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Abstract: Coarse meshes can be recursively subdivided into denser and denser meshes by dividing
their faces into several smaller faces and repositioning the vertices according to carefully designed
subdivision rules. This process leads to smooth surfaces, such as in the case of Catmull-Clark or
Loop subdivision, but often suffers from shading artifacts near extraordinary points due to the lower
quality of the normal field there, typically corresponding to only tangent-plane (and not higher)
continuity at these points. The idea of subdivision shading is to apply the same subdivision rules that
are used to subdivide geometry to also subdivide the normals associated with mesh vertices. This
leads to smoother normal fields, which can be used for shading purposes, and this in turn removes
the shading artifacts. However, the original subdivision shading method does not support sharp and
semi-sharp creases, which are desired ingredients in subdivision surface modelling. We present two
approaches to extending subdivision shading to work also on models with (semi-)sharp creases, and
demonstrate this in the cases of Catmull-Clark as well as Loop subdivision.

Keywords: subdivision surfaces; shading; creases

1. Introduction

Subdivision is a popular modelling paradigm for representing curves, surfaces, and
even objects of higher dimensions, in the context of geometric modelling and computer
graphics and animation. In the surface case, which is the setting of this paper, the method
relies on recursively subdividing the edges/faces of the input and typically coarse mesh,
called the control mesh, often of arbitrary manifold topology. This process, in the theoretical
limit after infinitely many subdivision steps, leads to a smooth surface, called the limit
surface. The most popular subdivision schemes include the Catmull-Clark scheme [1]
based on quad(-dominant) meshes and tensor-product bi-cubic B-splines, and the Loop
subdivision scheme [2] based on triangular meshes and the quartic box-spline. Both
schemes are widely used as they produce C2 continuous limit surfaces almost everywhere,
except at extraordinary points (EPs), where their continuity drops to G1. EPs correspond to
extraordinary vertices (EVs) in the input meshes where other than the regular number of
faces meet, i.e., other than four quads in the Catmull-Clark case, and other than six triangles
in the Loop case. This reduced continuity of the limit surfaces at EPs reveals itself when
shading is applied, leading to visible shading artifacts, caused by the C0 normal field of the
limit surface there.

To alleviate these artifacts, subdivision shading [3] produces a fake normal field for
the limit subdivision surface. The core insight is that if the vertex normals of the control
mesh are subdivided using the same subdivision rules that are applied to the geometry,
the resulting limit normal field will be smoother than the true normal field of the limit
surface. The original method [3] has been improved in [4] by enhancing the blending
scheme of the two normal fields, the real and the fake one, to further increase the quality of
the (fake) normal field of the limit surfaces. However, neither of the subdivision shading
methods works in combination with (semi-)sharp creases [5,6], which are indispensable in
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the repertoire of proper modelling tool-kits and artists. These creases greatly enhance the
modelling capability of subdivision by allowing users to tag edges as sharp (often call
infinitely sharp) or semi-sharp and then by modifying the subdivision rules in the vicinity
of these edges to produce the desired limit surface with infinitely or semi-sharp creases.

The present paper extends our short conference paper [7]. The original paper focuses
on extending the subdivision shading method of [4] to closed models with (semi-)sharp
creases, and is limited to Catmull-Clark subdivision. We extend that in several respects:

• we apply the method also to Loop subdivision (which is based on triangular meshes),
• extend the method to open meshes (for both Catmull-Clark and Loop subdivision),
• discuss improvements to the efficiency of the implementation of semi-sharp subdivi-

sion shading,
• and provide a more extensive evaluation and discussion of results.

The remainder of this paper is organised as follows. In Section 2 we review relevant
related work. Section 3 presents our technical contribution with details of our method.
We then show the results we obtained using our extended subdivision scheme, compare
the two variants that we propose, and highlight the shading effects and quality of the
one we recommend in Section 4. This is followed by a discussion of our results and their
effectiveness and efficiency in Section 5. We conclude the paper in Section 6 and provide
avenues for further investigation.

2. Related Work

In this section we describe relevant related work on semi-sharp creases, subdivision
shading, and normal field blending, i.e., the important ingredients in our proposed method.

2.1. Semi-Sharp Creases

Rules for subdivision surfaces are in the majority of cases designed in such a way that
their repeated application leads to limit surfaces that are smooth everywhere, i.e., at least
globally tangent-plane continuous. However, in some cases this might be undesirable, for
instance when sharp edges should appear in the limit surface. Consequently, these fixed
subdivision rules mean that the only way to have (semi-)sharp edges or corners in a limit
surface is by adding a lot of extra vertices around the part of the mesh that needs to become
sharp. This is inefficient both computationally as well as from the perspective of designers
and artists. Several recent methods have addressed this [8–10]. Based on the ideas of [11],
an efficient method to achieve (semi-)sharp creases was introduced in [5] using modified
subdivision rules, and a different method, based on multiple knots in the underlying spline
representation, was investigated in [12].

The solution of [5] is to add a sharpness value s to each edge in the control mesh.
An edge with sharpness s is then treated as a sharp edge for the first s iterations of the
subdivision algorithm, then as a smooth edge after s iterations. Edges with s = 0 are treated
as smooth, and edges for which s = ∞ are expected to lead to (infinitely) sharp edges.
Otherwise, the edge is semi-sharp.

To be able to discuss the modifications of the involved subdivision rules at (semi-)sharp
edges, we first introduce some terminology. In the case of Loop subdivision, a triangle
is split into four smaller triangles, as follows: each original edge is logically associated
with a new edge point and each original vertex gives rise to a new vertex point. In the
case of Catmull-Clark subdivision, a quad is split into four smaller quads by introducing
new edge and vertex points, but also a new face point for each original face. A similar
procedure is used for (extraordinary) faces of any valency (three, five, six, and so on) in the
Catmull-Clark case, simply splitting a polygon into multiple quads by introducing new
edge points and one central face point.

Determining the coordinates of all these new points in a subdivision step follows the
rules of the respective subdivision scheme, in combination with the following three ways
to account for sharpness values of incident edges:
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• Smooth or dart vertex: If a vertex has fewer than two incident sharp edges, its new
vertex point is determined using the standard Catmull-Clark or Loop subdivision
rules, called the smooth rule. This includes the cases when creating a new face point (in
the case of Catmull-Clark subdivision), the new edge point of a smooth edge, the new
vertex point of a smooth vertex, or the new vertex point of a dart vertex (i.e., a vertex
with only one incident sharp edge).

• Crease vertex: If a vertex has exactly two incident sharp edges, it is subdivided as if it
were a boundary vertex. The corresponding rule is the crease rule, coming from the
uniform cubic B-spline curve subdivision scheme (this applies to the Catmull-Clark as
well as the Loop subdivision scheme). For example, the new vertex point of a sharp
edge, or the new vertex point of a vertex incident with two sharp edges, is generated
using this crease rule.

• Corner vertex: If a vertex is incident with more than two sharp edges, its coordinates
do not change throughout the subdivision process. The rule is called the corner rule.
For example, the new vertex point of a vertex incident with three sharp edges (such as
the corner of a cube) inherits the coordinates from the corresponding old vertex.

When a new edge point is created on a sharp edge, it is recognized as a crease vertex,
and its coordinates are determined as if its edge were a boundary edge (so using the crease
rule). The method for determining face points and faces remains the same as in standard
smooth subdivision rules; see Figure 1.

(a) Control mesh

(b) Loop

(c) Catmull-Clark

Figure 1. A tetrahedron (a) with three sharp edges (red) all with sharpness values s after six subdivi-
sion steps. The top row (b) shows Loop subdivision, and the bottom row (c) illustrates Catmull-Clark
subdivision. From left to right: s = 0, s = 1, s = 2, s = 4, s = 6.

2.2. Subdivision Shading

At and around regular (non-extraordinary and internal) vertices (so those of valency
6 in Loop subdivision, and of valency 4 in Catmull-Clark subdivision surrounded by
quads only), the limit surface can be safely shaded using its standard limit normal field NL.
However, at EVs (extraordinary vertices), the use of NL can lead to visual artifacts. This is
(also) the case for Catmull-Clark and Loop subdivision surfaces, where the normal field
continuity drops to only C0 at extraordinary points, which then leads to visible shading
artifacts there; see Figure 2.

To address this, ref. [3] proposed to subdivide not only the vertices of the meshes,
but also the associated normals. Starting from a control mesh with normals specified
at its vertices, vertex positions and vertex normals are refined exactly in the same way
using the same subdivision stencils. This leads to a subdivided normal field NS which is C2

everywhere except at EPs (extraordinary points), where it is G1 continuous. Because of
this continuity, shading a mesh using NS rather than NL produces results with increased
observed smoothness. When determining the subdivided normal of a vertex, the same
subdivision rule as for vertices is used, but with a minor complication. As the unit normals
should be considered as objects on the unit sphere, they are subdivided as such, using
spherical averaging [3] (instead of the standard linear averaging as applied to vertices).
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(a) (b) (c)

Figure 2. Top row: A model with EVs (one highlighted in red) subdivided using Loop subdivision
rules, shown after 3 subdivision steps. Bottom row: A model with EVs (one highlighted in red)
subdivided using Catmull-Clark subdivision rules, shown after 3 subdivision steps. From left to right:
(a) The mesh after 3 steps of subdivision with an EV highlighted. (b) The shading result without
subdivision shading. (c) The shading result with subdivision shading. Notice the shading artifacts in
(b) near the EVs compared to the results in (c).

2.3. Blending of Normal Fields

As already mentioned above, the subdivided normal field NS is G1 continuous at EPs.
Consequently, it leads to smooth-looking limit surfaces when used for their shading. When
the limit normal field NL is used for shading the limit surfaces, it leads to visual shading
artifacts as it is only C0 at EPs. This would seem to suggest that one should always use
NS. However, this can produce results that look too smooth, and in turn make some of the
details in the mesh visually vanish [3]. Based on these observations, the best results are
obtained when combining both normal fields: keep NL everywhere except in the vicinity
of EPs, where the subdivided normals NS are used. The authors of [3] suggest a scheme
for blending the two normal fields. However, their blended fields are in general not G1 at
EPs. This shortcoming has been addressed in [4] by modifying the subdivision blending
function to obtain a blended normal field NB which is guaranteed to be smooth globally.
Specifically, this blending is defined as

NB = (1 − bp)NL + bpNS, (1)

where b is a special blending function and p is a coefficient that can be used to artistically
control the transition between NS and NL in the blended normal field. In accordance
with [4], p is set to the default value of 1 in the results presented in this paper. The function
b is evaluated as a subdivision function by assigning a control blend weight to each vertex.
To ensure smoothness of the blended normal field, the (limit) blending function has to have
the value of 1 at all EPs, which then needs to transition to the value of 0 everywhere else.
This ensures that NB depends only on NS at EPs, which prevents the visual artifacts that
NL can lead to. This also ensures that, as desired, the majority of the limit surface uses NL
to preserve details.

Although this normal field blending leads to the desired results, it is still challenging to
determine a suitable blending function b, which in turn leads to the problem of specifying
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the control blend weights. Two ways to address this were proposed in [3]. In both cases,
the weights are set to 1 at EVs and 0 at all other vertices. The methods then differ in the
subdivision scheme used to arrive at the limit function b. One of them proceeds with
bi-linear subdivision (over quadrilateral faces), while the other uses the same subdivision
scheme which is applied to the normals (and vertices). As detailed in [4], neither method
gives globally smooth blended normals. To alleviate this, ref. [4] proposed two new
blending functions. The first approach inverts the limit stencils of the used subdivision
scheme to set the control weights in order to ensure that the resulting limit values approach
1 at EPs. The second variant, which is also arguably the better of the two, sets the control
weights to 1 not only at all EVs, but also at their one-ring neighbourhoods. Both variants
yield globally smooth results. All four variants are visually compared in [4]. In our work,
we rely on the second approach in [4] which initialises all EVs and their 1-ring neighbours
to the value of 1 because this method provides the best results. Furthermore, it avoids the
limit stencil inversion step, which could become non-trivial when extraordinary vertices
neighbour each other (and their limit stencils overlap).

Note that the original method [3] advocated spherical averaging for normals, which
is arguably the proper way to deal with normals. However, ref. [4] showed that the
difference between using spherical and standard linear averaging leads to visually nearly
indistinguishable results. Based on this, in our method we rely solely on linear averaging
to compute subdivided normals. Additionally, we start to subdivide normals from level 1
(unless mentioned otherwise) to obtain a good balance between preserving details and
smoothing. And by default, weight subdivision starts from subdivision level 1 as well.

3. Subdivision Shading with Semi-Sharp Creases

We now propose two approaches to combining semi-sharp creases in Catmull-Clark
and Loop subdivision with subdivison shading. How subdivision affects geometry sub-
division near (semi-)sharp creases in Section 2.1. We now extend that to also support the
subdivision of normals at (semi-)sharp edges and vertices, and also discuss the implemen-
tation of the method.

3.1. Blending at Sharp Vertices

The normal field blending method (Section 2.3) does not directly support (semi-)sharp
edges. It thus needs to be extended to be able to correctly handle meshes with some of its
edges labelled as (semi-)sharp, i.e., to models with (semi-)sharp creases. This means that
the blending function definition (see Section 2.3) needs to be extended to account for sharp
vertices, i.e., vertices incident with at least two sharp edges.

We emphasise that the ideas and both variants are shared between the Catmull-Clark
and Loop subdivision schemes. We investigate two variants for this extension, as follows:

• Variant A: We treat sharp vertices as standard (smooth) vertices. In other words, ini-
tialising extraordinary sharp vertices (and possibly their one ring neighborhood) with
control blending weights that will lead to the value of 1 in the limit (see Section 2.3),
and initialising regular sharp vertices with 0.

• Variant B: We initialise the control blending weights of sharp vertices to 0, no mat-
ter whether they are regular vertices or EVs. The idea behind this is that sharp
vertices are not meant to look smooth, and thus are not expected to benefit from
subdivided normals.

Figure 3 shows the two variants with blend weights visualised using a colour map.
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(a) (b) (c) (d)

Figure 3. Top row: A tetrahedron model with three sharp edges (red) with sharpness value 4, shown
after 4 subdivision steps. Bottom row: A cube model with seven sharp edges (red) with sharpness
value 4. From left to right: (a) The control mesh with sharp edges highlighted. (b) The control mesh
after 4 subdivision steps. (c) Blend weights using Variant A. (d) Blend weights using Variant B. Blue
corresponds to the value of 0 and red to 1 of the limit blending function b. Both models start blending
weights at subdivision level 2.

3.2. Blending at Semi-Sharp Vertices

We also need to be able to handle semi-sharp edges and vertices. For an edge with
its sharpness value of s, after s steps of subdivision of a model all sharp vertices become
smooth vertices. Thus the geometry, normals, and blending weights are all subdivided
using the smooth rule in this case. Figure 4 shows the difference of blend weights on sharp
versus semi-sharp edges. When the edges are sharp, in fewer than s subdivision steps,
weights are all 0 on the (subdivided chain of) edges; when the edge(s) become smooth, after
at least s subdivision steps, the weights of EVs are 1 on the (chain of subdivided) edges.

After performing s steps of subdivision, the sharp vertices are meant to become
smooth, which means that they are expected to benefit from subdivided normals. So we
treat them exactly as smooth vertices, and EVs on semi-sharp edges can be shaded smoothly
by applying fake normals.

(a) (b) (c) (d) (e)

Figure 4. Top row: A 3D cross triangle model with four sharp edges (red) with sharpness value 4,
shown after 4 and 5 Loop subdivision steps. Bottom row: A 3D cross quad model with four sharp
edges (red) with sharpness value 4, shown after 4 and 5 Catmull-Clark subdivision steps. From left
to right: (a) The control mesh with sharp edges highlighted. (b) The control mesh after 4 subdivision
steps. (c) Blend weights of the models after 4 subdivision steps using Variant B. Note that there is
no blending on vertices on sharp edges. (d) The control mesh after 5 subdivision steps. (e) Blend
weights of the models after 5 subdivision steps using Variant B. Now, the normals at EVs on originally
semi-sharp edges are blended. For both models, blending of weights starts at subdivision level 2.



Computers 2023, 12, 85 7 of 15

3.3. Blending at Dart Vertices

We now focus on dart vertices, i.e., vertices incident with just one sharp edge. When
subdividing the geometry of the mesh, dart vertices are considered smooth. Nevertheless,
this does not mean that one should treat normals similarly. We explore two ways: we either
consider dart vertices as sharp vertices, or we consider them as smooth vertices.

The above-proposed options cover all sensible variants for treating semi-sharpness or
infinite sharpness in combination with subdivision shading. See Figure 5 for a comparison
of the two options.

(a) (b) (c) (d)

Figure 5. Top row: A tetrahedron model with two sharp edges (red) with sharpness value 4. Bottom
row: A cube model with three sharp edges (red) with sharpness value 4. From left to right: (a) The
control mesh with sharp edges highlighted. (b) The control mesh after 4 subdivision steps. (c) The
blending weights when darts are treated as smooth vertices. (d) The blending weights when darts
are treated as sharp vertices.

3.4. Normals at Sharp Vertices

A typical Catmull-Clark or Loop subdivision implementation supports only one
normal at each vertex. In contrast, every vertex can have up to n distinct normals in our
method, where n specifies the number of sharp edges ending at that vertex; see Figure 6a.
This is the case since the normals on both sides of a crease typically disagree, and this
should stay the case throughout the subdivision process and also when the limit surface
is shaded.

To facilitate this, in the control mesh we assign each sharp vertex (incident with at
least two sharp edges) a set of regions. Each region consists of all incident faces that are not
separated from each other by a sharp edge (black solid line), as illustrated in Figure 6b. If
not specified by the user, the vertex is given a normal for each region; we use the average
of the face normals in that region. Subdividing the normals then proceeds as follows. If
a subdivision stencil includes a sharp vertex, the regular vertex normal of that vertex is
not used. Instead, we use the sharp normal that is in the same region as the (subdivided)
normal that is being determined. In our experimental implementation, users have the
possibility to set sharpness values directly in the tool’s user interface, or through a modified
OBJ file, as described next.
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(a) (b)

Figure 6. (a) Multiple normals associated with sharp vertices. (b) Regions (in different colours)
separated by sharp edges (black solid lines) and non-sharp edges (black dashed lines).

3.5. Implementation

Our implementation is based on that of [4] and our short paper [7]. It uses C++,
OpenGL for graphics, and Qt for window and widget design. The program loads models
from .OBJ files (with modifications to support (semi-)sharp edges) into the half-edge data
structure [13].

Vertex normals are calculated as the average of the surrounding face normals, with
the exception of sharp vertices; see Figure 6. It then subdivides the mesh a user-defined
number of times using Catmull-Clark or Loop subdivision. The sharpness values of edges,
as described in Section 2.1, are defined in .OBJ files (or default to zero), and are stored for
later use for geometry and normal vector subdivision. More specifically, for each face in
the file, we add a list of sharpness values. Each such line consists of either of the following
two options:

1. fs x, where x is a sequence of digits specifying the sharpness values of the edges of a
face in clockwise order. For example: fs 1 2 3 2 5.

2. as y x: x is the same as above and y is a positive integer. This will assign the sharpness
values x to the next y faces in the list.

If not all faces are covered by this sharpness specification, the remaining sharpness
values in the model will be set to 0. In case two faces specify different values for an edge
they share, the highest value will be used. This case cannot occur when using our tool, but
it can arise when editing the (modified) .OBJ file directly by hand. An alternative would be
to specify sharpness values per edge, but this would require an explicit storing of edges in
the files.

The user is provided with a set of UI options to control the settings of the subdivision
and blending of the normals based on Equation (1) and the blending methods specified in
Section 3.1. The bottom right menu enables users to specify how the blend weights of sharp
vertices should be treated, allowing them to choose between either setting those weights to
0 or to treat sharp vertices the same way as regular vertices. Below it, the users can specify
whether darts should be treated as sharp vertices or as regular vertices (see Section 3.3).
The tool has options also to visualise certain aspects of the mesh, such as the blend weights,
the normal buffers, or highlight lines. The user interface of our experimental tool is shown
in Figure 7. We used the tool to generate all examples in this paper.
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Figure 7. User interface of the experimental tool.

4. Results

We now demonstrate our method on several results and provide comparisons of the
proposed subdivision shading variants.

4.1. Catmull-Clark and Loop Subdivision Results

We start with the Robot model in combination with the Loop subdivision scheme in
Figure 8, and the Spot model subdivided using the Catmull-Clark scheme in Figure 9. They
show the differences between using Loop and Catmull-Clark subdivision combined with
semi-sharp creases without and with our method.

Our results suggest that for both subdivision methods, using subdivision shading
with Variant B produces smoother results than the original respective methods without
our subdivision shading. This is especially visible in the highlight line visualisations (in
our figures using blue and cyan), which clearly show changes in the normal fields of the
generated surfaces.
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(a) Control mesh (b) Without subdivision shading (c) With subdivision shading

(d) Without subdivision shading (e) With subdivision shading

Figure 8. Top row: (a) The Robot model with semi-sharp edges of sharpness value of 2 (shown
in red in the control mesh) around its left ‘wrist’. The subdivision level is set to 4. (b) The result
without subdivision shading and (c) with subdivision shading using Variant B. Bottom row: (d) The
result zoomed in without subdivision shading and (e) with subdivision shading using Variant B. In
this example, subdivision of blending weights starts from level 1. The result of Variant B appears
smoother, as evidenced by the smoother blue-cyan highlight lines.
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(a) Control mesh (b) Without subdivision shading (c) With subdivision shading

(d) Without subdivision shading (e) With subdivision shading

Figure 9. Top row: (a) The Spot model with semi-sharp edges of sharpness value of 2 (shown in
red in the control mesh) around Spot’s ears. The subdivision level is set to 4. (b) The result without
subdivision shading and (c) with subdivision shading using Variant B. Bottom row: (d) The result
zoomed in without subdivision shading and (e) with subdivision shading using Variant B. In this
example, subdivision of blending weights starts from level 1. The result of Variant B appears smoother
(as noticeable in the blue-cyan highlight line rendering of Spot’s left ear).

4.2. Blend Weights at Creases with the Two Variants

We tested the two variants on models containing sharp edges. Figure 10 shows a
comparison between the two methods on a model with two ‘faces’ composed of sharp edges
using Loop subdivision. A clear difference is observable around the sharp faces. When
sharp vertices are treated as regular ones (Variant A; top row), the normals misbehave
around the sharp edges. This problem does not exist when sharp vertices are initialized
with a blend weight of zero (Variant B; bottom row). This is even clearer in the highlight
lines plots: in the top image, the lines form wiggles around the sharp edges, while in the
bottom image the lines are smoother all the way up to the sharp edges.
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(a) Control mesh

(b) Variant A

(c) Variant B

Figure 10. Loop subdivision. (a) There are three sharp edges of sharpness value of 4 (shown in red in
the control mesh) in the hat model. The subdivision level is set to 4. The results in the top row (b)
are the shading, highlight lines, and blend weights using Variant A, and the bottom row (c) using
Variant B. In the far right column, blue corresponds to the value of 0 and red to 1 of the limit blending
function b; see Equation (1). In this example, subdivision of blending weights starts from level 1.

A similar comparison is made in Figure 11, this time using Catmull-Clark subdivision
on a 3D Letter A model. Although the results of the two variants look more similar than in
the previous example, Variant B again offers smoother highlight lines, especially leading
up to the sharp face. In the case of Variant A, the highlight lines noticeably wiggle when
leading up to the sharp face of the model.

(a) Control mesh

(b) Variant A

(c) Variant B

Figure 11. Catmull-Clark subdivision. (a) There are four sharp edges of sharpness value of 4 (shown
in red in the control mesh) in the Letter A model which make up one planar rounded face. The
subdivision level is set to 4. The results in the top row (b) are the shading, highlight lines, and
blend weights using Variant A, and the bottom row (c) using Variant B. In the far right column, blue
corresponds to the value of 0 and red to 1 of the limit blending function b; see (1). In this example,
subdivision of blending weights starts from level 1.
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4.3. Blend Weights at Darts

We subdivided models containing darts and compared the results when either treating
them as sharp vertices or as non-sharp vertices when initializing the blend weights; see
Figures 12 and 13 for examples of Loop and Catmull-Clark subdivision, respectively. Our
blending algorithm produces small differences in the resulting shaded meshes around
the darts.

(a) Control mesh

(b) Darts treated as smooth vertices

(c) Darts treated as sharp vertices

Figure 12. (a) The tetrahedron model with two sharp edges. We show the difference between treating
darts as smooth vertices (b) or as sharp vertices (c) when setting the blend weights.

(a) Control mesh

(b) Treat darts as smooth vertices

(c) Treat darts as sharp vertices

Figure 13. (a) The Letter A model with three sharp edges. We show the difference between treating
darts as regular vertices (b) or as sharp vertices (c) when setting the blend weights.

When treating the dart as a sharp vertex when subdividing the normals (bottom rows
in the figures), the highlight lines clearly show that more sharpness is preserved around the
sharp edge. However, this is typically not desirable since the sharp edge ends at the dart
vertex and therefore the normal field should transition from being sharp along the creases
to smooth towards the dart vertex. Based on this, we argue that it is better to treat darts as
smooth vertices (top rows in the figures). However, if a dart vertex is also an EV, we treat it
as an EV. This again ensures that the artifacts that normally appear near EVs are mitigated.

5. Discussion

In general, based on our results presented in the previous section, we generally
recommend Variant B for use with both Loop and Catmull-Clark subdivision surfaces with
(semi-)sharp creases. On top of this, we recommend to treat dart vertices as smooth vertices
(unless they are extraordinary vertices) for the purposes of subdivision shading.
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When using our blending scheme, the weights away from EVs are all set to 0, which
means that, after subdivision, fewer and fewer vertices have a positive blend weight. This,
in turn, means that subdivided normals do not need to be calculated at those vertices.
In other words, the subdivided normal has to be calculated only in the vicinity of ver-
tices where the blending weight is initialised to 1, as it has no influence on the shading
result elsewhere.

For example, if we subdivide the Spot model (see Figure 9) up to level 4, the total
number of vertices is 46,850. If we start blending from level 4, taking into account the
model’s EVs (of valency 3 and 5) and their neighbourhoods with non-zero blending weights
at level 4 when relying on the inverse limit stencil approach [4], we end up with only
832 vertices for which subdivided normals are needed and used. This is less than 1.8% of
the total, resulting in big computational savings in the normal subdivision and blending
efforts compared to naive implementations. When using the variant of setting all blending
weights at EVs and their neighbours to the value of 1 (see Section 2.2), then this count is
2304, giving 5% of the total.

In cases where a model contains no infinitely sharp creases, the efficiency of our
method is the same as that of the original subdivision shading relying on linear averaging
of normals. However, in the case of models with sharp creases, it can no longer rely on
indexed rendering due to the multiple normals being associated with some of the vertices,
which is of course the case for all methods dealing with sharp creases, which in turn makes
the method marginally slower. Consider the theoretically extreme situation of the Spot
model (see Figure 9), assuming all its edges were infinitely sharp and with subdivision up
to level 4. The total number of vertices would (still) be 46,850, but we would now have to
consider multiple normals for all these vertices. This would naturally be much slower than
the original subdivision shading method.

In practice, infinitely sharp creases are rarely used as they lead to (other) issues,
such as when using displacement maps. Instead, they are often replaced with semi-sharp
creases with a finite sharpness value. However, this does not suggest that rules for sharp
vertices/edges are not useful. To the contrary, sharp rules are still needed to be able to
handle semi-sharp creases in the subdivision process without using large amounts of extra
vertices. As we mentioned in Section 3.2, many production models come with semi-sharp
creases, meaning that sharp edges of sharpness value of s are then subdivided using the
smooth rule and thus can benefit from subdivision shading if there are EVs on the creases.

Finally, note that while we have presented results based on both the Catmull-Clark
and the Loop subdivision schemes, the ideas in our method directly apply to other schemes
(such as those of high-degree approximating subdivision schemes [14] or based on hexago-
nal elements [15]).

6. Conclusions

In this paper, we have proposed extensions to subdivision shading to make it appli-
cable also to models including (semi-)sharp creases. This is a powerful combination of
subdivision shading [3,4] and semi-sharp creases [5] in Catmull-Clark, Loop, and poten-
tially other subdivision schemes.

We have investigated two options for setting the control blending weights of sharp ver-
tices. Based on our results, we have observed that in most cases initialising the weights to
zero produces better shading in the regions near sharp creases. This agrees with our expec-
tations since the normal blending equation strives to ensure that the limit surface appears
C1 smooth globally, while it actually should not be so near sharp edges by definition.

Further to this, according to our experiments, dart vertices should not be treated as
sharp vertices when blending the normals. This is consistent with the way darts are treated
when subdividing the geometry/vertices of the mesh, and it produces superior results.

As discussed above, an open question remains in whether setting the weights at sharp
vertices can be used to increase the method’s efficiency. This, along with implementing the
entire subdivision process using subdivision tables [16], is a promising avenue for future
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research to speed up our method. Another interesting direction is to investigate how to
further reduce the appearance of minor but still existing shading artifacts in some situations
at EVs in chains of (semi-)sharp edges.
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