
Citation: Milton, J.; Zarkesh-Ha, P.

Impacts of Topology and Bandwidth

on Distributed Shared Memory

Systems. Computers 2023, 12, 86.

https://doi.org/10.3390/

computers12040086

Academic Editor: Paolo Bellavista

Received: 10 March 2023

Revised: 16 April 2023

Accepted: 19 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Project Report

Impacts of Topology and Bandwidth on Distributed Shared
Memory Systems
Jonathan Milton and Payman Zarkesh-Ha *

Department of Electrical and Computer Engineering (ECE), University of New Mexico, Albuquerque,
NM 87131-1070, USA; jmilton@unm.edu
* Correspondence: pzarkesh@unm.edu

Abstract: As high-performance computing designs become increasingly complex, the importance
of evaluating with simulation also grows. One of the most critical aspects of distributed computing
design is the network architecture; different topologies and bandwidths have dramatic impacts on
the overall performance of the system and should be explored to find the optimal design point. This
work uses simulations developed to run in the existing Structural Simulation Toolkit v12.1.0 software
framework to show that for a hypothetical test case, more complicated network topologies have
better overall performance and performance improves with increased bandwidth, making them
worth the additional design effort and expense. Specifically, the test case HyperX topology is shown
to outperform the next best evaluated topology by thirty percent and is the only topology that did
not experience diminishing performance gains with increased bandwidth.

Keywords: high-performance computing; distributed shared memory; topology; structural simula-
tion toolkit; optimization

1. Introduction

The need to develop and operate high-capability supercomputers is recognized in the
High-Performance Computing (HPC) community as a prerequisite for the advancement of
a number of scientific and technical challenges, ranging from basic science to “big data”
operations [1]. As the state-of-the-art transitions into exascale, designing and building
supercomputers becomes increasingly difficult. On top of the challenges associated with
scalability and raw performance, cost, power consumption [2], cooling, reliability [3], and
programmability [4] all need consideration. Overcoming design challenges requires an
integrated approach to how systems are architected. Changes to processors, memory, and
networks need to be assessed concurrently to properly capture the complex interactions
between them.

The design of the memory architecture plays a critical part in enhancing the capabilities
of local nodes in an HPC system. Integrating processing cores with memory provides
significant node performance advantages [5]. Furthermore, related works have found
the network design has a major role in overall performance with many high bandwidth
architectures available to choose from [6]. As HPC problems try to optimize localization,
even in real time [7], the endpoint network capabilities must be able to handle the heavy
workload without becoming a bottleneck. As cores scale into the tens of thousands [8], the
network must improve or become the limiting factor for performance [9]; further defining
this limit point is an objective of this paper.

While there are many factors to consider, memory architecture is one that greatly
influences many other HPC design decisions. Many areas of shared memory architecture
have been thoroughly researched in an attempt to determine the optimal configuration, but
there is a gap in the research dealing with the trade-offs between bandwidth and topology
for distributed shared memory architectures and their impact on performance for different

Computers 2023, 12, 86. https://doi.org/10.3390/computers12040086 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12040086
https://doi.org/10.3390/computers12040086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-7240-1773
https://orcid.org/0000-0002-0571-9212
https://doi.org/10.3390/computers12040086
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12040086?type=check_update&version=1


Computers 2023, 12, 86 2 of 15

workloads. This work will address that gap by outlining a process to determine the balance
of design parameters that offers the best average performance across the expected workload
for an HPC system—more specifically, identification of the optimal network configuration
for a specific software type to minimize the overall execution time.

As it is impractical to build prototypes to fully explore the design space of an HPC
system, simulation must be used to evaluate the available options. Historically, there has
been no single point solution for performing these evaluations. While simulators exist
for individual components, there have not been good options for uniting them together
to evaluate the system as a whole until the development of the Structural Simulation
Toolkit [10].

Simulation will be used in this work to determine quantitatively the ideal network
topology and network bandwidth for small 16-node and 256-node architectures, the results
of which will be extended to a larger number of nodes. To limit the scope of the problem,
only performance will be evaluated.

1.1. Description of the Problem

For every HPC system using distributed shared memory, there is an eventual decline
in return on investment for increasing the network bandwidth beyond a certain capacity.
At some point there will be sufficient bandwidth and the limiting factor for data transfer
will transition to another aspect of the design—with a hard limit driven by the CPU rate of
request issuances. This paper seeks to identify that point using simulation for a variety of
network topologies, verifying the concept and listing what correlations, if any, are found.

The concept of variable bandwidth has been explored before in the context of a single
topology to look at the potential for cost savings in hardware and energy for reducing the
number of links between routers [11]. A very detailed analysis exploring the impacts of
multiple variables on performance, including the impact of reducing bandwidth to the
peak performance of several topologies, also exists, but does not address the question of
optimization or look at the potential for performance gains [12].

This work differs in that the multivariable analysis is conducted across topologies and
bandwidth together, with the objective being identification of performance gains rather
than negative effects. It also explores the rate of change to performance improvement
in a way not addressed by other studies. This question has likely been left unaddressed
as commercial hardware has a specified bandwidth and the issue of reducing operating
costs due to power consumption has only more recently become critical [2]. As technology
advances to integrate more pieces of the architecture into a single piece of hardware, the
question of when it stops making sense to increase performance on one particular aspect
becomes more critical as it will be taking resources away from other aspects of the design.
Being specific to a distributed shared memory space with direct access to the memory from
the network is another aspect differentiating this from related works.

Several topologies have been selected to cover a range of design complexities. Mesh
and Torus are good representations of simple and physically scalable HPC network so-
lutions [13]. Dragonfly and HyperX are more complex options selected for being imple-
mentable with uniform link bandwidths but having similarities to the common Fat-Tree
architecture, including the ability to implement Fat Tree networks based on the configura-
tion parameters [14,15]. Standard Fat-Tree architecture has been excluded from comparison
as the implementation requires increasingly higher network performance at the top with
scaling and would not be a good direct comparison with the other architectures [16,17]. For
the uniform distribution of traffic between nodes in this simulation, there are no advan-
tages of using that topology [16]. The Dragonfly and HyperX topologies evaluated here
are in many ways similar to a Fat Tree, but have the benefit of eliminating some latency
points through bypassing higher levels of the tree while maintaining a fairly consistent
distribution of bandwidth between nodes [15]. An infinite radix Single Router (Crossbar or
Star topology equivalent) bounds performance on the high end, and a Ring—as an amusing



Computers 2023, 12, 86 3 of 15

representation of probably the worst possible architecture for HPC—serves as the lower
performance bound. For each topology, several different memory bandwidths are assessed.

1.2. Simulation Configuration

The simulations developed for this evaluation consist of nodes with 4 processing cores
each; the cores have a 256 B private cache, attached to a 512 B L2 cache which is shared
across the 4 cores (the caches are intentionally made very small to force turnover during
simulation runs). The small node counts are driven by the need to complete the simulations
in a timely manner without requiring parallel computing resources. Each node has 1 GB of
network attached memory for which the bandwidth (both local and to the network) starts
at 1 GB/s and is doubled in incremental steps up to 8 GB/s. In general, each endpoint node
has a dedicated router; the exceptions being the Single Router topology out of necessity,
and the HyperX topology to keep the group size the same as Dragonfly. The execution
model for each core is simply a stream of random read operations to the memory space. The
random memory requests drive approximately uniform traffic levels between nodes and
across links, which is one of the typical traffic patterns used for topology simulations [11,18]
and is similar to many applications of a properly optimized and balanced parallel HPC
workload [19]. While this configuration is not truly representative of an HPC architecture,
it will allow simulations to be completed in a reasonable amount of time, demonstrate the
feasibility of the analysis, and give insight into the performance of other systems in a more
practical HPC platform.

1.3. The Structural Simulation Toolkit

The Structural Simulation Toolkit (SST) [10] software was selected to implement the
simulations of this work as it is a discrete event simulator developed jointly by a number of
institutions to address this gap and provide a simulation framework covering everything
from System on a Chip to large-scale HPC systems, even allowing for modeling of impacts
down to the transistor level [20]. The core framework provides timekeeping, event exchange
control, and statistics while individual element libraries are used to implement system
components [10]. SST allows for parallel simulation of hundreds of thousands (or more)
nodes in sufficient detail to accurately assess the design space of an HPC system [10]. SST
joins models for processors, memory, networks, and more into a single simulation [10].

The simulation framework of SST [10] builds on a long history of architectural and
network simulators such as NS-3 [21], M5 [22], and A-SIM [23]. Additionally, it builds on
power dissipation modelling [24,25] and integrates many existing simulators as plug-in
modules without requiring additional code revisions. SST works by including individual
component models in a scalable, parallel, and open-source framework [10].

2. Materials and Methods

The source code and data presented in this study are available on request from the first
author. SST source code is available from https://sst-simulator.org/ (accessed on 13 April
2023). Example source code from the SST tutorials illustrating how to develop simulations
can be obtained at https://github.com/sstsimulator/sst-tutorials (accessed on 13 April
2023). The individual topology simulation source code created for this work is not publicly
available at the time of publication due to forming part of a larger body of work to be made
publicly available at a later date via https://digitalrepository.unm.edu/ (accessed on 13
April 2023).

2.1. The Structural Simulation Toolkit

For this project, exploration of computer system design using modeling of the complex
interactions between processor, memory, and network was performed using SST, an open,
modular, parallel, multi-criteria, multi-scale simulation framework [10]. SST was developed
to explore innovations in both programming models and hardware implementation of
highly concurrent systems and utilizes a modular design to allow extensive exploration of

https://sst-simulator.org/
https://github.com/sstsimulator/sst-tutorials
https://digitalrepository.unm.edu/


Computers 2023, 12, 86 4 of 15

system parameters while maximizing code reuse, and provides an explicit separation of
instruction interpretation from microarchitectural timing [10]. This is built upon a high-
performance hybrid discrete event framework. SST can handle highly concurrent designs
where the instruction set architecture, microarchitecture, and memory interact with the
programming model and communications system [10]. The package provides two novel
capabilities: The first is a fully modular design that enables extensive exploration of an
individual system parameter without the need for intrusive changes to the simulator [10];
the second is a parallel simulation environment based on Message Passing Interface [10].
This provides a high level of simulation performance and the ability to evaluate large
systems using parallel processing techniques.

2.2. Topology Simulations

Using a simple model, this project explored, demonstrated, and evaluated the ability
of SST [10] to optimize a design, by analyzing the tradeoff in resource allocation between
bandwidth and topology for multicore shared memory systems. The specifics of the system
were determined by first evaluating a four-processor node of quad-core processors. Each
core contains a private L1 cache, and the L2 cache is shared across all four cores. In total,
1 GB of memory is attached to each processor; the address space is shared and spanned,
but not interleaved. The model accounted for an onboard network between the processors
with direct memory access into the shared spaces, while a directory controller for each
space maintained the coherency. From here, cache size, on-chip network rates, and other
parameters were optimized prior to exploring the impacts of bandwidth and topology.

At this point, a model for each topology was constructed using python scripts to feed
into SST [10]. The models consist of three overall sections: The first section consists of
approximately 300 configuration variables which control all aspects of the design. These
were implemented this way to enable future flexibility and automation as well as to ensure
parameter consistency throughout the design. The second section uses recursive scripting
to instantiate an arbitrary number of nodes, containing and arbitrary number of processors,
containing an arbitrary number of cores. This section also creates all the other components
present on the node or in the processor and links them together. Updating the node,
processor, or core specifics not controlled by variables only needs to occur in one place.
These first two sections are common across all topology models. The final section creates
the network topology, instantiating routers and linking everything together. This was
also written with recursive scripting to allow maximum flexibility in reconfiguration. For
example: the Torus simulation defines the dimensions, shape, and links in each dimension
using variables so the 4D 2 × 2 × 2 × 2 torus previously evaluated could quickly be
reconfigured to 3D 2 × 2 × 4 for comparative analysis.

In executing the simulations, the bandwidth was varied for each trial while using
a constant random pattern seed to ensure results between trials were truly comparable.
Initial results are presented here while ongoing simulation trials explore additional memory
access patterns and bandwidth rates.

Each topology evaluated includes a network map for the 16-node configuration using
images of a rack mount server to represent each node (group of four processing cores
with an attached memory), along with routers and lines for the interconnecting links. The
performance improvement as bandwidth is increased is plotted as speedup relative to
initial performance at 1 GB/s.

2.2.1. Single Router (Crossbar) Topology

The Single Router configuration (Figure 1) has all the nodes tied to the same router and
represents the near theoretical upper limit in performance for the analysis as each node has
a direct link to every other node’s memory through a fully switched network crossbar. The
primary drawback to this configuration is that it is not physically scalable to large numbers
of nodes. Physical design constraints of a 1U rack space limit readily available hardware
to around 48 ports. Growing beyond this would require additional high bandwidth links



Computers 2023, 12, 86 5 of 15

between multiple switches, at which point the design has transitioned to another topology.
Every connection in this case is only two hops away. Performance improvement for this
configuration is shown in Figure 2.

Computers 2023, 12, x FOR PEER REVIEW 5 of 15 
 

The Single Router configuration (Figure 1) has all the nodes tied to the same router 
and represents the near theoretical upper limit in performance for the analysis as each 
node has a direct link to every other node’s memory through a fully switched network 
crossbar. The primary drawback to this configuration is that it is not physically scalable to 
large numbers of nodes. Physical design constraints of a 1U rack space limit readily avail-
able hardware to around 48 ports. Growing beyond this would require additional high 
bandwidth links between multiple switches, at which point the design has transitioned to 
another topology. Every connection in this case is only two hops away. Performance im-
provement for this configuration is shown in Figure 2. 

 
Figure 1. Single Router Topology. 

 
Figure 2. Single Router Performance. 

2.2.2. Ring Topology 
The Ring configuration (Figure 3) links each node’s router to only two neighbors in a 

large loop, such that there are likely multiple hops to reach the desired memory address. 
While easily scalable as far as physical construction goes, it does not scale well for perfor-
mance considerations with a large number of nodes. Network performance quickly be-
comes a bottleneck as each link needs to pass a large amount of traffic to nodes farther 
along the ring. For 16 nodes, the maximum one-way travel distance for information is 
eight hops. Performance improvement for this configuration is shown in Figure 4. 

Figure 1. Single Router Topology.

Computers 2023, 12, x FOR PEER REVIEW 5 of 15 
 

The Single Router configuration (Figure 1) has all the nodes tied to the same router 
and represents the near theoretical upper limit in performance for the analysis as each 
node has a direct link to every other node’s memory through a fully switched network 
crossbar. The primary drawback to this configuration is that it is not physically scalable to 
large numbers of nodes. Physical design constraints of a 1U rack space limit readily avail-
able hardware to around 48 ports. Growing beyond this would require additional high 
bandwidth links between multiple switches, at which point the design has transitioned to 
another topology. Every connection in this case is only two hops away. Performance im-
provement for this configuration is shown in Figure 2. 

 
Figure 1. Single Router Topology. 

 
Figure 2. Single Router Performance. 

2.2.2. Ring Topology 
The Ring configuration (Figure 3) links each node’s router to only two neighbors in a 

large loop, such that there are likely multiple hops to reach the desired memory address. 
While easily scalable as far as physical construction goes, it does not scale well for perfor-
mance considerations with a large number of nodes. Network performance quickly be-
comes a bottleneck as each link needs to pass a large amount of traffic to nodes farther 
along the ring. For 16 nodes, the maximum one-way travel distance for information is 
eight hops. Performance improvement for this configuration is shown in Figure 4. 

Figure 2. Single Router Performance.

2.2.2. Ring Topology

The Ring configuration (Figure 3) links each node’s router to only two neighbors
in a large loop, such that there are likely multiple hops to reach the desired memory
address. While easily scalable as far as physical construction goes, it does not scale well for
performance considerations with a large number of nodes. Network performance quickly
becomes a bottleneck as each link needs to pass a large amount of traffic to nodes farther
along the ring. For 16 nodes, the maximum one-way travel distance for information is eight
hops. Performance improvement for this configuration is shown in Figure 4.



Computers 2023, 12, 86 6 of 15Computers 2023, 12, x FOR PEER REVIEW 6 of 15 
 

 
Figure 3. Ring Topology. 

 
Figure 4. Ring Performance. 

2.2.3. Mesh Topology 
The Mesh configuration (Figure 5) links each node’s router to two or four neighbors 

in a two-dimensional grid pattern such that there are fewer hops to reach the desired 
memory address. Again, this is easily scalable as far as physical construction goes, but it 
does not scale well for performance considerations with a large number of nodes. The 
maximum number of hops for 16 nodes has been reduced to 6 by changing to this topol-
ogy. Performance improvement for this configuration is shown in Figure 6. 

Figure 3. Ring Topology.

Computers 2023, 12, x FOR PEER REVIEW 6 of 15 
 

 
Figure 3. Ring Topology. 

 
Figure 4. Ring Performance. 

2.2.3. Mesh Topology 
The Mesh configuration (Figure 5) links each node’s router to two or four neighbors 

in a two-dimensional grid pattern such that there are fewer hops to reach the desired 
memory address. Again, this is easily scalable as far as physical construction goes, but it 
does not scale well for performance considerations with a large number of nodes. The 
maximum number of hops for 16 nodes has been reduced to 6 by changing to this topol-
ogy. Performance improvement for this configuration is shown in Figure 6. 

Figure 4. Ring Performance.

2.2.3. Mesh Topology

The Mesh configuration (Figure 5) links each node’s router to two or four neighbors
in a two-dimensional grid pattern such that there are fewer hops to reach the desired
memory address. Again, this is easily scalable as far as physical construction goes, but
it does not scale well for performance considerations with a large number of nodes. The
maximum number of hops for 16 nodes has been reduced to 6 by changing to this topology.
Performance improvement for this configuration is shown in Figure 6.



Computers 2023, 12, 86 7 of 15Computers 2023, 12, x FOR PEER REVIEW 7 of 15 
 

 
Figure 5. Mesh Topology. 

 
Figure 6. Mesh Performance. 

2.2.4. Torus Topology 
The Torus configuration (Figure 7) used is 4D (2 × 2 × 2 × 2 for 16 nodes, 4 × 4 × 4 × 4 

for 256 nodes), which links each node’s router to eight neighbors. This substantially re-
duces the number of hops required to reach the desired memory address (note that for the 
16-node case each neighbor is counted twice, effectively doubling the bandwidth; the 
loops around links which would be present in a 4D Torus with more nodes are not illus-
trated here). Figure 7 uses a unique color for each dimension to highlight the individual 
links, yellow for X, green for Y, orange for Z, and blue for W (the compute nodes have 
been omitted to improve readability; there is one node attached to each router). This to-
pology is straightforward to improve performance through increasing the number of di-
mensions, and flexible to accommodate different physical configurations. This is not as 
easily scalable as far as physical construction goes, but it does scale fairly well for perfor-
mance considerations to a large number of nodes. The maximum number of hops for a 16-
node design has dropped to four and the effective bandwidth along those hops is doubled 
for this specific example. Performance improvement for this configuration is shown in 
Figure 8. 

Figure 5. Mesh Topology.

Computers 2023, 12, x FOR PEER REVIEW 7 of 15 
 

 
Figure 5. Mesh Topology. 

 
Figure 6. Mesh Performance. 

2.2.4. Torus Topology 
The Torus configuration (Figure 7) used is 4D (2 × 2 × 2 × 2 for 16 nodes, 4 × 4 × 4 × 4 

for 256 nodes), which links each node’s router to eight neighbors. This substantially re-
duces the number of hops required to reach the desired memory address (note that for the 
16-node case each neighbor is counted twice, effectively doubling the bandwidth; the 
loops around links which would be present in a 4D Torus with more nodes are not illus-
trated here). Figure 7 uses a unique color for each dimension to highlight the individual 
links, yellow for X, green for Y, orange for Z, and blue for W (the compute nodes have 
been omitted to improve readability; there is one node attached to each router). This to-
pology is straightforward to improve performance through increasing the number of di-
mensions, and flexible to accommodate different physical configurations. This is not as 
easily scalable as far as physical construction goes, but it does scale fairly well for perfor-
mance considerations to a large number of nodes. The maximum number of hops for a 16-
node design has dropped to four and the effective bandwidth along those hops is doubled 
for this specific example. Performance improvement for this configuration is shown in 
Figure 8. 

Figure 6. Mesh Performance.

2.2.4. Torus Topology

The Torus configuration (Figure 7) used is 4D (2 × 2 × 2 × 2 for 16 nodes, 4 × 4 × 4 × 4
for 256 nodes), which links each node’s router to eight neighbors. This substantially reduces
the number of hops required to reach the desired memory address (note that for the 16-
node case each neighbor is counted twice, effectively doubling the bandwidth; the loops
around links which would be present in a 4D Torus with more nodes are not illustrated
here). Figure 7 uses a unique color for each dimension to highlight the individual links,
yellow for X, green for Y, orange for Z, and blue for W (the compute nodes have been
omitted to improve readability; there is one node attached to each router). This topology is
straightforward to improve performance through increasing the number of dimensions, and
flexible to accommodate different physical configurations. This is not as easily scalable as far
as physical construction goes, but it does scale fairly well for performance considerations to
a large number of nodes. The maximum number of hops for a 16-node design has dropped
to four and the effective bandwidth along those hops is doubled for this specific example.
Performance improvement for this configuration is shown in Figure 8.



Computers 2023, 12, 86 8 of 15Computers 2023, 12, x FOR PEER REVIEW 8 of 15 
 

 
Figure 7. Torus Topology. 

 
Figure 8. Torus Performance. 

2.2.5. Dragonfly Topology 
The Dragonfly configuration (Figure 9) used for 16 nodes is a slightly modified 4, 1, 

1, which places each node’s router into one of 4 groups of 4 fully meshed neighbors per 
group. For 256 nodes, there are 16 groups of 16. Each router in the group connects to one 
other group (excepting one router, whose connection would be a parallel link), the result 
being a fully connected network with at most three hops (at any scale) to the desired 
memory address and typically a choice of more than one path if there is network conges-
tion. Figure 9 highlights the groupings and shows the intergroup links for the topology 
(the compute nodes have been omitted to improve readability, there is one node attached 
to each router). This specific design effectively implements a three-level Fat Tree, using 
only two levels with uniform hardware requirements. Again, it is not as easily scalable as 
far as physical construction goes, but it does scale nicely for performance considerations 
to a large number of nodes. Performance improvement for this configuration is shown in 
Figure 10. 

Figure 7. Torus Topology.

Computers 2023, 12, x FOR PEER REVIEW 8 of 15 
 

 
Figure 7. Torus Topology. 

 
Figure 8. Torus Performance. 

2.2.5. Dragonfly Topology 
The Dragonfly configuration (Figure 9) used for 16 nodes is a slightly modified 4, 1, 

1, which places each node’s router into one of 4 groups of 4 fully meshed neighbors per 
group. For 256 nodes, there are 16 groups of 16. Each router in the group connects to one 
other group (excepting one router, whose connection would be a parallel link), the result 
being a fully connected network with at most three hops (at any scale) to the desired 
memory address and typically a choice of more than one path if there is network conges-
tion. Figure 9 highlights the groupings and shows the intergroup links for the topology 
(the compute nodes have been omitted to improve readability, there is one node attached 
to each router). This specific design effectively implements a three-level Fat Tree, using 
only two levels with uniform hardware requirements. Again, it is not as easily scalable as 
far as physical construction goes, but it does scale nicely for performance considerations 
to a large number of nodes. Performance improvement for this configuration is shown in 
Figure 10. 

Figure 8. Torus Performance.

2.2.5. Dragonfly Topology

The Dragonfly configuration (Figure 9) used for 16 nodes is a slightly modified 4, 1, 1,
which places each node’s router into one of 4 groups of 4 fully meshed neighbors per group.
For 256 nodes, there are 16 groups of 16. Each router in the group connects to one other
group (excepting one router, whose connection would be a parallel link), the result being
a fully connected network with at most three hops (at any scale) to the desired memory
address and typically a choice of more than one path if there is network congestion. Figure 9
highlights the groupings and shows the intergroup links for the topology (the compute
nodes have been omitted to improve readability, there is one node attached to each router).
This specific design effectively implements a three-level Fat Tree, using only two levels
with uniform hardware requirements. Again, it is not as easily scalable as far as physical
construction goes, but it does scale nicely for performance considerations to a large number
of nodes. Performance improvement for this configuration is shown in Figure 10.



Computers 2023, 12, 86 9 of 15Computers 2023, 12, x FOR PEER REVIEW 9 of 15 
 

 
Figure 9. Dragonfly Topology. 

 
Figure 10. Dragonfly Performance. 

2.2.6. HyperX Topology 
The HyperX configuration (Figure 11) used for 16 nodes is a 4 × 2, which places each 

endpoint node into groups of two that are connected together on a single router. That 
router connects to every other router in its dimension in a full mesh, in this case three links 
for the first dimension and one link for the second. For 256 nodes, 4 × 32 was used. This 
results in a fully connected network with at most four hops to the desired memory address 
and several choices for path if there is network congestion. Figure 11 highlights the group-
ing and shows the intergroup links for the topology; note that HyperX is the only topology 
other than single router with two nodes per router. This is another implementation of a 
three-level Fat Tree using only two levels and uniform hardware requirements. Once 
more, it is not as easily scalable as far as physical construction goes, but it does scale nicely 
for performance considerations to a large number of nodes and can be modified for sim-
pler physical construction by not fully meshing at a penalty of increased hops. Perfor-
mance improvement for this configuration is shown in Figure 12. 

Figure 9. Dragonfly Topology.

Computers 2023, 12, x FOR PEER REVIEW 9 of 15 
 

 
Figure 9. Dragonfly Topology. 

 
Figure 10. Dragonfly Performance. 

2.2.6. HyperX Topology 
The HyperX configuration (Figure 11) used for 16 nodes is a 4 × 2, which places each 

endpoint node into groups of two that are connected together on a single router. That 
router connects to every other router in its dimension in a full mesh, in this case three links 
for the first dimension and one link for the second. For 256 nodes, 4 × 32 was used. This 
results in a fully connected network with at most four hops to the desired memory address 
and several choices for path if there is network congestion. Figure 11 highlights the group-
ing and shows the intergroup links for the topology; note that HyperX is the only topology 
other than single router with two nodes per router. This is another implementation of a 
three-level Fat Tree using only two levels and uniform hardware requirements. Once 
more, it is not as easily scalable as far as physical construction goes, but it does scale nicely 
for performance considerations to a large number of nodes and can be modified for sim-
pler physical construction by not fully meshing at a penalty of increased hops. Perfor-
mance improvement for this configuration is shown in Figure 12. 

Figure 10. Dragonfly Performance.

2.2.6. HyperX Topology

The HyperX configuration (Figure 11) used for 16 nodes is a 4 × 2, which places each
endpoint node into groups of two that are connected together on a single router. That router
connects to every other router in its dimension in a full mesh, in this case three links for the
first dimension and one link for the second. For 256 nodes, 4 × 32 was used. This results
in a fully connected network with at most four hops to the desired memory address and
several choices for path if there is network congestion. Figure 11 highlights the grouping
and shows the intergroup links for the topology; note that HyperX is the only topology
other than single router with two nodes per router. This is another implementation of a
three-level Fat Tree using only two levels and uniform hardware requirements. Once more,
it is not as easily scalable as far as physical construction goes, but it does scale nicely for
performance considerations to a large number of nodes and can be modified for simpler
physical construction by not fully meshing at a penalty of increased hops. Performance
improvement for this configuration is shown in Figure 12.



Computers 2023, 12, 86 10 of 15Computers 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 
Figure 11. HyperX Topology. 

 
Figure 12. HyperX Performance. 

3. Results 
Combined results for the simulations on 16 nodes (Figure 13) indicate that perfor-

mance gains begin to taper off for most cases in the bandwidth range from 4 GB/s to 8 
GB/s and that this area likely provides the best performance return on investment for this 
specific hypothetical hardware definition before the speedup starts to flatten out; this be-
comes even more evident when the speedup plot is taken out of log scale. For 256 nodes 
(Figure 14), there is a more dramatic decline in returns after 4 GB/s for all the topologies 
except HyperX, which is still increasing at a reasonable rate. As the possible bandwidth 
use driven by the maximum node memory request rate is still well above this level, an-
other aspect of the design is now the performance bottleneck. Detailed analysis of the per-
formance statistics generated by SST [10] indicate the cause is a combination of latency 
and the limit on allowed outstanding requests. Identification of a good design starting 
point for the network bandwidth has been achieved, and the focus in this case should shift 

Figure 11. HyperX Topology.

Computers 2023, 12, x FOR PEER REVIEW 10 of 15 
 

 
Figure 11. HyperX Topology. 

 
Figure 12. HyperX Performance. 

3. Results 
Combined results for the simulations on 16 nodes (Figure 13) indicate that perfor-

mance gains begin to taper off for most cases in the bandwidth range from 4 GB/s to 8 
GB/s and that this area likely provides the best performance return on investment for this 
specific hypothetical hardware definition before the speedup starts to flatten out; this be-
comes even more evident when the speedup plot is taken out of log scale. For 256 nodes 
(Figure 14), there is a more dramatic decline in returns after 4 GB/s for all the topologies 
except HyperX, which is still increasing at a reasonable rate. As the possible bandwidth 
use driven by the maximum node memory request rate is still well above this level, an-
other aspect of the design is now the performance bottleneck. Detailed analysis of the per-
formance statistics generated by SST [10] indicate the cause is a combination of latency 
and the limit on allowed outstanding requests. Identification of a good design starting 
point for the network bandwidth has been achieved, and the focus in this case should shift 

Figure 12. HyperX Performance.

3. Results

Combined results for the simulations on 16 nodes (Figure 13) indicate that performance
gains begin to taper off for most cases in the bandwidth range from 4 GB/s to 8 GB/s and
that this area likely provides the best performance return on investment for this specific
hypothetical hardware definition before the speedup starts to flatten out; this becomes even
more evident when the speedup plot is taken out of log scale. For 256 nodes (Figure 14),
there is a more dramatic decline in returns after 4 GB/s for all the topologies except HyperX,
which is still increasing at a reasonable rate. As the possible bandwidth use driven by the
maximum node memory request rate is still well above this level, another aspect of the
design is now the performance bottleneck. Detailed analysis of the performance statistics
generated by SST [10] indicate the cause is a combination of latency and the limit on
allowed outstanding requests. Identification of a good design starting point for the network
bandwidth has been achieved, and the focus in this case should shift towards improving



Computers 2023, 12, 86 11 of 15

the latency and evaluating the impact of increasing the outstanding request limit before
further increasing the bandwidth.

Computers 2023, 12, x FOR PEER REVIEW 11 of 15 
 

towards improving the latency and evaluating the impact of increasing the outstanding 
request limit before further increasing the bandwidth. 

 
Figure 13. Combined Performance Improvement for 16 Nodes. 

 
Figure 14. Combined Performance Improvement for 256 Nodes. 

Plotting the performance of all 16 node topologies against the theoretical limit (Figure 
15) shows that in this case the HyperX topology not only benefits the most from increased 
bandwidth but is also the top performer in terms of compute time; followed by Torus and 
Dragonfly, with almost identical performance. HyperX does not have an advantage in 
terms of maximum hop count against Torus or Dragonfly topologies in this test case, but 
the high number of paths creates an increased effective bandwidth that gives it a perfor-
mance boost here. For 256 nodes (Figure 16), the topologies fall into the same order, except 
that Dragonfly is now showing improved performance against Torus. The potential num-
ber of hops for Torus grow with the node count so it is not keeping up with the better 
optimized HyperX and Dragonfly. The performance compared to the hypothetical limit 
from the Single Router topology is about half of what it was for 16 nodes; using an infi-
nitely scalable unlimited radix router as a benchmark is likely causing this drop. It is not 
surprising that the ring topology has the weakest performance of all the architectures sim-
ulated. 

Figure 13. Combined Performance Improvement for 16 Nodes.

Computers 2023, 12, x FOR PEER REVIEW 11 of 15 
 

towards improving the latency and evaluating the impact of increasing the outstanding 
request limit before further increasing the bandwidth. 

 
Figure 13. Combined Performance Improvement for 16 Nodes. 

 
Figure 14. Combined Performance Improvement for 256 Nodes. 

Plotting the performance of all 16 node topologies against the theoretical limit (Figure 
15) shows that in this case the HyperX topology not only benefits the most from increased 
bandwidth but is also the top performer in terms of compute time; followed by Torus and 
Dragonfly, with almost identical performance. HyperX does not have an advantage in 
terms of maximum hop count against Torus or Dragonfly topologies in this test case, but 
the high number of paths creates an increased effective bandwidth that gives it a perfor-
mance boost here. For 256 nodes (Figure 16), the topologies fall into the same order, except 
that Dragonfly is now showing improved performance against Torus. The potential num-
ber of hops for Torus grow with the node count so it is not keeping up with the better 
optimized HyperX and Dragonfly. The performance compared to the hypothetical limit 
from the Single Router topology is about half of what it was for 16 nodes; using an infi-
nitely scalable unlimited radix router as a benchmark is likely causing this drop. It is not 
surprising that the ring topology has the weakest performance of all the architectures sim-
ulated. 

Figure 14. Combined Performance Improvement for 256 Nodes.

Plotting the performance of all 16 node topologies against the theoretical limit (Fig-
ure 15) shows that in this case the HyperX topology not only benefits the most from
increased bandwidth but is also the top performer in terms of compute time; followed
by Torus and Dragonfly, with almost identical performance. HyperX does not have an
advantage in terms of maximum hop count against Torus or Dragonfly topologies in this
test case, but the high number of paths creates an increased effective bandwidth that gives
it a performance boost here. For 256 nodes (Figure 16), the topologies fall into the same
order, except that Dragonfly is now showing improved performance against Torus. The po-
tential number of hops for Torus grow with the node count so it is not keeping up with the
better optimized HyperX and Dragonfly. The performance compared to the hypothetical
limit from the Single Router topology is about half of what it was for 16 nodes; using an
infinitely scalable unlimited radix router as a benchmark is likely causing this drop. It is
not surprising that the ring topology has the weakest performance of all the architectures
simulated.



Computers 2023, 12, 86 12 of 15Computers 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 
Figure 15. Relative Performance of Topologies for 16 Nodes. 

 
Figure 16. Relative Performance of Topologies for 256 Nodes. 

4. Discussion 
The results of this analysis indicate that for the hypothesized fixed design parame-

ters, a HyperX topology with 8 GB/s memory bandwidth provides the best overall perfor-
mance against other potential topologies (excluding the unscalable Single Router topol-
ogy). Expected performance gain in this system for using HyperX is a 20–25% increase for 
both node counts over Dragonfly, the next best-performing topology. Against Torus at 256 
nodes, the increase is 40–45%. Performance gains of 19–25% are also achieved each time 
the bandwidth is doubled for HyperX for either node count, whereas Dragonfly and Torus 
have a broader and less predictable improvement spread of 10–26%. HyperX was also the 
only topology evaluated that was not experiencing significant diminishing returns by 
8GB/s; even the theoretical limit of the Single Router was dropping off at that point. 

To better understand the scalability of the model closer to actual HPC specifications, 
the HyperX simulation was increased to 2048 nodes and evaluated for a 32, 64, and 128 
GB/s. The peak speedup was almost negligible at these bandwidths, as seen in Figure 17. 
The flatness of the curve indicates that bandwidth at these rates is having almost no im-
pact on the performance and another factor (again latency, but now the memory access 
limit rate of 64 GB/s also a big factor) is the bottleneck. 

Figure 15. Relative Performance of Topologies for 16 Nodes.

Computers 2023, 12, x FOR PEER REVIEW 12 of 15 
 

 
Figure 15. Relative Performance of Topologies for 16 Nodes. 

 
Figure 16. Relative Performance of Topologies for 256 Nodes. 

4. Discussion 
The results of this analysis indicate that for the hypothesized fixed design parame-

ters, a HyperX topology with 8 GB/s memory bandwidth provides the best overall perfor-
mance against other potential topologies (excluding the unscalable Single Router topol-
ogy). Expected performance gain in this system for using HyperX is a 20–25% increase for 
both node counts over Dragonfly, the next best-performing topology. Against Torus at 256 
nodes, the increase is 40–45%. Performance gains of 19–25% are also achieved each time 
the bandwidth is doubled for HyperX for either node count, whereas Dragonfly and Torus 
have a broader and less predictable improvement spread of 10–26%. HyperX was also the 
only topology evaluated that was not experiencing significant diminishing returns by 
8GB/s; even the theoretical limit of the Single Router was dropping off at that point. 

To better understand the scalability of the model closer to actual HPC specifications, 
the HyperX simulation was increased to 2048 nodes and evaluated for a 32, 64, and 128 
GB/s. The peak speedup was almost negligible at these bandwidths, as seen in Figure 17. 
The flatness of the curve indicates that bandwidth at these rates is having almost no im-
pact on the performance and another factor (again latency, but now the memory access 
limit rate of 64 GB/s also a big factor) is the bottleneck. 

Figure 16. Relative Performance of Topologies for 256 Nodes.

4. Discussion

The results of this analysis indicate that for the hypothesized fixed design parameters,
a HyperX topology with 8 GB/s memory bandwidth provides the best overall performance
against other potential topologies (excluding the unscalable Single Router topology). Ex-
pected performance gain in this system for using HyperX is a 20–25% increase for both
node counts over Dragonfly, the next best-performing topology. Against Torus at 256 nodes,
the increase is 40–45%. Performance gains of 19–25% are also achieved each time the
bandwidth is doubled for HyperX for either node count, whereas Dragonfly and Torus
have a broader and less predictable improvement spread of 10–26%. HyperX was also
the only topology evaluated that was not experiencing significant diminishing returns by
8GB/s; even the theoretical limit of the Single Router was dropping off at that point.

To better understand the scalability of the model closer to actual HPC specifications,
the HyperX simulation was increased to 2048 nodes and evaluated for a 32, 64, and 128 GB/s.
The peak speedup was almost negligible at these bandwidths, as seen in Figure 17. The
flatness of the curve indicates that bandwidth at these rates is having almost no impact on
the performance and another factor (again latency, but now the memory access limit rate of
64 GB/s also a big factor) is the bottleneck.



Computers 2023, 12, 86 13 of 15Computers 2023, 12, x FOR PEER REVIEW 13 of 15 
 

 
Figure 17. HyperX Performance for 2048 Nodes. 

While the simulations in general were limited to a small number of nodes, several of 
the topologies (Torus, Dragonfly, and HyperX) are already known to scale well into larger 
applications [13]. This information, when combined with other performance analysis, can 
be used to jump-start design for a large-scale HPC design by focusing the efforts of future 
simulations to reduce the total run time required to arrive at an optimal result. This infor-
mation could also support a cost-trade justification for implementation of HyperX over 
the common Torus topology as the performance gains are likely to more than offset the 
additional implementation expense. 

Related Work 
While a Fat-Tree topology is common for HPC designs, the large number of switches 

and high-speed links makes it less cost-effective to scale compared to other choices with 
similar performance characteristics [16]. A more practical solution is the Dragonfly topol-
ogy, which at scale can be implemented for half the cost and closely matches the perfor-
mance through an implementation that increases the effective radix of the router [14]. The 
HyperX topology has similar benefits and is more flexible in terms of possible configura-
tions, able to be optimized based on physical node layout in addition to expected traffic 
patterns [15]. Similar research specific to optimizing the configuration of HyperX through 
mathematical analysis has shown how Hypercube and Flattened Butterfly topologies are 
a subset of the HyperX option space, but have unnecessary limitations in comparison [17]. 

Research quantifying the performance of individual topologies either analytically or 
through simulation, frequently as a function of only node count, is available in abundance 
[12,14,15,17,18]. Works optimizing the layout of a topology against the number of nodes 
[15,26] provide a solid basis for starting a network design. Comparative works between 
topologies evaluating performance, cost, or latency against node count in specific scenar-
ios [11,14,16,17,19] are something this work seeks to build on. Routing algorithms for in-
dividual topologies have been analyzed with the intent of selecting the best option for the 
workload [9,14,15,26]. Others have also used SST to perform simulations in support of 
analyzing various aspects of HPC design [12,26]. 

5. Conclusions 
This work has contributed by addressing a gap in existing research by evaluating the 

impact of variable bandwidth across topologies with the intent of identifying the point at 
which it no longer makes sense to invest resources into improving the bandwidth. It also 
presents a method for plotting performance results (speedup) not seen in other works, 
which simplifies the rough estimation of the optimization point; typically, raw perfor-
mance numbers are shown that do not lend themselves to quick identification of return 
on investment. Using relative performance figures can highlight the point of diminishing 

Figure 17. HyperX Performance for 2048 Nodes.

While the simulations in general were limited to a small number of nodes, several
of the topologies (Torus, Dragonfly, and HyperX) are already known to scale well into
larger applications [13]. This information, when combined with other performance analysis,
can be used to jump-start design for a large-scale HPC design by focusing the efforts of
future simulations to reduce the total run time required to arrive at an optimal result. This
information could also support a cost-trade justification for implementation of HyperX
over the common Torus topology as the performance gains are likely to more than offset
the additional implementation expense.

Related Work

While a Fat-Tree topology is common for HPC designs, the large number of switches
and high-speed links makes it less cost-effective to scale compared to other choices with
similar performance characteristics [16]. A more practical solution is the Dragonfly topology,
which at scale can be implemented for half the cost and closely matches the performance
through an implementation that increases the effective radix of the router [14]. The HyperX
topology has similar benefits and is more flexible in terms of possible configurations, able
to be optimized based on physical node layout in addition to expected traffic patterns [15].
Similar research specific to optimizing the configuration of HyperX through mathematical
analysis has shown how Hypercube and Flattened Butterfly topologies are a subset of the
HyperX option space, but have unnecessary limitations in comparison [17].

Research quantifying the performance of individual topologies either analytically
or through simulation, frequently as a function of only node count, is available in abun-
dance [12,14,15,17,18]. Works optimizing the layout of a topology against the number of
nodes [15,26] provide a solid basis for starting a network design. Comparative works
between topologies evaluating performance, cost, or latency against node count in specific
scenarios [11,14,16,17,19] are something this work seeks to build on. Routing algorithms
for individual topologies have been analyzed with the intent of selecting the best option
for the workload [9,14,15,26]. Others have also used SST to perform simulations in support
of analyzing various aspects of HPC design [12,26].

5. Conclusions

This work has contributed by addressing a gap in existing research by evaluating the
impact of variable bandwidth across topologies with the intent of identifying the point
at which it no longer makes sense to invest resources into improving the bandwidth. It
also presents a method for plotting performance results (speedup) not seen in other works,
which simplifies the rough estimation of the optimization point; typically, raw perfor-
mance numbers are shown that do not lend themselves to quick identification of return
on investment. Using relative performance figures can highlight the point of diminishing
returns more readily. This work has demonstrated an approach that can benefit HPC



Computers 2023, 12, 86 14 of 15

design under cost constraints and be extended to future applications such as integrated
System-on-a-Chip-based designs.

This work has also demonstrated the effectiveness of using simulations written for
SST [10] to quickly and easily evaluate memory topologies for multicore HPC designs
and determine the optimal configuration for specific parameters. It has demonstrated
the capability to perform multi variable design trade analysis for HPC using simulation.
The simulations written for this analysis are flexible and modification of any performance
parameter simply involves changing a configuration variable.

The results confirm that memory bandwidth quickly stops being the limiting factor
without improving the performance of other design aspects at the same time and suggest
that more complex topologies are likely to provide better performance overall. The flexibil-
ity of SST [10] allows for either sequential identification and improvement of the system
bottleneck or automated Monte Carlo analysis to explore the entire design space if sufficient
computational resources are available to run the simulations.

The results also suggest that specific topologies may be more optimal for certain
types of workloads. This is fairly intuitive, but the flexibility to change the simulated
workload—even to the level of using actual executable files on predefined data sets—
allows for quantitative data supporting topology selection for each HPC designs intended
application. The ability of a single simulation to evaluate either general traffic patterns
or very specifically defined flows with the flexibility to automate analysis of all available
options is essential to the future of HPC design.

Future Work

One limitation of this work is its restriction to random memory access patterns for
analysis; the next step would be to test additional memory access patterns to see if the
results hold across workloads. Additionally, increasing the node count or taking the
bandwidth beyond 8 GB/s are likely to yield additional information about the behavior
of the various topologies. Both of these aspects are currently being evaluated. Making
variations to the topologies or other configuration parameters is also likely to have an
impact, and that design space could also be explored at some point in the future. The
variables could be parameterized for Monte-Carlo analysis of an extensive trade space
for a high-node-count HPC design if larger scale computing resources were available to
execute the simulations. Using the capability of SST to simulate very specific software
executables [10] would give a high precision performance estimation for the architecture
using standard benchmarks.

Author Contributions: Conceptualization, J.M. and P.Z.-H.; methodology, J.M. and P.Z.-H.; software,
J.M.; formal analysis, J.M.; writing—review and editing, J.M. and P.Z.-H.; supervision, P.Z.-H.;
funding acquisition, P.Z.-H. All authors have read and agreed to the published version of the
manuscript.

Funding: The APC was funded by The University of New Mexico.

Data Availability Statement: Numerical data for this analysis can be obtained at https://osf.io/
pyfzm (accessed on 13 April 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Balusamy, B.; Abirami, R.N.; Kadry, S.; Gandomi, A.H. Processing, Management Concepts, and Cloud Computing. In Big Data:

Concepts, Technology, and Architecture; Wiley: Hoboken, NJ, USA, 2021; pp. 83–110. ISBN 978-111-970-182-8. [CrossRef]
2. Kogge, P.; Bergman, K.; Borkar, S.; Campbell, D.; Carlson, W.; Dally, W.; Denneau, M.; Franzon, P.; Harrod, W.; Hill, K.; et al.

Exascale Computing Study: Technology Challenges in Achieving Exascale Systems; DARPA IPTO: Arlington, VA, USA, 2008.
3. Elnozahy, E.N.; Bianchini, R.; El-Ghazawi, T.; Fox, A.; Godfrey, F.; Hoisie, A.; McKinley, K.; Melhem, R.; Plank, J.S.; Ranganathan,

P.; et al. System Resilience at Extreme Scale; DARPA IPTO: Arlington, VA, USA, 2008.
4. Sarkar, V.; Amarasinghe, S.; Campbell, D.; Carlson, W.; Chien, A.; Dally, W.; Elnohazy, E.N.; Hall, M.; Harrison, R.; Harrod, W.;

et al. ExaScale Software Study: Software Challenges in Extreme Scale Systems; DARPA IPTO: Arlington, VA, USA, 2009.

https://osf.io/pyfzm
https://osf.io/pyfzm
https://doi.org/10.1002/9781119701859.ch4


Computers 2023, 12, 86 15 of 15

5. Jagasivamani, M. Resistive Ram Based Main-Memory Systems: Understanding the Opportunities, Limitations, and Tradeoffs.
Ph.D. Dissertation, University of Maryland, College Park, MD, USA, 2020. [CrossRef]

6. Jayasena, A.; Charles, S.; Mishra, P. Network-on-Chip Security and Trust Verification. In Network-on-Chip Security and Privacy;
Springer: Cham, Switzerland, 2021; pp. 311–337. ISBN 978-303-069-130-1. [CrossRef]

7. Souza, R.; Silva, V.; Lima, A.A.B.; de Oliveira, D.; Valduriez, P.; Mattoso, M. Distributed In-Memory Data Management for
Workflow Executions. PeerJ Comput. Sci. 2021, 7, e527. [CrossRef] [PubMed]

8. Kim, J.; Lee, M.; Park, J.; Cha, H. Special Issue on SoC and AI Processors. ETRI J. 2020, 42, 465–467. [CrossRef]
9. Priya, K.R. Adaptive Router Architecture for Network on Chip Using FPGA. JAC J. Compos. Theory 2021, 14, 23–34.
10. The Structural Simulation Toolkit. Available online: https://sst-simulator.org/ (accessed on 13 April 2023).
11. Bhatele, A.; Jain, N.; Mubarak, M.; Gamblin, T. Analyzing Cost-Performance Tradeoffs of HPC Network Designs under Different

Constraints using Simulations. In Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, Chicago, IL, USA, 29 May 2019; pp. 1–12. [CrossRef]

12. Groves, T.; Grant, R.E.; Hemmer, S.; Hammond, S.; Levenhagen, M.; Arnold, D.C. (SAI) Stalled, Active and Idle: Characterizing
Power and Performance of Large-Scale Dragonfly Networks. In Proceedings of the 2016 IEEE International Conference on Cluster
Computing (CLUSTER), Taipei, Taiwan, 13–15 September 2016; pp. 50–59. [CrossRef]

13. Elpelt, T.; Franke, R.; Miranda, Y.Z. Networking Design for HPC and AI on IBM Power Systems; IBM Redbooks: Armonk, NY, USA,
2018; ISBN 978-073-845-683-6.

14. Kim, J.; Dally, W.J.; Scott, S.; Abts, D. Technology-Driven, Highly-Scalable Dragonfly Topology. In Proceedings of the 2008
International Symposium on Computer Architecture, Beijing, China, 21–25 June 2008; pp. 77–88. [CrossRef]

15. Ahn, J.H.; Binkert, N.; Davis, A.; McLaren, M.; Schreiber, R.S. HyperX: Topology, Routing, and Packaging of Efficient Large-Scale
Networks. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, Portland, OR,
USA, 14–20 November 2009; pp. 41.1–41.11. [CrossRef]

16. Shainer, G. Super-Connecting the Supercomputers—Innovations Through Network Topologies. Available online: https://www.
hpcwire.com/2019/07/15/super-connecting-the-supercomputers-innovations-through-network-topologies/ (accessed on 5
April 2023).

17. Azizi, S.; Safaei, F.; Hashemi, N. On the topological properties of HyperX. J. Supercomput. 2013, 66, 572–593. [CrossRef]
18. Besta, M.; Hoefler, T. Slim Fly: A Cost Effective Low-Diameter Network Topology. In Proceedings of the SC’14: The International

Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, LA, USA, 16 November 2014;
pp. 348–359. [CrossRef]

19. Jain, N.; Bhatele, A.; White, S.; Gamblin, T.; Kale, L.V. Evaluating HPC Networks via Simulation of Parallel Workloads. In
Proceedings of the SC’16: The International Conference for High Performance Computing, Networking, Storage and Analysis,
Salt Lake City, UT, USA, 13 November 2016; pp. 154–165. [CrossRef]

20. Cannon, M.; Rodrigues, A.; Black, D.; Black, J.; Bustamante, L.; Breeding, M.; Feinberg, B.; Skoufis, M.; Quinn, H.; Clark, L.T.;
et al. Multiscale System Modeling of Single-Event-Induced Faults in Advanced Node Processors. IEEE Trans. Nucl. Sci. 2021, 68,
980–990. [CrossRef]

21. Henderson, T.R.; Roy, S.; Floyd, S.; Riley, G.F. ns-3 Project Goals. In Proceedings of the 2006 Workshop on Ns-3, Pisa, Italy, 10
October 2006. [CrossRef]

22. Binkert, N.L.; Dreslinski, R.G.; Hsu, L.R.; Lim, K.T.; Saidi, A.G.; Reinhardt, S.K. The M5 Simulator: Modeling Networked Systems.
IEEE Micro 2006, 26, 52–60. [CrossRef]

23. Nellans, D.; Kadaru, V.K.; Brunvand, E. ARCS: An Architectural Level Communication Driven Simulator. In Proceedings of the
14th ACM Great Lakes Symposium on VLSI, Boston, MA, USA, 26–28 April 2004; pp. 73–77.

24. Brooks, D.; Tiwari, V.; Martonosi, M. Wattch: A Framework for Architectural-Level Power Analysis and Optimizations. In
Proceedings of the 27th International Symposium on Computer Architecture, Vancouver, BC, Canada, 14 June 2000; pp. 83–94.

25. Tarjan, D.; Thoziyoor, S.; Jouppi, N.P. CACTI 4.0, HPL-2006-86. 2006. Available online: https://www.hpl.hp.com/techreports/20
06/HPL-2006-86.pdf (accessed on 13 April 2023).

26. Jain, N.; Bhatele, A.; Ni, X.; Wright, N.J.; Kale, L.V. Maximizing Throughput on a Dragonfly Network. In Proceedings of the SC’14:
The International Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, LA, USA, 16
November 2014; pp. 336–347. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.13016/avsa-xiys
https://doi.org/10.1007/978-3-030-69131-8_12
https://doi.org/10.7717/peerj-cs.527
https://www.ncbi.nlm.nih.gov/pubmed/34013039
https://doi.org/10.4218/etr2.12316
https://sst-simulator.org/
https://doi.org/10.1145/3316480.3325516
https://doi.org/10.1109/CLUSTER.2016.52
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1145/1654059.1654101
https://www.hpcwire.com/2019/07/15/super-connecting-the-supercomputers-innovations-through-network-topologies/
https://www.hpcwire.com/2019/07/15/super-connecting-the-supercomputers-innovations-through-network-topologies/
https://doi.org/10.1007/s11227-013-0935-6
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/SC.2016.13
https://doi.org/10.1109/TNS.2021.3071653
https://doi.org/10.1145/1190455.1190468
https://doi.org/10.1109/MM.2006.82
https://www.hpl.hp.com/techreports/2006/HPL-2006-86.pdf
https://www.hpl.hp.com/techreports/2006/HPL-2006-86.pdf
https://doi.org/10.1109/SC.2014.33

	Introduction 
	Description of the Problem 
	Simulation Configuration 
	The Structural Simulation Toolkit 

	Materials and Methods 
	The Structural Simulation Toolkit 
	Topology Simulations 
	Single Router (Crossbar) Topology 
	Ring Topology 
	Mesh Topology 
	Torus Topology 
	Dragonfly Topology 
	HyperX Topology 


	Results 
	Discussion 
	Conclusions 
	References

