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Abstract: Currently, the internet of things (IoT) is a technology entering various areas of society,
such as transportation, agriculture, homes, smart buildings, power grids, etc. The internet of things
has a wide variety of devices connected to the network, which can saturate the central links to
cloud computing servers. IoT applications that are sensitive to response time are affected by the
distance that data is sent to be processed for actions and results. This work aims to create a prototype
application focused on emergency vehicles through a fog computing infrastructure. This technology
makes it possible to reduce response times and send only the necessary data to cloud computing.
The emergency vehicle contains a wireless device that sends periodic alert messages, known as an
in-vehicle beacon. Beacon messages can be used to enable green traffic lights toward the destination.
The prototype contains fog computing nodes interconnected as close to the vehicle as using the
low-power whole area network protocol called a long-range wide area network. In the same way, fog
computing nodes run a graphical user interface (GUI) application to manage the nodes. In addition,
a comparison is made between fog computing and cloud computing, considering the response time
of these technologies.

Keywords: internet of things (IoT); fog computing; cloud computing; beacon; long range wide area
network (LoRaWAN)

1. Introduction

Currently, the main cities struggle to solve problems such as transportation, mobility,
and security, among many others. In the desire to solve them with technological devel-
opment, a new concept has emerged, classified as smart cities or intelligent cities. These
have as the main objectives to achieve sustainability in economic, social, and environmen-
tal issues, including information and communication technologies (ICT). It is projected
that by 2050, 68% of the world’s population will be concentrated in urban areas, so there
is a latent trend to establish smart cities and address transport and mobility solutions.
Industry 4.0 currently has solutions based on the internet of things (IoT), 5G, big data, and
software. In addition, there is exponential growth in the management of smart cities [1].
There will be billions of internet-connected devices, such as sensors, actuators, cell phones,
laptops, and tablets, to be used in different areas such as mobility, transportation, smart
grids, smart lighting, smart homes, and buildings. Cisco estimates that by 2020 there will be
50 billion devices, which would imply a possible saturation of bandwidth in the transport
of data from the perimeter of local area networks (LANs) to data centers [2,3].

Data analysis on an IoT architecture is mostly done with solutions purely based
on a cloud computing infrastructure. This results in high response times and ends up
not being the best solution for applications that need a real time response. Due to these
limitations in future implementations of the IoT, the term fog computing is emerging and
is at the edge of the network, specifically between the physical devices and the backbone
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of data networks [4]. This new technology will allow there to be no saturation in data
transportation, improve response times, and even provide greater security since most of
the information will be handled within the internal network. One of the communication
protocols that are coupled to fog computing is long range (LoRa). LoRa has attracted the
interest of researchers because it is an open standard and contributes to the development of
sustainable smart cities as it is linked to circular economy concepts [5]. LoRa has a high
tolerance to interference which makes it an ideal protocol for industrial environments; it
has a high sensitivity to receive data, low power consumption, long range from 10 km to
20 km, low data transfer, and point-to-point communication.

There are some emergency-oriented technologies, such as smart transducer integrator
(STI), green wave, and closed-circuit television (CCTV). STI has become one of the most im-
portant IoT applications for the development of smart cities. For this reason, several studies
have been carried out to improve vehicular traffic and optimize the time of emergency
vehicles [6]. This technology provides a basic component in STI for the implementation
of smart sensor networks (SS-Nets) and IoT. The STI aims to address the current needs
of SS-Nets and IoT. Innovative aspects of the STI system are the built-in standardized
mechanisms to improve reliability and ubiquitous operation, considering the ability to
operate even in completely sealed or inaccessible environments, such as metal enclosures.

Similarly, green wave technology would enable an emergency vehicle that allows
traffic lights to turn green as you cross the intersection. This study is based on an implemen-
tation using RFID technology, in which the RSUs have readers to receive the signal from the
tags installed in the vehicles [7,8]. The disadvantage of this system is that having a passive
RFID tag unable to energize leads to possible misuse of the system because, if the vehicle is
not in an emergency, the traffic lights will continue to be activated. Along the same line,
CCTV systems are installed in different cities with an image processing technique. The
downside of this system is that in bad weather situations, like rain or fog, there may be an
inadequate or inaccurate response for emergency vehicles.

This research consists of prototyping an IoT solution through a prototype on a sensor
network with components such as proximity sensors or beacons installed in emergency
vehicles and intersections. Mesh sensor networks between traffic lights and walkways.
Implementation of the DSA (distributed services architecture) framework in gateways,
allowing them to act as fog computing devices [9]. The sensors communicate with each
other through the LoRa protocol, which is classified within the LPWAN (low power wide
area network) protocols that are oriented to have a large range of coverage and low energy
consumption, which allows having several distributed nodes in a wide geographical area
safeguarding the power consumption of the device.

The application of IoT in fog computing for the development of an emergency response
system is highly beneficial due to the technology’s ability to collect and process data in
real time. By bringing processing and storage capacity closer to IoT devices, faster and
more efficient responses to emergencies can be achieved. A system that uses IoT and
fog computing to respond to emergencies will constantly monitor connected devices and
sensors, collect data, and send it to the cloud for processing. The cloud can then make
decisions in real time and send information back to the device or user for action.

2. Materials and Methods

For the development of this work, experimental and inductive methods were used.
Through a literature analysis, the appropriate tools for the implementation of the IoT
prototype were chosen. This prototype consists of infrastructure using fog computing to
improve response times in IoT environments focused mainly on emergency vehicles. The
development and implementation of the prototype consist of nodes that are distributed
in a model that simulates a city with several intersections. The fog computing nodes will
execute an application that will allow them to detect via Bluetooth the beacon that will be
installed in the emergency vehicle and, in turn, be able to send messages through a LoRa
transceiver, allowing the vehicle to issue an alert when it reaches the next junction to enable
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the green light beacon, and so on, at the following junctions until the emergency vehicle
reaches its destination [10]. The materials and tools to be used are as follows:

• Mini PC Z83-F and Raspberry Pi 3B+;
• Module HM-10 Bluetooth 4.0.0 DS-Tech;
• LoRa sx 1278 transceiver;
• Bluetooth 4.0 Integrated in Z83-F Mini PC;
• ATMega 2560 microcontroller and SAM D-21;
• IDE Visual Studio;
• Application with C# programming language;
• Windows instance on Amazon Web Services.dsd
• Vehicle-to-Infrastructure Communication

2.1. Review of Similar Works

There are relevant works that have carried out studies on the use of IoT in fog com-
puting that have been reviewed and whose methods have been analyzed in detail for
the design of this proposal. In [11], an IoT-based emergency response system using fog
computing is proposed. The system focuses on the detection and monitoring of emergency
events and uses sensor technology to collect data in real time. The data is then sent to
the fog server, where it is processed, and decisions are made in real time to coordinate
the emergency response. In [12], an emergency response system based on IoT and fog
computing for smart cities is proposed. The system uses sensors to monitor emergency
events and uses the fog server to process the data and make decisions in real time. The
authors also developed a simulation model to evaluate the effectiveness of the proposed
system. In [13], an IoT-based real-time emergency response system is designed. The system
uses sensors to monitor emergency events and uses the fog server to process the data and
make decisions in real time. The authors also developed a mobile application that allows
users to report emergency events and receive real time updates on the emergency response.
In [14], an emergency response system for smart cities based on IoT and fog computing is
proposed. The system uses sensors and IoT devices to collect data in real time and uses the
fog server to process the data and make real-time decisions. The authors also developed an
ambulance routing algorithm to coordinate emergency response.

Another study published in the Journal of Ambient Intelligence and Humanized
Computing by researchers from the University of Seville and the University of Murcia,
Spain, proposes an emergency response system based on IoT and fog computing that uses
machine learning technologies to analyze the data collected by IoT sensors [15]. The system
also uses a hybrid cloud model to improve the scalability and efficiency system. In addition,
in an article published in the journal Future Generation Computer Systems, researchers
from the University of Surrey in the UK propose an emergency response system based on
IoT and fog computing that uses natural language processing techniques to identify and
classify emergencies in real time [16]. The system is also equipped with a routing algorithm
to coordinate the emergency response. These previous works demonstrate the effectiveness
of the combination of IoT and fog computing in the development of emergency response
systems. In addition, these studies also highlight the importance of machine learning
techniques and natural language processing to improve the efficiency and scalability of
the system. The application of IoT in fog computing for the development of emergency
response systems has proven to be a promising solution to improve the ability of authorities
and emergency services to respond quickly and effectively to emergencies. Previous work
provides evidence of the effectiveness of this combination of technology and of additional
techniques that can be used to further improve the system.

2.2. Vehicle-to-Infrastructure Communication

For the communication between a vehicle and the road unit (RSU), a type of wireless
communication that does not require pairing between devices was considered, as is the
case of the master-slave model. Another aspect analyzed was that the device installed in
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the vehicle should be capable of emitting electromagnetic pulses with information about its
received signal strength intensity (RSSI) and alert messages. Bluetooth, dedicated short-
range communications (DSRC) technology, and visible light communication (VLC) can
all deliver alert messages without the need to pair with a master device. VLC would be
the optimal technology considering that it has a bandwidth of 1000 GHz compared to
83 MHz for Bluetooth and 75 MHz for DSRC, respectively. However, VLC is still under
development for implementation in vehicles.

Although DSRC and Bluetooth were standardized over a decade ago, it is the latter
that has made significant strides. These differentiating features are low power consumption,
which is a key feature in IoT, and pioneering wireless technologies in beacon management
for peerless message transmission. The main features of Bluetooth 4.0 are its range of up to
100 m with a power consumption of 100 mW. The transmission speed is between 25 Mbps
and 32 Mbps [17]. It has BLE (Bluetooth low energy) functionality, which is a low power
consumption mode and is essentially feasible for IoT applications. For the test environment
to be real, it is necessary to amplify the signal; for this, several techniques can be used
to extend the range of Bluetooth 4.0, such as increasing the transmission power, using
external antennas, changing the location of the device, using Bluetooth repeaters and use
Bluetooth mesh technology. Choosing the proper technique will depend on the situation
and specific needs.

In low power mode, it uses frequency division multiple access (FDMA) and time
division multiple access (TDMA) multiplexing with 40 transmit and receive channels. Each
channel is separated by 2 Mhz, three of which are used exclusively for announcements and
the remaining 37 for data and message announcements. Bluetooth channels are chosen
randomly and using frequency spread spectrum (FHSS) as this technique also reduces
interference between channels, see Figure 1.
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2.3. Communication between Fog Computing Nodes

The number of fog computing nodes will depend on the range of coverage and the area
of the city to be covered. For large cities, hundreds or thousands of fog computing nodes
would be required to satisfy different services, such as air quality measurement, noise
pollution, traffic management, emergency vehicles, etc. Both the worldwide interoperability
for microwave access (WiMAX) and mobile networks have been the types of wireless
technology to provide connectivity to nodes in metropolitan areas [18,19]. With the advent
of IoT, the implementation of these technologies is not feasible since they would represent a
high cost for the thousands and millions of nodes connected to the network [20]. Currently,
low power wide area networks (LPWAN) technologies are emerging strongly, which
promote low power consumption and low data transmission rates per node, see Table 1.
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Table 1. Comparison between LPWAN technologies for IoT applications.

LPWAN Technology LoRaWAN IEEE 802.11ah Sigfox Dash 7

Urban coverage 3–6 Km 1 Km 3–10 Km 5 Km
Rural coverage 15 Km 1 Km 30–50 Km 5 Km

Transfer rate Up to 300 Kbps 346.66 Mbps 300 bps 166.67 Kbps
Bidirectional

communication Yes Yes Limited Yes

Frequency licensing No No Yes No
Frequency range 125, 433, 868 and 915 MHz 1 GHz sub-bands 868 and 902 MHz 433, 868 and 915 MHz

Security Medium High Very high Medium
Mobility Yes Yes Limited Yes

Proprietary technology No No Yes No

Considering an IoT application with immediate response times, the technology that
meets this requirement is IEEE 802.1 due to its high transfer rate. However, its downside is
its low coverage range, which would be too expensive to cover an entire city with multiple
IEEE 802.11ah gateways. Sigfox offers a wider range of coverage but has the lowest transfer
rate at only 300 bps, which is not eligible for real-time applications. Being a proprietary
technology, sending and receiving messages has a cost for the user [21]. Therefore, the
technologies that best adapt to this type of environment are LoRa and Dash 7 since they
have a wide range of coverage and an acceptable bit rate for sending messages. The
chosen technology is LoRaWAN because, unlike Dash 7, it achieves a substantially better
transfer rate.

2.4. IoT Based on Fog Computing

In the network diagram of a vehicular IoT environment, fog computing nodes can be
directly linked to another node within range. The RSUs contain processing and connectivity
to detect vehicles, and the intersections also have fog computing nodes. Figure 2 shows that
it contains hierarchical fog computing nodes. At the first level, some sites or RSUs detect
vehicles at different intersections, then neighborhood-level nodes, and finally, regional
nodes that help the lower nodes and route the information to cloud computing.

Figure 3 shows a network diagram consisting of four cloud computing nodes. One of
them is an RSU with a location to activate the first traffic light as soon as possible, while
the remaining three nodes are directly interconnected with the intersection traffic lights.
Implementing a LoRa mesh network has the advantage that the first RSU that detects the
onboard unit (OBU) signal will have the task of routing the alert message along the path to
the destination of the emergency vehicle [22,23]. All nodes achieve connectivity with each
other thanks to this type of network topology. Processing is done on Z83-F minicomputers
and is supported by the hierarchical node, which contains more processing as it has a PC
and WAN connectivity to a server on AWS. The OBU consists of an HM-10 beacon module
that operates in the ISM bands with Bluetooth 4.0 technology.
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Figure 2. Network diagram of a vehicular IoT environment based on fog computing.

Figure 4 shows a network topology like Figure 3, with the difference that there are
more fog computing nodes distributed among intersections to activate traffic lights via
LoRa. Three fog computing nodes can be seen managing the lower nodes and a parish or
metropolitan node with wide area network (WAN) connectivity via long-term evolution
(LTE) or LTE category M1, the latter being an IoT protocol for real-time applications. The
fog computing nodes are Cisco IR 910 industrial routers [24]. These devices can run any
Linux distribution and add LoRa modules for connectivity. Communication from Vehicle
to Infrastructure (V2I) is through Dedicated Short-Range Communications (DSRC), which
is standardized in the IEEE 802.11p protocol on the frequency of 5.9 GHz, which has the
advantage of being a licensed frequency and does not suffer interference with medical
bands (ISM).
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2.5. Prototype Development
2.5.1. Framework

For the implementation of the prototype, the .NET framework is chosen because it
allows the design of desktop applications or Windows Forms. These applications will be
deployed on both cloud computing and fog computing nodes. The advantages of choosing
this framework are that through serial communication, it is possible to connect LoRa
modules to the fog computing nodes [25]. While the distributed services architecture (DSA)
depends on the distributed services links (DSL) that must have compatibility with this type
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of technology, it does not. It is also important to note that .NET is compatible with Windows
operating systems and any Linux distribution through the mono project framework.

2.5.2. Fog Computing Nodes

Fog computing nodes are characterized by computing, storage, and connectivity.
The devices or computers that fit in a reduced prototype are Mini PCs with Intel Atom
processors and Raspberry Pi 3B+. In a fog computing node in a real environment, industrial
equipment, such as the Cisco IR 910 and 809, is used. This Cisco equipment allows the
running of the Linux operating system for processing and the possibility of communicating
via LPWAN, specifically with LoRa [26,27].

The Raspberry Pi 3B+ can receive the message emitted by the vehicle via Bluetooth;
this will be done through a script programmed in Python. For message processing, if
the vehicle is alerting, it determines which intersection or traffic light should turn green
and which next node should be alerted to enable the next intersections. The algorithm is
performed in an application written in the C# programming language [22], specifically,
in a Windows Forms application that runs natively on Windows operating systems. It is
necessary to install a platform with cross-platform capabilities on the Raspberry Pi 3B+.
This platform is sponsored by Microsoft, which allows executing and compiling of the code
of the .NET framework based on the ECMA and C# standards, as presented in Figure 5.
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2.5.3. V2I Implementation

Communication between the emergency vehicle and the RSU or fog computing node
is done via Bluetooth. The module that will act as a beacon is the Bluetooth HM-10
in the emergency vehicle. This module is configured by default as a slave to link with
another module, which is the master [28]. Therefore, using serial communication and
AT commands, it is essential to configure this module to be in beacon mode and only
make an announcement or broadcast of messages with its RSSI. To configure the HM-10
module, a USB-to-Serial-Transistor-Transistor Logic (TTL) converter or adapter from Future
Technology Devices International (FTDI) is required. It is important to note that the RX
(receiver) of the HM-10 is connected to the TX (transmitter) of the USB-to-TTL converter.

Once the connection between pins is established, depending on the operating system,
the serial communication program Putty for Windows devices or CoolTerm for Mac devices
is opened. Communication is established at 9600 baud and the COM port to which it is
connected to the computer. Send the AT command, and the HM-10 module will reply with
“OK” messages when it accepts the commands. Immediately after the module responds,
various AT commands can be entered to query the MAC address, name, communication,
etc. Figure 6 shows how the module responds based on the command entered. In this case,
the MAC address is queried, and the communication speed is set to 0, which represents
9600 baud.
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At the end of the installation of the library and the Python compiler, we proceed to 
create a script with the name “ble_RSSI.py” to obtain the MAC address and RSSI of the 
HM-10 beacon. The script in Figure 8 instantiates a scanner object to access library func-
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Table 2 presents various commands used to configure the HM-10 module as a beacon.

Table 2. Commands entered.

Number Command Description

1 AT + RENEW Clears all settings and resets the module to its default configuration.
2 AT + RESET Restart the device.
3 AT + ADVI0 Sets the interval of messages every 100 milliseconds.

4 AT + NAMEvehiculoEmergencia A name is personalized so that it can be distinguished; in this case, its
name is “vehiculoEmergencia”.

5 AT + ADTY3 Set the HM-10 module as an advertiser to transmit messages, disable
scanning functions, and have another device pair to the Bluetooth module.

6 AT + IBEA1 Officially establishes the module as a beacon device.
7 AT + DELO2 Configures messages to be transmitted as broadcast.
8 AT + PWRM0 Sets the device to sleep or auto-sleep to reduce power consumption.
9 AT + RESET The device is rebooted one last time to initialize with the new settings.

After configuring the HM-10 module as a beacon, any other device that is in scanning
mode can receive the message with its RSSI, which has a window of 100 milliseconds that
the HM-10 transmits. To listen to the message in the fog computing nodes, the integrated
Bluetooth 4.0 module in the Z83-F or the Raspberry Pi 3 B+ is used. In the case of the
Raspberry Pi 3 B+, to decrypt the messages and obtain the RSSI of the beacon, it is necessary
to install the bluepy library available in the Python programming language [24]. The
commands described in the first line install the latest version of the Python compiler and
then install the bluepy library, as shown in Figure 7.

Computers 2023, 12, 81 10 of 26 
 

 

 
Figure 6. HM-10 connection with FTDI adapter. 

Table 2 presents various commands used to configure the HM-10 module as a bea-
con. 

Table 2. Commands entered. 

Number Command Description 
1 AT + RENEW Clears all settings and resets the module to its default configuration. 
2 AT + RESET Restart the device. 
3 AT + ADVI0 Sets the interval of messages every 100 milliseconds. 

4 AT + NAMEvehiculoE-
mergencia 

A name is personalized so that it can be distinguished; in this case, its name is “ve-
hiculoEmergencia”. 

5 AT + ADTY3 
Set the HM-10 module as an advertiser to transmit messages, disable scanning 

functions, and have another device pair to the Bluetooth module. 
6 AT + IBEA1 Officially establishes the module as a beacon device. 
7 AT + DELO2 Configures messages to be transmitted as broadcast. 
8 AT + PWRM0 Sets the device to sleep or auto-sleep to reduce power consumption. 
9 AT + RESET The device is rebooted one last time to initialize with the new settings. 

After configuring the HM-10 module as a beacon, any other device that is in scanning 
mode can receive the message with its RSSI, which has a window of 100 milliseconds that 
the HM-10 transmits. To listen to the message in the fog computing nodes, the integrated 
Bluetooth 4.0 module in the Z83-F or the Raspberry Pi 3 B+ is used. In the case of the 
Raspberry Pi 3 B+, to decrypt the messages and obtain the RSSI of the beacon, it is neces-
sary to install the bluepy library available in the Python programming language [24]. The 
commands described in the first line install the latest version of the Python compiler and 
then install the bluepy library, as shown in Figure 7. 

 
Figure 7. HM-10 connection with FTDI adapter. Commands for installing Bluepy on Raspbian. 

At the end of the installation of the library and the Python compiler, we proceed to 
create a script with the name “ble_RSSI.py” to obtain the MAC address and RSSI of the 
HM-10 beacon. The script in Figure 8 instantiates a scanner object to access library func-
tions and get values such as UUID, MAC address, RSSI, and other parameters based on 
the programmer’s requirements. A full-featured infinite loop is created to scan beacons 
with a defined time every 50 milliseconds [29]. For function accesses, each device is 
scanned, and then the following function collects and prints the MAC address and RSSI 
of the HM-10 beacon. To run the script, open the Raspberry Pi OS terminal and, with the 
command “sudo python3 ble_RSSI.py”, run the command and get the first output. 

Figure 7. HM-10 connection with FTDI adapter. Commands for installing Bluepy on Raspbian.

At the end of the installation of the library and the Python compiler, we proceed to
create a script with the name “ble_RSSI.py” to obtain the MAC address and RSSI of the
HM-10 beacon. The script in Figure 8 instantiates a scanner object to access library functions
and get values such as UUID, MAC address, RSSI, and other parameters based on the
programmer’s requirements. A full-featured infinite loop is created to scan beacons with a
defined time every 50 milliseconds [29]. For function accesses, each device is scanned, and
then the following function collects and prints the MAC address and RSSI of the HM-10
beacon. To run the script, open the Raspberry Pi OS terminal and, with the command “sudo
python3 ble_RSSI.py”, run the command and get the first output.
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Figure 8. Getting transmitted message from HM-10 beacon and printing its MAC address and RSSI.

Once the RSSI is obtained, it is sent to the C# application below using sockets. The
socket library is used to send the UDP transport datagram to receive this message back
through the loopback address on port 2019. In the case of the Z83-F node, this process
is much simpler due to the socket libraries of beacons available in the .NET framework.
These libraries allow the device to be set in scan mode and receive the beacon messages.

2.5.4. LoRa Mesh Network

LoRa is characterized by a star network topology in which nodes communicate with
each other through a LoRa gateway that has the functionality to route data to the WAN
or other adjacent LoRa nodes. The implementation of a star network in a city would be
very expensive due to the large number of LoRa gateways that would have to be invested
to cover an entire urban area. In this prototype, the connectivity between nodes is done
through a mesh-type network topology. The benefits of using this network topology are
that it provides a larger coverage area and the certainty that packets reach their destination
without incurring the placement of gateways [30]. A study conducted at a university
in China tested wireless connectivity in an 800 m by 600 m area with 19 LoRa devices
to measure the performance of mesh and star network topologies. The mesh network
topology achieves a packet delivery ratio (PDR) of 88.49%, and in the same way, under the
same conditions, the star network topology only achieves 58.7% [10]. The module used is
Sentech’s SX1278 and is described in Table 3.

Table 3. Features SX1278.

Features Description

Operating frequency 433 MHz
Modulation FSK, GDSK y MSK

Receive sensitivity −139 dBm
Transmitting power 20 dBm
Power consumption Less than 1 µA

Transfer rate Less than 300 Kbps
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The implementation of the LoRa module with the ATMEGA 2560 and SAM D-21
microcontrollers requires the Radiohead library for the communication between these
devices and the establishment of the mesh network. Figure 9 shows how the RH_RF95.H
and RHMesh.H libraries are included; the first is for the communication of LoRa SX1276 and
SX1278 modules, while the second library allows enabling these transceivers as mesh-type
devices. The SPI pin is set for synchronous communication between the microcontroller
and the transceiver [31,32]. This pin is 53 on the Arduino board and sets external interrupt
0 located on pin 23.
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The instance to control the transceiver on these two pins is called the driver. It serves
to indicate in the mesh network library that this module is number 1 in its network to link
with the other adjacent nodes.

2.5.5. C# Application

The processing of the alerts and messages received from the vehicle is carried out in
Windows Forms applications with the C# programming language. These applications run
on different fog computing nodes since each of them has the possibility of receiving the alert
and processing said information. This is done to ensure that no matter where the vehicle is,
the fog computing distributed architecture allows receiving messages to always attend to
the emergency [33,34]. The nodes that are closest to the vehicles execute a program with
a graphical interface like the ones shown in Figure 10. In this program, you can see the
signal meter in dBm, and the code that is executed is responsible for determining if the
message is within a value greater than −48 dBm for the activation of green traffic lights
toward the destination.
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this interface, it is possible to observe the operation of these and provide processing in 
case a node is down. This node has the capacity of WAN connectivity to the cloud com-
puting service so that the entire system can be constantly monitored, complying with ma-
chine-to-person (M2P) interaction. 
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In cloud computing, using a virtual machine, another Windows Forms application is 
executed in the same way to check the status of all nodes in fog computing, as presented 
in Figure 12. By having dedicated servers with high-performance processing capabilities 
in cloud computing, it is possible to manage nodes and traffic lights that are green or red 
and even know if nodes in the fog are servicing emergency vehicles. 

Figure 10. Graphical application interface for fog computing nodes.

In fog computing, since there are hierarchical nodes, it is considered an administrative
node that verifies the activity or inactivity of the nodes in a zone. This node has a program
with a graphical interface and can manage these nodes, as in Figure 11. Through this
interface, it is possible to observe the operation of these and provide processing in case a
node is down. This node has the capacity of WAN connectivity to the cloud computing
service so that the entire system can be constantly monitored, complying with machine-to-
person (M2P) interaction.
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Figure 11. Application running on fog computing management node.

In cloud computing, using a virtual machine, another Windows Forms application is
executed in the same way to check the status of all nodes in fog computing, as presented in
Figure 12. By having dedicated servers with high-performance processing capabilities in
cloud computing, it is possible to manage nodes and traffic lights that are green or red and
even know if nodes in the fog are servicing emergency vehicles.
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Figure 12. AWS running application.

2.5.6. Windows Instance on AWS

To enable a cloud computing service, major providers such as Amazon Web Services,
Google Cloud, and Azure are available. Amazon Web Services (AWS) is used for this
prototype. This cloud computing provider is a leader in terms of infrastructure as a service
(IaaS), according to the Gartner Magic Quadrant. To enable a virtual machine on AWS,
you need to create an account and verify it. The segment on which the virtual machine
is enabled is called EC2 [35]. Within this segment, you can see the option to create a new
instance in which a list of the different operating systems will be displayed. Once the
operating system has been chosen, a table like the one shown in Figure 13 is generated
with the specifications of the machine to be used. The most important features are the
number of processors, the amount of RAM, and IPV6 support. It is decided to choose a
virtual machine with 1 CPU, 1 GB of RAM, and no IPV6 support, which is enough to run
the Windows Forms application.
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In Figure 14, it is presented for security purposes that incoming and outgoing con-
nections to the virtual machine can be configured using access control lists (ACLs). Both
incoming and outgoing connections will accept an ICMP connection to and from the public
IP address managed by a fog computer administrative node. Similarly, the UDP protocol
over port 2019 is the default for communication between cloud computing applications
and the application that will run on cloud computing [36].
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agement of RSUs in this area and redirects priority information to cloud computing. This 
administrative fog node runs a graphical interface where the nodes can be managed, and 
in case any node fails, it can distribute the processing among the other RSUs. 
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Figure 15 shows the public IP, private IP, and the specifications of the virtual machine,
such as processing, memory, and location. The location of the machine corresponding to
us-east-1b is the state of Virginia in the United States of America.
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Figure 15. Public and private IP address, location, and specifications.

To perform the connectivity test, an ICMP was executed from the public IP allowed in
the access control list. The virtual machine with public IP address 52.55.218.230 responded
successfully with a delay ranging from 200 to 500 ms.

2.5.7. Simulation Environment

The prototype in Figure 16 is carried out on a 90 cm wide by 50 cm long model,
which consists of a road with three traffic light intersections to the destination. In the
prototype, there are four fog computing nodes, out of which three of their RSUs are capable
of scanning and receiving alert messages via beacons [37]. The remaining node oversees
the management of RSUs in this area and redirects priority information to cloud computing.
This administrative fog node runs a graphical interface where the nodes can be managed,
and in case any node fails, it can distribute the processing among the other RSUs.
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The OBU installed in the emergency vehicle is an HM-10 module corresponding to
Bluetooth 4.0 access technology, which is programmed as a beacon. Its power consumption
in BLE mode is in the range of 50 and 200 µA, so it can easily be powered by a coin-type
battery with a capacity of 1000 mAh. Using Equation (1), the approximate life of the battery
can be determined. Where Td is the lifetime, Cb is the battery capacity, Cd1 is the charge of
the device with 200 µA, and Cd2 is the charge of the device with 50 µA. Solving inequality
(2), we obtain that the battery life is from 6.8 months to 27.3 months (3).

Cb (mAh)
Cd1 (mA)

hours × months
730 hours

≤ Td ≤ Cb (mAh)
Cd2 (mA)

hours × months
730 hours

(1)

1000 mAh
0.2 mA

hours × months
730 hours

≤ Td ≤ 1000 mAh
0.05 mA

hours × months
730 hours

(2)

6.8 months ≤ Td ≤ 27.3 months (3)

The battery discharge calculation considers a scenario where the device is continuously
powered. In this case, the beacon is only activated when the vehicle is in an emergency
to reach the nearest fog computing node. Therefore, the device must remain turned off
because it can generate false alerts, and the traffic lights will turn green when there is no real
emergency. From this, it can be deduced that the battery of the device can last even more
than 2 years. The setting in this prototype is an emergency vehicle that emits a warning
signal regardless of where it is in the city. Both in the prototype and in a real scenario, fog
computing nodes can be distributed between intersections and street junctions. With this,
the vehicle can send the emergency to the nearest node and enable the green lights until
the vehicle reaches its destination [38].

Fog computing nodes can enable the destination with green traffic lights or can also
allow the intersection to turn green as the vehicle continues to move. The other simulation
scenario is an IoT solution based solely on cloud computing. This is done to be able to
compare the round-trip delay time known by its acronym RTT. This allows us to know the
time from end to end, the sending of information to the processor node, and the return to
the actuator for the green light enablement.
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3. Results

Using the simulation environment, it was remarkably possible to demonstrate that
data processing as close as possible to the nodes allows a considerable reduction in response
times. For the justification and verification of the results in the simulation environment,
it was proposed to make a comparison of the response time between a fog computing
infrastructure and cloud computing. For the comparison of the response times between
these two technologies, the concept of round-trip time (RTT) is used as the main concept.
RTT is defined as the time it takes for a packet to reach a destination host plus the time
it takes to return to the source. In a fog computing scenario, this situation may vary
slightly since the packet sent for processing does not necessarily have to return to the origin
(vehicle). Instead, the node that processes the information sends the signal to the actuators
to modify the traffic light at intersections. In cloud computing, the same node that sends
the alert must receive instructions from the cloud computing that processes the information
to know which actuators are influenced by this response.

For RTT calculation, there are four sources of packet delay, which are transmission
time, propagation time, node processing time, and queue time. Transmission time is the
time it takes for a packet to traverse the link, which is influenced by the capacity and
maximum speed of the medium. This type of delay can vary according to the transmission
medium of the access, aggregation, and core networks. The propagation time is related to
the transmission medium, taking as the main factor the distance of the link and the speed
of propagation of the waves that travel through the medium. Processing time is the delay it
takes for a back-end application or service to process information to act. The wait time is
the level of congestion that an intermediary equipment requires, such as a router.

For fog computing, the queue delay does not need to be measured or calculated be-
cause the Bluetooth and LoRa protocols are used in LPWAN, which handle the forwarding
of information at the physical layer and data link layer. To calculate the fog computing
transmission delay, it must be considered that there may be one or more hops for the traffic
light to turn green, in addition to the fact that the links and the transmission media change
since two different protocols are used at the link layer level. For the calculation of the
link using the Bluetooth protocol, the packet sent from the vehicle to the RSU is a BLE
advertisement packet with beacon data such as MAC address, manufacturer ID, UUID,
major and minor. In Figure 17, the values that serve as beacon identifiers, among others,
are presented.
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Equation (4) is used to calculate the transmission time, where Tt is the transmission
time, Lp is the packet length in bits, and Ts is the transmission rate in b/s. The packet to be
sent can have a maximum of 376 bits. So, to calculate the transmission delay (5), we consider



Computers 2023, 12, 81 18 of 26

this data and the maximum link speed, which is 32 Mbps in Bluetooth 4.0. The transmission
time (6) between the vehicle and the RSU under ideal conditions is 1.17 × 10−5 s.

Tt =
Lp (bits)

Ts
(

b
s

) (4)

TtBluetooth 4.0 =
376 bits

32 × 106 bits
s

(5)

TtBluetooth 4.0 = 1.17 × 10−5 s (6)

Once the RSU receives the beacon packet, it is decompressed to check the MAC
address if it corresponds to an emergency vehicle, and the RSSI is obtained. Since these two
applications are on the same chassis or node, this information is sent to the Windows Forms
application through the local host. The fog computing node, in this case, the Raspberry Pi
B+, picks up the beacon packet via the bluepy script that scans for beacons. Thus, it needs
to be sent to the Visual Studio app via sockets over the network card, which is 330 Mbps.
The packet being routed to the app contains MAC, RSSI, and the message. It counts 48 bits
of physical address, four bytes of RSSI, and six bytes of the message because it contains six
characters, obtaining a data frame of 128 bits. Once these data are obtained, the 330 Mbps
ethernet interface transmission delay is applied to send the information to Windows Forms
(7), resulting in 3.9 × 10−7 s (8). This step is not required for the Z83-F node.

TtNetwork card =
128 bits

330 × 106 bits
s

(7)

TtNetwork card = 3.9 × 10−7 s (8)

The processing is then done in the app, so there is a possibility to calculate the time
required for the processing in the app. In this process for Raspberry Pi 3B+, the last 10 RSSI
values are obtained via averaging to get a more accurate RSSI value. This is done because,
in the Python script where the RSSI has been collected, the process of obtaining these values
is not exact and oscillates between −60 dB and −70 dB. The MAC address and the alert
message are verified to determine the action to take. The processing time is 50 milliseconds
for the Raspberry Pi 3B+ and 20 milliseconds for the Z83-F node. This calculation can be
done by either of the two methods shown in Figure 18.
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Once the information is processed and the destination of the emergency vehicle is
known, the last step is to send the alert via LoRa to the rest of the nodes and actuators to
activate the green traffic lights. In this case, LoRa contains a data frame with a maximum
length of 250 bytes and a transfer rate of up to 300 kbps (9). Applying these values in
Equation (4), a transmission delay of 6.6 × 10−3 s is obtained (10).

TtLoRa =
250 bytes × 8

bytes bits

300 × 103 bits
s

(9)

TtLoRa = 6.6 × 10−3 s (10)

Table 4 indicates the transmission time of the Raspberry Pi 3B+ on the Bluetooth 4.0
beacon, internal network card, and LoRa.

Table 4. Transmission time Raspberry Pi 3B+ elements.

Variable Description Value

TtBluetooth 4.0 Transmission time Bluetooth 4.0 beacon 1.17 × 10−5 s
TtNetwork card Python to Visual Studio script internal network card transmission time 3.9 × 10−7 s

TtLoRa Transmission time LoRa 6.6 × 10−3 s

To calculate the total transmission time of the Raspberry Pi 3B+, the sum of the
transmission time of all the elements (11) is calculated, resulting in 6.61209 × 10−3 s (13).

TtRaspberry Pi 3B+ = TtBluetooth 4.0 + TtNetwork card + TtLoRa (11)

TtRaspberry Pi 3B+ = 1.17 × 10−5s + 3.9 × 10−7s + 6.6 × 10−3 s (12)

TtRaspberry Pi 3B+ = 6.61209 × 10−3s (13)

Table 5 below shows the transmission time of the Z83-F on the Bluetooth beacon
and LoRa.

Table 5. Transmission time Z83-F elements.

Variable Description Value

TtBluetooth 4.0 Transmission time Bluetooth 4.0 beacon 1.17 × 10−5 s
TtLoRa Transmission time LoRa 6.6 × 10−3 s

To calculate the total transmission time of the Z83-F, the sum of the transmission time
of all the elements (14) is calculated, resulting in 6.617 × 10−3 s (16).

TtZ83−F = TtBluetooth 4.0 + TtLoRa (14)

TtZ83−F = 1.17 × 10−5s + 6.6 × 10−3 s (15)

TtZ83−F = 6.617 × 10−3 s (16)

Finally, it is necessary to calculate the propagation delay using Equation (17). Where
Pt is the propagation time, Ld is the link distance, and Ps is the propagation speed.

Pt =
Ld (m)

Ps
(m

s
) (17)
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Taking as refractive index the air as it is the medium in which the waves are trans-
mitted, the propagation speed of the air is equal to 299704764 m/s. Once the propagation
velocity of the waves in the medium in which they are transmitted is obtained, the propa-
gation delay is calculated. In the first instance, where the emergency alert is picked up in
the vehicle, the message can be received up to 100 m away (18). With these data, the result
in the V2I link is 3.3 × 10−7 s (19).

Pt =
100 m

299704764 m
s

(18)

Pt = 3.3 × 10−7 s (19)

In LoRa, the links and distance between computing nodes in the fog will be approxi-
mately 3 km because the RSUs do not have to be so far apart for message reception. Using
Equation (20) and the LoRa distance data, a propagation time of 1 × 10−5 s is obtained (21).

Pt =
3000 m

299704764 m
s

(20)

Pt = 1 × 10−5 s (21)

Table 6 indicates the propagation time in the Bluetooth beacon and LoRa of the
computing nodes in the fog.

Table 6. Propagation time of computing nodes in the fog.

Variable Description Value

TtBluetooth 4.0 Transmission time Bluetooth 4.0 beacon 3.3 × 10−7 s
TtLoRa Transmission time LoRa 1 × 10−5 s

To calculate the total propagation time with the Raspberry Pi 3B+ and the Z83-F, the
propagation times of all the elements are added together (22), resulting in 6.617 × 10−3 s (24).

PtRaspberry Pi 3B+ and Z83−F = TtBluetooth 4.0 + TtLoRa (22)

PtRaspberry Pi 3B+ and Z83−F = 3.3 × 10−7s + 1 × 10−5 s (23)

PtRaspberry Pi 3B+ and Z83−F = 1.03 × 10−5 s (24)

Once the transmission delay, propagation delay, and processing delay of the node are
obtained, the times calculated for each node are added, and the total is obtained, which
results in 0.08664 s or 86.64 milliseconds; for the Z83-F minicomputer, it is 0.02662 s or
26.62 milliseconds. Table 7 lists the total transmission time, total propagation time, and
total processing time on the Raspberry Pi 3B+. According to the results obtained in terms
of time between different devices, there is no significant difference because they are all fast
enough for this application.

Table 7. Total Raspberry Pi 3B+ times.

Variable Description Value

Tt Total transmission time 6.61209 × 10−3 s
Pt Total propagation time 1.03 × 10−5 s

Tpt Total processing time 0.08664 s
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To calculate the total delay time on the Raspberry Pi 3B+, the total transmission,
propagation, and processing times are added together (25), resulting in 0.0932 s (27).

Tt + Pt + Tpt (25)

6.61209 × 10−3 s + 1.03 × 10−5 s + 0.08664 s (26)

0.0932 s (27)

Table 8 below shows the total transmission time, total propagation time, and total
processing time for the Z-83F device.

Table 8. Total Raspberry Pi Z-83F times.

Variable Description Value

Tt Total transmission time 6.617 × 10−3 s
Pt Total propagation time 1.03 × 10−5 s

Tpt Total processing time 0.02662 s

To calculate the total delay time in the Z83-F device, the total transmission, propagation,
and processing times are added together (28), resulting in 0.0328 s (29).

6.17 × 10−3 s + 1.03 × 10−5 s + 0.02662 s (28)

0.0328 s (29)

The transmission and propagation time in the V2I link with Bluetooth 4.0 technology
was calculated, see Figure 19. Additionally, the transmission and propagation time of the
LoRa link and the processing time in the fog computing nodes were in two different cases
if a Raspberry Pi 3B+ or a Z83-F mini-PC was used.
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For the calculation of cloud computing, the procedure is more complex because it must
be carried out by software that allows us to know how long it will take for the package to
be returned after a delay. Since it is not possible to know with certainty what the transfer
rate of the links where the data is transported will be nor the distance, and above all, by
transporting this data through an aggregation and core network, it is not possible to know if
they travel through a WWDM, DWDM, or SDH link, among many others that make up the
core of the internet. For this cloud-computing-based IoT solution scenario, the Z83-F node
will not perform any processing and will forward the information as soon as possible to
the WAN. This is for the information to be processed in cloud computing. To determine the
data, use the terminal on UNIX-based operating systems or CMD for Windows computers
and run the tracert or traceroute command. The results of the traceroute command are that
the packet needs approximately 32 hops to reach its destination.

Once the hops have been determined, the end-to-end response time can also be
determined using the ping command by sending an ICMP packet to the server. The
response will be received using an acknowledgment of receipt (ACK) with the RTT. The
average value is 111 milliseconds; when compared to fog computing, this is remarkable
and beneficial for implementing this technology in low response time IoT solutions. It
is important to determine that one of the factors that increase the response time when
transporting data to cloud computing is the delay in processing in the node. Although the
processing delay in the node is the processing of the information, it should not be forgotten
that there are also executions in the control plane and data from the routers through which
the information flows. The core routers must decide and route the data in the best way so
that in 32 hops plus the processing of each node is decisive to increase the response time.

4. Discussion

Fog computing is not a technology that will replace cloud computing; rather, it is an
extension of cloud computing so that the two can work together and reduce response times
by locally processing critical information that requires early action. Processing closer to
the sensor layer in IoT has the consequence of reducing response times and, above all, not
unnecessarily saturating the network link to cloud computing since only the information
that needs to be analyzed more thoroughly is sent [39,40]. It is evident that ITS cities are
making efforts to automate traffic lights at their intersections to reduce vehicular traffic in
urban areas; however, there are still no concrete solutions for vehicles, such as ambulances,
firefighters, and police, to reduce their response time in an emergency [41]. In the data
collection from cities with ITS, only the city of Pittsburgh performs processing locally at
signalized traffic intersections; however, it only meets certain requirements to be classified
as a fog computing technology. Many of the IoT applications being deployed in smart
cities do not yet have the fog computing infrastructure and low power wide area networks,
which are now imperative in an IoT architecture [42].

The results obtained in the response times of fog computing and cloud computing are
an approximation since it is carried out in a prototype and mainly also because the nodes
only process a specific application when a fog computing node can process different IoT
application requests [43]. RSUs are very important in a vehicular IoT application to collect
data from the sensors that are equipped on the vehicles to fulfill the various requirements
of an IoT application. For best results, it is recommended to test in a different simulation
environment where you can experiment with the vehicles and install the computer nodes
in the fog at intersections, locations, and several kilometers away [44].

For this type of IoT application in ITS, it is important to consider whether it is necessary
to implement machine learning in the fog computing nodes so that they can learn the best
path based on real-time static traffic data that can be collected and analyzed through big
data tools [45,46]. It is recommended that the fog computing nodes that oversee sending
the information through the network backbone to cloud computing do so through cellular
telephony with the new proprietary LPWAN technologies called LTE M or NB-IoT. To
send information to cloud computing, it is necessary to consider the use of IoT protocols
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in the application layer, such as MQTT or CoAP, to further improve response times to
actuators [47].

Time in milliseconds (msec) is a critical measurement in an IoT application in fog
computing for emergency response system development. This is because, in an emergency,
every second counts, and the speed of response can be the difference between life and death.
In the IoT application in fog computing, IoT sensors send data to fog servers in real time.
This data is quickly processed to detect an emergency and send an alert to the emergency
services. Processing time is critical in this process, as the alert must be sent as soon as
possible to maximize the chance of success in responding to the emergency. In addition,
the data transmission time is also important in an IoT application in fog computing for the
development of a system that responds to emergencies [48,49]. Data must be transmitted
quickly and reliably from IoT sensors to fog servers to ensure a timely emergency response.
Therefore, the time in milliseconds is essential to ensure a fast and effective response
to emergencies in an IoT application in fog computing. Reducing data processing and
transmission time can significantly improve system efficiency and increase the chance of
success in emergency response. Time optimization can also help minimize downtime and
ensure continuous system availability in critical situations.

5. Conclusions

Based on the results obtained from the prototype of the IoT system in fog computing
as an emergency response system, it is mentioned that the use of fog computing techniques
allows the processing of large amounts of data in real time, which allows a faster and
more efficient response to emergencies. In addition, the use of geographically distributed
fog nodes allows greater availability and redundancy of the system, which improves the
response capacity in case of failure in one or more nodes. As a distributed computing model,
fog computing has many advantages. By bringing data processing and storage closer to the
edge of the network, fog computing reduces the latency and bandwidth required to transfer
large amounts of data across the centralized network, which can significantly improve
the performance, reliability, and efficiency of applications in real time. Additionally, fog
computing offers greater flexibility and scalability compared to centralized cloud models.
By distributing computing and storage resources over a larger network, fog computing
can better accommodate the specific requirements of different applications and users and
provide greater resilience and redundancy in the event of failures or outages. However,
there are also challenges associated with fog computing, such as security, data management,
and interoperability. By distributing computing and storage resources over a larger network,
you also create a larger attack area for cyber-attacks, requiring additional security measures.
Additionally, distributed data processing and management can be more complex than
in a centralized model, and interoperability between different devices and platforms can
be challenging.

Fog computing has several advantages that enhance the proposal, such as latency
reduction. By bringing computing and storage resources closer to the edge of the network,
fog computing reduces latency, improving the performance and efficiency of applications in
real time. Improved bandwidth by processing and storing data at the edge of the network,
fog computing reduces the need to transfer large amounts of data across the centralized
network, which can improve bandwidth and reduce associated costs with network traffic.
Generating greater scalability and flexibility by distributing computing and storage re-
sources over a larger network, fog computing can better adapt to the specific requirements
of different applications and users and provide greater resilience and redundancy in the
event of failures or interruptions. Reduced infrastructure costs by leveraging existing
resources at network edge devices, fog computing can reduce the infrastructure costs
needed to support applications and services. Fog computing can significantly improve the
performance and efficiency of real-time applications, reduce costs associated with network
traffic, and improve the scalability and flexibility of computing and storage infrastructure.
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The proposed system is a great contribution by allowing the collection and processing
of data in real time, which facilitates fast and efficient decision-making. By using an
IoT sensor network to monitor an emergency, the collected information can be sent to
a nearby fog server for processing and analysis. This allows data to be processed and
analyzed in real time, allowing for faster emergency response. In addition, future work
proposes the integration of artificial intelligence and machine learning techniques in data
processing that allow the system to identify patterns and anomalies in the information
collected, which allows emergencies to be detected early and act the measures necessary to
respond effectively.
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