships between them.

Calibration is needed in microscopic traffic simulations in models of vehicle displace-
ment or car tracking [16]. During various driving conditions, control parameters in such
models include the time interval, an individual driver’s space, and acceleration. Recently,
those parameters have been defined for different types of vehicles and estimated from
macroscopic data flow such as volume and average speed. Notwithstanding, such data
are incapable of determining real behaviors in individual vehicles, and the impact of the
first vehicle class on the next vehicle’s behavior is disregarded in the estimation of pa-
rameters. Considering the above, the authors in [16] estimated the parameters associated
with driving behavior for heavy vehicles and cars in the classical Wiedemann model for
vehicle following.

A variation of this type of model can be seen in [17], where a model containing spring
block chain asymmetric interactions is taken as the starting point to an ideal single-lane
road traffic flow. Thus, primary elements encompass static and kinetic friction, namely
drivers and cars’ inertia, the spatiotemporal disorder prompted by the values in these
forces of friction (driving demeanors), blocks (automobiles), and unidirectional interactions
with springs (this refers to keeping a distance from fellow drivers).

An approach to analyzing the behavior in individual car-following is attempted in [18]
by applying the stimulus-response concept. In this scenario, the researchers suggested a
model of safety, defined as the anticipated level of risk in the processes of cars following
other cars. Then, the evaluation of acceleration takes place regarding the difference between
the desired safety margin (or acceptable risk level) and the perceived risk level (or perceived
safety margin).

On the other hand, in [19], the authors posited that the correlation between the
expected time interval and the time of speed adaptation sets the arrangement formation in
jammed traffic flow. Thus, such associations exert control over individual and collective
responses of vehicles in traffic.

Another work can be seen in [20], where a model was used to establish the effect of
vehicular technology in terms of energy consumption and consequent emissions. Sustain-
able development requires, among other things, reducing both energy usage and pollutant
emissions caused by traffic. The researchers considered affectations that emanated from
energy consumption and emissions as a result of transport hybridization in road traffic
(single lanes).

A work where vehicle combinations are incorporated into stimulus-response automo-
bile following models can be seen in [21]. The authors used separate models to determine
responses regarding acceleration and deceleration in vehicle combinations across various
states of motion and vehicle types. For various pairs of following vehicles, each model
integrated three sub-models, including scenarios such as a truck following a car, a car
following a truck, and a car following another car. According to the results, the behaviors
of drivers were considerably different regarding different pairs of vehicles.

According to [22], traditional methods for identifying historical crash data are strongly
considered to identify high-risk locations. Conventional safety metrics, such as time
to collision, ignore the risks associated with scenarios of car following. In particular,
in cases when the speed of the follower vehicle is almost the same as that of the leading
vehicle and the space in between them is moderately small, a slight perturbation of the
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collision risk is produced. To address this limitation, the authors in [22] proposed time to
collision with perturbations for risk identification. By means of a hypothetical perturbation,
measurements assessed rear-end conflict risk in car-following scenarios, including ones
with a higher speed of the leading vehicle.

Finally, in [23], to study possible relationships of leading and following vehicle, the au-
thors proposed a car-tracking model that combines a convolutional neural network (CNN)
with a long short-term memory (LSTM) network. For this model, 400 car tracking periods
were taken from the OpenACC car tracking experiment database and a natural driving
database. The CNN is used to extract the features of the car-tracking behavior, while
the LSTM network using the feature vector is used to anticipate the acceleration of the
follower vehicle.

1.2. Traffic Models with Driver Behavior

According to [24], driving behavior models are a relevant aspect of road traffic simu-
lation modeling. Features such as reaction, tiredness, and mood in distracting conditions
can be considered. Models should consider associations between a driver’s performance
and external factors. In this regard, a methodology for the establishment of driver behavior
model parameters was proposed in [24]. The proposal is based on traffic data to generate
the car-tracking model and thus establish the parameters that best represent driving habits.

Considering that driver’s behavior characteristics (DBC) influence car-following safety,
reference [25] analyzed the effect of different DBC as a function of the desired safety margin
(DSM), which includes five DBC parameters. The study shows that higher risk perception
levels can reduce RECs (rear-end collisions); a faster driver reaction capability can avoid
RECs, and higher deceleration sensitivity can improve car-following safety.

According to [26], intense congestion, traffic crashes, and discomfort often occur
on uneven pavements due to imperfect decisions made by human drivers. Autonomous
vehicles (AV) are an alternative to improve driving performance and replace human driving.
In this regard, Ref. [26] recommends an approach employing intelligent speed control for
autonomous cars by using deep reinforcement learning (DRL) to acquire behaviors of
following a safe car based on information regarding the road and traffic, aiming at safety
improvements, driving comfort, and efficiency.

On the other hand, in [27], a test scenario design method considering real longitudinal
characteristics was proposed for the verification of Autonomous Driving Systems (ADS)
and Advanced Driver Assistance Systems (ADAS). The recommended method comports a
model that imitates vehicle behavior including an additional model of driver in response
to different driving environments. Such model employs the Model Predictive Control
(MPC) algorithm for emulating similar features in human driving. The lengthwise driver’s
features were acquired from a database analysis of large-scale driving.

According to [28], as the supply of vehicles with autonomous driving functions in-
creases, vehicle safety also becomes an emerging problem; therefore, the authors in [28]
used a camera with a variable focus function to ensure safety when applying the RSS
(responsibility-sensitive safety) model. In this way, an improved RSS model was pro-
posed, taking into account changing road conditions due to weather, which is a factor that
promotes safe distance between cars.

1.3. Focus and Organization of the Article

Considering that mobility is an important factor for the quality of life of citizens, this
paper aims to characterize the behavior of drivers. Such behavior in traffic models is a
complex issue that addresses many aspects and can be approached in different ways. To
this end, a fuzzy logic system is proposed to model driver’s behavior incorporated into the
dynamic vehicle tracking model. Real data obtained from vehicle speed measurements on
several urban roads are used to adjust the model.

This article does not consider the driver’s own characteristics due to the limitations
that this represents for its measurement. The work takes into account the characteristics
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of the environment that are common to drivers, such as the state of the road, traffic, and
lighting. The proposed fuzzy logic model seeks to incorporate these aspects in order to
characterize the behavior of drivers subject to these factors.

At the simulation level, more real models can be implemented when including fac-
tors that affect drivers, allowing to propose traffic control strategies effective in real
scenarios (applications).

The data needed to optimize the fuzzy logic model correspond to the speed of each car,
so that when simulating the traffic model, the purpose is to obtain the same speed of the
measured vehicles. Thus, different scenarios are considered to perform the optimization of
the fuzzy logic model in order to characterize the behavior of drivers in different scenarios.

The simulation model allows us to establish the speed of the vehicles and their rela-
tionship with the parameter associated with the acceleration in such a way that the speed of
the simulated vehicles is close to the real data. The data with which the fuzzy logic model
is adjusted and validated were taken from various urban locations, where the factors that
externally influence drivers include the level of lighting (day or night), road conditions
(good or bad), and congestion (high or low). It should also be noted that single-lane sectors
were considered, given the characteristics of the traffic model employed.

The paper is organized as follows. Section 2 describes the vehicle tracking system
model, and the fuzzy logic system model is presented in Section 3. The process to perform
the parameter optimization of the fuzzy logic system is described in Section 4. The way the
data were collected is presented in Section 5; these data were used for the fuzzy logic system
adjustment, and the results of this process are described in Section 6. Finally, the discussion
and conclusions of this work are presented in Sections 7 and 8.

2. Dynamic Vehicle Tracking Model

Traffic simulation is mostly applied in researching traffic networks and systems related
to planning and development. According to literary sources, various models are determined
when studying real traffic operations. Traffic simulation models can be classified into
three areas: microscopic modeling, macroscopic modeling, and mesoscopic modeling.
In the microscopic traffic model, each car is analyzed individually, and the relationships
between them are investigated. In reviews of these models, a general description of
traffic simulation models is made in [15] in terms of function, limitation, and application.
Moreover, reference [29] revises micro-simulations of various car tracking models and tools
for autonomous and human driving behavior. Another review of these models is done
in [30] on simulation schemes under conditions of mixed traffic framing simulations and
car-tracking models. The model considered in this work consists of a one-way tracking
scheme, such as those presented in [31–34].

Considering a line of vehicles, all of length L and equal mass, as shown in Figure 1,
since there is only one line of traffic, there are no overtakings, and the positions Xi >
Xi+1 > Xi+2 >. . .>> XN . Thus, the spacing between vehicles i and i− 1 is given by:

Xi−1 − Xi = L + d (1)

Length

L

Separation

d

Spacing

Figure 1. Diagram of vehicles in a lane, all of length L and equal mass. The spacing will change if the
speed of the vehicle ahead changes.
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The separation given in Equation (1) will change if the speed of the leading vehicle
changes, where m is the respective mass. Considering that the i-th vehicle has a braking
force Fbi, the deceleration of the vehicle is given by:

Fbi = m
d2Xi(t)

dt2 (2)

The braking force depends on the speed and the relative distance of the vehicle i with
respect to the vehicle in front, (i− 1); in this way, the braking force can be written as:

Fbi = A
dXi(t)

dt −
dXi−1(t)

dt
Xi − Xi−1

(3)

where A is a parameter that relates the characteristics of the driver (habits, knowledge,
ability, caution . . .) as well as the characteristics of the environment (holes, level of vision,
rain. . .). In this way, we can obtain:

d2Xi(t)
dt2 =

A
m

dXi(t)
dt −

dXi−1(t)
dt

Xi − Xi−1
(4)

Considering that the right-hand side of Equation (4) can be represented as the derivative of
a logarithm, then, we can obtain:

d2Xi(t)
dt2 =

dVi(t)
dt

=
A
m

d
dt

ln(|Xi − Xi−1|) (5)

Thus, we establish Equation (6), where αi is a factor that depends on the initial conditions.

Vi(t) =
A
m

ln(|Xi − Xi−1|) + αi (6)

It should be noted that this expression is not valid for i = 1 since the leading vehicle
does not have another vehicle in front. Figure 2 shows the block diagram for the simulation
of the model for a leading and a follower vehicle. In this figure, VL is the respective velocity
Vi associated with the leading vehicle, and K = A/m is the factor related to the driver’s
skill and habits.

+

−

+

−

÷
×VL

K 1
s

1
s

1
sdx1

dt
x1

dx2
dt

dx3
dt

x3

x2

x1

Figure 2. Block diagram of the leader-follower model, where VL is associated with the leading vehicle,
and K is the factor related to the driver’s skill.
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In this way, the set of differential equations that describes the system in Figure 2 is
the following:

dx1

dt
= VL (7)

dx2

dt
= K

(VL − x2)

(x1 − x3)
(8)

dx3

dt
= x2 (9)

3. Fuzzy Logic Model

The models of fuzzy logic portrays fuzzy sets associated with information (concepts)
combined between inputs and outputs to form rules for setting outputs [35,36]. Fuzzy
systems allow the modeling of nonlinear processes and also receive inputs from a dataset
employing learning (optimization) algorithms. Systems based on fuzzy logic endow easy
use of preliminary knowledge as an initial point for optimization [37]. In fuzzy rule-based
systems, the connections between variables are characterized as follows:

If we have the proposition of the antecedent X,
then we have the proposition of the consequent Z.

A characteristic of X is named a linguistic label and is featured by a fuzzy set in
the universe of discourse X. One of the most-used fuzzy logic models corresponds to
the Mamdani type, where fuzzy sets are used in the antecedent and in the consequent to
represent concepts associated with the input and output variables. In this way, the rules
are obtained through the relation of the fuzzy sets of the inputs and the outputs [35,36].

This work seeks to characterize the behavior of drivers by measuring the speed of
vehicles, since mobility is an important factor for the quality of life of citizens. A fuzzy logic
system is employed to model the driver’s behavior, which is incorporated into the dynamic
vehicle tracking model, whose adjustment is made using real data measured on urban
roads. The model disregards characteristics of the driver due to existing limitations for
measuring the physical and psychological conditions of each driver. The model includes
characteristics of the environment common to drivers, such as the state of the road, lighting,
and the state of congestion.

The fuzzy logic model considers common parameters to all drivers, that is, environ-
mental instead of personal conditions. Thus, the input variables are:

• Light: This is considered if there is natural or artificial lighting (day or night).
• Traffic: This variable considers whether there is a slow or fast flow of vehicles due to

the time of day (rush hour).
• Road: This refers to the quality of the road on which the vehicle circulates (adequate

or poor lane conditions).

The output variable of the model corresponds to the parameter K in the vehicle tracking
model. Figure 3 shows the fuzzy logic model where inputs and output are presented.

The Mamdani-type fuzzy logic system is used to ensure the interpretability of the fuzzy
sets associated with the inputs and the output. In this way, after performing the optimization
process, linguistic labels (concepts) can be assigned to the fuzzy sets associated with the output.

Sigmoidal functions are used in the fuzzy system, such as those shown in Figure 4,
which are used to represent high and low values on a scale from 0 to 1 for each of the input
variables. Equation (10) corresponds to the sigmoidal function, where α is associated with
the width of the transition area, and γ is the center of the transition area.

µ(x) =
1

1 + e−α(x−γ)
(10)
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Light (2)

Traffic (2)

Road (2)

Driver
Behavior

(Mamdani)

8 Rules
Driving Factor (8)

Figure 3. Fuzzy logic model with eight rules, where the input variables are the light, the traffic, and
the road. The output corresponds to the driving factor in the vehicle tracking model.
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Input Variable
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0.2
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0.8

1
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m
em

b
er

sh
ip

Low High

Figure 4. Fuzzy sets used for input variables representing high and low membership values.

In addition, Gaussian sets are used for the output; Figure 5 shows the shape of one of
the fuzzy sets. Equation (11) corresponds to the Gaussian function, where σ is the standard
deviation and δ is the mean.

µ(x) = e
−(x− δ)2

2σ2 (11)

The rules correspond to the combination of all input sets having an associated output
fuzzy set. In this way, the set of rules can be seen in Table 1. It is noticeable that more
fuzzy sets can be used to consider more input features; however, the number of cases and,
therefore, the measurements to be carried out increase. It is worth noting that the output
fuzzy sets do not have associated concepts or linguistic labels, which can be established
after the optimization process.
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Figure 5. Fuzzy sets used for the output variable (Gaussian membership function).

Table 1. Fuzzy rule set.

Light Traffic Road Output

Day Low Good F1
Day Low Bad F2
Day High Good F3
Day High Bad F4

Night Low Good F5
Night Low Bad F6
Night High Good F7
Night High Bad F8

4. Model Fitting Process through Optimization

Considering that an initial configuration of the fuzzy system can be determined,
then to perform the adjustment of this system can employ an optimization algorithm that
uses this initial configuration as the starting point. Additionally, in this case, when using
Gaussian functions, there are no constraints on the parameters of the sets, so an algorithm
without restrictions can be used.

In an unconstrained optimization algorithm, to determine the next point in an iteration,
there are two strategies: line search and confidence region. In the line search strategy,
a direction is chosen in which a point that provides a lower value of the objective function
is searched, and in each iteration, a new direction and a new point are searched. In the
trusted region strategy, a model function is constructed that approximates the objective
function; since the model for certain points differs from the objective function, a region is
established where this approximation is suitable, which is called the confidence region [38].

An example of an algorithm with a line search strategy is the quasi-Newton method,
where successive approximations of the Hessian are performed. Examples of methods
based on trust regions are those that use quadratic forms [38].

When the function is to be minimized (with several variables), Newton’s method
uses the Equation (12), where f is the function to minimize, X is the vector composed by
the variables of f , where f ′ is the vector of the first derivative of f , which is also called a
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gradient, and finally, f ′′ is the Hessian matrix, where the respective elements correspond to
the second derivatives of f .

Xk+1 = Xk − ( f ′′(Xk))
−1 f ′(Xk) (12)

For implementing the quasi-Newton method, successive approximations of the Hes-
sian inverse are made since the calculation of this inverse can be expensive from the
computational point of view. This set of methods is called quasi-Newtonian, and it includes
the Davidon–Fletcher–Powell (DFP) method, which performs successive approximations of
the inverse of the Hessian, and the Broyden–Fletcher–Goldfarb–Shannon (BFGS) method,
where the Hessian is approximated [38].

Fitness Function

The fitness function (objective function) used for the adjustment of the fuzzy system
corresponds to the mean squared error (MSE) given by Equation (13), where J corresponds
to the objective function, X is the set of parameters (associated with the model), n is the
index associated to the discrete time, r is the actual measured data (on the roads), s is the
data calculated from the model simulation, and N is the total amount of data taken.

J(X) =
1
N

N

∑
n=1

(r[n]− s[n, X])2 (13)

Figure 6 shows the block diagram for the simulation of the model considered to
perform the optimization of the fuzzy system. In this scheme, VL is the respective velocity
associated with the leading vehicle. The input of the fuzzy model corresponds to the case
of the environmental factors that affect drivers.

+

−

+

−

÷
×VL

1
s

1
s

1
sdx1

dt
x1

dx2
dt

dx3
dt

x3

x2

x1

×
×

Fuzzy Model

Case

Figure 6. Block diagram of the traffic model incorporating the fuzzy system. The input of the fuzzy
model corresponds to the case of the environmental factors that affect drivers.

In Figure 6, the input of the fuzzy system (Case) corresponds to the coding of each
case in such a way that the fuzzy inference process delivers the respective factor associated
with the driving factor. In this way, during the optimization process, each case is evaluated,
and the simulation result is contrasted with the real data in a way that the adjustment of
the fuzzy logic system is achieved.

5. Data Used

As displayed in Table 1, eight different scenarios are considered for data collection,
for which the setup shown in Figure 7 is used, where a camera is used to measure the
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displacement and velocity of vehicles at the end of the block. It should be noted that the
distance between the green marks is 12 m. The camera features are the following:

• Model: Sony hdrcx305e;
• Image device: size 4.5 mm (1/4 type) EXMOR RTM CMOS Sensor;
• Shutter speed: 1/8–1/1000 (including scene selection);
• Number of pixels, gross (K): 4200;
• Clearvid technology: Yes;
• Image processor: BIONZ;
• Telemacro: Yes;
• X.V. Colour: Yes;
• Steadyshot (image stabilisation): Optical SteadyShot Active Mode;
• Minimm illumination (lux): 3 lux (1/25 shutter speed);
• Number of pixels by camera mode(K): 16:9 mode, 2650, 4:3 mode, 1990, 16:9 mode,

2650, 4:3 mode, 3540;
• White balance: Auto/outdoor/indoor/one-push;
• Backlight compensation: Yes;
• Camera noise reduction: Yes.

The data collection was carried out in different places of Zipaquirá, a municipality of
the department of Cundinamarca, Colombia. Table 2 shows the characteristics and location
of the places where the data were measured. Meanwhile, Figure 8 shows the roads and the
cases considered, where most cases involved straight roads with a low volume of vehicular
flow; these aspects were considered to facilitate data collection and model adjustment. It
should be noted that for cases 2, 4, 6, and 8, the pictures were taken to show one of the
visible deteriorations of the road, and its location is different from the one used to make
the measurements.

b b

b

b b b b

Camera

Figure 7. Setup for data acquisition. The camera was used to measure displacement and velocity of
vehicles after taking the respective videos.

Table 2. Location of the places for data collection in Zipaquirá, municipality of the department of
Cundinamarca, Colombia.

Case Light Traffic Road Location

Case 1 Day Low Good 11th Avenue, between 5th and 6th Streets
Case 2 Day Low Bad 7th Street, between 10th and 11th Avenues
Case 3 Day High Good 11th Avenue, between 5th and 6th Streets
Case 4 Day High Bad 7th Street, between 10th and 11th Avenues
Case 5 Night Low Good 11th Avenue, between 5th and 6th Streets
Case 6 Night Low Bad 7th Street, between 10th and 11th Avenues
Case 7 Night High Good 11 Avenue, between 5th and 6th Streets
Case 8 Night High Bad 7th Street, between 10th and 11th Avenues
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

(e) Case 5. (f) Case 6.

(g) Case 7. (h) Case 8.

Figure 8. Pictures of the places where the data were collected in Zipaquirá, municipality of the
department of Cundinamarca, Colombia.

In this way, for each scenario, the data acquisition was carried out for approximately
one hour, and the speeds of the vehicles were measured at the end of the block. Table 3
shows the statistical summary of the measured data having the samples, maximum, mini-
mum, average, and standard deviation (STD). It is worth noting that in case 7, there are only
102 measurements since it was necessary to stop the data collection for security reasons.
It should be noted that the time is given in seconds s, the distance in meters m, and the
speed in meters per second m/s.

Table 3. Statistical summary of the measured data.

Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Samples 314 435 251 641 268 403 102 739
Max 39.4737 31.0912 31.6288 40.797 20.7479 33.1783 18.7702 39.9614
Min 0.3702 2.4534 2.9811 0.9871 0.6165 1.7455 4.3573 1.2157

Average 8.1643 10.6249 9.2037 8.9577 9.5345 17.4148 10.2832 12.4063
STD 4.7555 4.014 4.5172 4.9869 3.7045 4.6925 4.0437 5.9195

6. Results

In order to fit (train) the fuzzy logic system, 70% of the data were used for optimiza-
tion, and 30% were used for testing. The codification for the input variables was made
considering the following values:

• Light: Day = 1, and Night = 0.
• Traffic: High = 1, and Low = 0.
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• Road: Good = 1, and Bad = 0.

The optimization variables correspond to the parameters of the fuzzy sets associated
with the output variable. Since the cases for the input variables are well established
in Table 1, parameter optimization for the sets associated with the input variables was
not performed.

Considering Equation (11), the initial configuration of the fuzzy sets for the out-
put variable y corresponds to a location of its mean value at δy = 5 with a variance of
σy = 0.7. The optimization process was performed on a Lenovo PC IdeaPad 5 14ITL05 with
an 11th Gen Intel Core i7-1165G7 processor 2.80 GHz, with 16.0 GB of RAM. In this order,
performing the optimization process, the run time was 2904.91 s. The MSE values obtained
before and after the optimization process for both the test and training data can be seen in
Table 4.

Table 4. MSE values before and after optimization.

Data Before Optimization After Optimization

Training 11.8350 7.2507× 10−5

Test 6.7046 2.9322× 10−5

Given the limitations in data collection, the concept of a virtual vehicle was utilized
to implement the model, which serves as the leader of the vehicle under consideration in
such a way that at the end of the simulation, it is sought that the vehicle reaches the same
speed of the leading vehicle (virtual), which can be seen in blue in Figure 9. Since there
is no dataset that allows a direct comparison with the vehicle tracking model, the virtual
vehicle concept allows each vehicle to be considered separately and thus is able to carry
out the optimization process of the fuzzy logic system incorporated into the traffic model.

b b

b

b b b b b b

Figure 9. Representation of the virtual vehicle in blue, which serves as the leader of each real vehicle.

As a first result, Figure 10 shows the model simulation without performing the op-
timization process, that is, with the rules obtained in a preliminary way. Meanwhile,
Figure 11 shows the simulation with the fuzzy system after the optimization process, where
the simulated data are close to the real data. It is noteworthy that the training data and the
test (validation) data are employed to evaluate the fuzzy model before and after optimiza-
tion. These figures also display the error value obtained for each measurement using the
training and validation data.

Before the optimization process, in Figure 10a,c, we can observe the difference between
the real and simulated data. After the optimization process, in Figure 11a,c the simulated
data are close to the real data.

Meanwhile, in Figures 10b,d and 11b,d the error displays only negative values, which
is consistent with the model since it is considered that the follower vehicle does not
outperform the leading vehicle.
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(a) Simulation results using training data.
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(b) Error obtained employing training data.
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(c) Simulation results using validation data.
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(d) Error obtained employing validation data.

Figure 10. Results obtained from the model simulation before the optimization process.

As observed in Figure 10, although the values of the velocities obtained with the model
differ from the real measurements, the model generates values close to the real data, which
shows that the initial configuration of the fuzzy system allows the adjustment of the model
using the quasi-Newton method.

In these results, it is also observed that the values obtained with the validation data
are similar (or better) in comparison with those obtained with the test data, which shows
that overtraining does not occur.

From Figure 10, which was obtained using training and test data before the optimiza-
tion process, it is observed that the largest errors occur for high values of speed.

It is also worth noting that, after the optimization process, Figure 11b,d displays some
high error values, which is mainly observed when having high speeds that may be related
to the inaccuracy in the speed measurement process.

A remarkable result for the interpretability of the fuzzy system is the location of the
consequent sets, as seen in Figure 12. In this way, considering the values of the output
variable, it is possible to assign linguistic labels (concepts) to the output fuzzy sets.

Regarding the interpretability of the fuzzy logic system, in Figure 12, it can be seen
that sets F1 and F4 are located in the same place with the same amplitude, and that set F7
was associated with low values and F6 was associated with high values. The intermediate
(half) values were associated with F1, F2, F3, F4, and F8. It is also noteworthy that the highest
variance is presented by F6, followed by F5, and the lowest variance is presented by F1 and
F4. Considering these results, it is possible to assign linguistic labels for the output sets,
obtaining the tags shown in Table 5. These labels allow a linguistic relationship between
the input variables (environment factors) and the action that the driver would take for the
different scenarios considered.
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(a) Simulation result using training data.
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(b) Error obtained employing training data.
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(c) Simulation results using validation data.
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(d) Error obtained employing validation data.

Figure 11. Results obtained from the model simulation after the optimization process.
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Figure 12. Optimized output fuzzy sets, where we can observe the location and shape of each
membership, making it possible to assign a linguistic label to each set.
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Table 5. Linguistic labels for the output sets.

Light Traffic Road Output

Day Low Good F1: Half High
Day Low Bad F2: Half
Day High Good F3: Half Low
Day High Bad F4: Half High

Night Low Good F5: Low
Night Low Bad F6: Very High
Night High Good F7: Very Low
Night High Bad F8: High

7. Discussion

For the development of this work, different limitations were presented from the data
acquisition to the design of the fuzzy logic system and the traffic model implementation.

Firstly, there is a limitation in data collection since an interval of 12 m was considered
to measure the average speed of the vehicle at the end of the street (considering vehicles of
the same length). Only the movement of vehicles in a single lane was taken into account;
therefore, the behavior of drivers when overtaking was not modeled. Additionally, data
were only taken for certain urban sectors, which adjust to the characteristics of the traffic
model used.

Secondly, the fuzzy logic model considers environmental factors common to all drivers
since a particular study of each driver is beyond the scope of this work. Therefore, the model
obtained allows for an average characterization of drivers. There is also a limitation in the
number of fuzzy sets used to model each of the concepts associated with each input and
output of the system.

Thirdly, for the integration of the traffic model with the fuzzy logic model and the
optimization process, it was necessary to include the concept of virtual vehicles since there
is no detailed dataset for a direct comparison with the traffic model. The virtual vehicle
concept allows each vehicle to be considered separately and thus is able to carry out the
optimization process of the fuzzy logic system.

Despite the limitations that arose in the development of this work, adequate optimization
of the fuzzy logic system was achieved, obtaining an adequate interpretability of this since the
location of the fuzzy sets in the universe of output discourse represents the actions that would
be taken by a conductor depending on the characteristics considered. Given the limitations
that this work presented, it can be considered as a first approximation to model the behavior
of drivers using a fuzzy model. This research can serve as a reference mark for developing
computational traffic models considering aspects that affect the behavior of drivers.

A Mamdani-type fuzzy logic system was proposed to ensure the interpretability of
the fuzzy sets associated with the inputs and output. After performing the optimization
process, linguistic labels (concepts) can be associated with the fuzzy sets of the output. This
turns out to be an alternative to incorporate into the traffic model factors that affect drivers.

This model can be extended by considering other traffic scenarios, as well as other
types of driver behaviors and different roads. It can also be improved by using a larger and
more detailed dataset; for a better comparison with other schemes, a greater number of data
can be acquired, which is outside the scope of this work and can therefore be developed in
the future.

8. Conclusions

A fuzzy logic model was proposed that relates the behavior of drivers, considering
their driving style and taking into account different factors that are external to the driver.
In the implementation, different limitations were presented from the data acquisition,
the design of the fuzzy logic system and the implementation of the traffic model. Despite
these limitations, adequate optimization of the fuzzy logic model was achieved.
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The dynamic car-following model, through the optimization process and using the
real data measured in different urban sectors, allows the optimization of the proposed
fuzzy logic system to characterize driver’s behavior. The optimization process could be
improved by using a larger and more detailed dataset. Therefore, future work in this area
should focus on expanding the available datasets, incorporating more scenarios to further
refine the model and increase its applicability in real-world situations.

Fuzzy logic systems can be used to model the behavior of drivers on urban roads by
considering different environmental factors. The incorporation of a fuzzy logic system
into a dynamic vehicle tracking model allows the inclusion of driver’s behavior. The use
of fuzzy logic in the optimization process helped to fine-tune the model and improve
its accuracy.

After carrying out the optimization process, it was possible to assign linguistic labels to
the fuzzy sets associated with the output discourse universe. In this way, the interpretability
of the proposed fuzzy system is achieved by assigning labels (concepts) to the fuzzy sets.

The initial configuration of the fuzzy system allowed us to implement the optimization
process using the quasi-Newton method, which requires an initial search point.

Regarding future works, it is possible to improve the model considering other scenar-
ios, such as the inclusion of overtakings and other driver behaviors. This allows creating a
more comprehensive and accurate representation of real-world driving conditions. This
could enhance the applicability of the fuzzy logic model in practical transportation plan-
ning and traffic engineering applications. In addition, another focus should be based on
collecting a larger and more detailed dataset to further optimize the proposed fuzzy logic
model, particularly in relation to driver behavior in different urban sectors.

To increase the interpretability of the model, a future work could explore alternative
methods for assigning linguistic labels to the fuzzy sets, such as incorporating expert input
or using natural language processing techniques.
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