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Abstract: Due to its high transmissibility, the COVID-19 pandemic has placed an unprecedented
burden on healthcare systems worldwide. X-ray imaging of the chest has emerged as a valuable and
cost-effective tool for detecting and diagnosing COVID-19 patients. In this study, we developed a
deep learning model using transfer learning with optimized DenseNet-169 and DenseNet-201 models
for three-class classification, utilizing the Nadam optimizer. We modified the traditional DenseNet
architecture and tuned the hyperparameters to improve the model’s performance. The model was
evaluated on a novel dataset of 3312 X-ray images from publicly available datasets, using metrics
such as accuracy, recall, precision, F1-score, and the area under the receiver operating characteristics
curve. Our results showed impressive detection rate accuracy and recall for COVID-19 patients, with
95.98% and 96% achieved using DenseNet-169 and 96.18% and 99% using DenseNet-201. Unique
layer configurations and the Nadam optimization algorithm enabled our deep learning model to
achieve high rates of accuracy not only for detecting COVID-19 patients but also for identifying
normal and pneumonia-affected patients. The model’s ability to detect lung problems early on, as
well as its low false-positive and false-negative rates, suggest that it has the potential to serve as a
reliable diagnostic tool for a variety of lung diseases.

Keywords: convolutional neural network; deep learning; COVID-19; DenseNet 169; DenseNet 201;
transfer learning

1. Introduction

Human beings have been suffering from several types of pulmonary diseases, such as
influenza, congestive obstruction pulmonary disease (COPD), tuberculosis, pneumonia,
lung cancer, etc., for many decades, and new, more severe, and contagious diseases are de-
veloping in the human body with the advancement of time. Though disease detection and
treatment technology have advanced a lot, this technology is not yet capable of mitigating
the effects of all types of diseases. With the increasing number of emerging new diseases,
it cannot beat the race. There are several types of coronaviruses that exist in nature as
pathogenic viruses by being alive in different types of animals, and they existed many years
ago. Such pathogenic viruses became a global issue after the outbreak of Severe Acute
Respiratory Syndrome Corona Virus (SARS-CoV) in 2003 and, consequently, Middle East
Respiratory Syndrome Corona Virus (MERS-CoV) in 2012 [1]. Later, the coronavirus caused
a massive outbreak in modified form, known as COVID-19, in China in December 2019 [2,3].
After that, this severe disease spread worldwide within a very short time. In February
2020, the World Health Organization (WHO) declared this disease a global pandemic due
to its high causality and mortality around the world [4]. Up to August 2021, more than
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219 million people have been infected by COVID-19, and among them, 4.55 million deaths
have occurred due to this severe disease [5]. In addition, the genome of COVID-19 has been
mutated, resulting in several waves of infection and death in various countries, making
this illness one of the most lethal menaces to humanity.

Compared to other infectious diseases, the transmission rate of COVID-19 is extremely
high, and the rate of transmission is growing as new varieties of the disease arise. This rate
is expected to continue to rise. Quick and accurate patient identification is critical to halting
the spread of COVID-19, and it must be accomplished as soon as possible using the readily
accessible, easy diagnostic procedure. COVID-19 can now be identified using Real-Time
Reverse Transcription-Polymerase Chain Reaction (RT-PCR), in which a brief sequence of
DNA or RNA is generated or amplified and evaluated [6]. However, establishing, operating,
and maintaining the RT-PCR procedure is quite challenging, especially for developing and
underdeveloped countries, as huge costs, good infrastructure, and well-trained experts
are required. Keeping the patient isolated until the result is another challenging issue, as
the time required to obtain the result is around 5–6 h [6]. The circumstances stated above
may be acceptable if the sensitivity of the RT-PCR is satisfactory, but the actual condition
is similar. Fang et al. [7] showed that the sensitivity of the RT-PCR test is approximately
71%, which is not in the satisfactory range. As a result, more research is being conducted to
come up with a simple method with better accuracy that can be used quickly and does not
require a lot of work.

Chest X-rays are the most used approach for pulmonary disorders, and if COVID-19
can be detected using this method, it will represent a paradigm shift in COVID-19 detec-
tion [8] Due to the widespread usage of chest X-rays and the availability of infrastructure
and skilled technical employees, COVID-19 detection will be made easier in practically
all countries worldwide. The scenario will be enhanced if COVID-19 can be detected
automatically from chest X-ray images. Numerous studies have been published demon-
strating the automatic detection of COVID-19 utilizing X-ray image analysis and deep
learning (DL) techniques. However, overall detection accuracy, notably the differentiation
between normal, pneumonia, and COVID-19 requires improved X-ray image precision. The
potential for misdiagnosis is one of the main dangers associated with the lower accuracy
of data-driven diagnosis. Any infectious disease that the AI system incorrectly diagnoses
could result in improper therapy, treatment delays, or missed opportunities for early in-
tervention. The health and well-being of the patient may suffer significantly as a result.
Confidence in technology may decline if AI-driven diagnosis is less reliable than human
diagnosis. Malpractice claims against healthcare providers that rely on the technology are
legal repercussions that could result from an inaccurate AI-based diagnosis. This might
make healthcare more expensive and further lower public confidence in the technology.
Consequently, continual research and development are required to raise the accuracy of
these systems. The performance of the current DL models depends on the datasets, and
different data samples yield different results when applied. Therefore, there is a need for
ongoing research in this area to create a model that is appropriate for various datasets. This
research proposed two DL-based models, DenseNet 169 and DenseNet 201, and examined
them using the confusion matrix, accuracy, specificity, recall, F1-score, ROC, and AUC
curves. Additionally, the proposed models have been assessed in terms of epochs, training
and testing accuracy, and loss. Finally, the new models have been compared to several
other recent models to demonstrate how much more accurate they are at forecasting the
future. The main contributions of this paper are encapsulated as follows:

• This research proposes a novel technique for detecting COVID-19 by adjusting the
hyperparameter to optimize the proposed pre-trained DenseNet architecture.

• A dataset with 3312 X-ray images is used with the combination of three distinct databases.
• A novel modified version of DenseNet is formed where we have added several new lay-

ers for optimization purposes. The optimized DenseNet architecture is applied to the
X-ray images, and the performance of the model is evaluated by several performance
metrics in classifying COVID-19-affected, pneumonia-affected, and normal patients.
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This paper is outlined as follows: The related work of this research is introduced in
Section 2. Then, in Section 3, materials and methods are along with datasets, data prepro-
cessing, the DenseNet architecture, and performance metrics. Moreover, the description of
the proposed architecture is presented in Section 4. Finally, in Sections 5 and 6, we look at
the proposed models and draw a conclusion.

2. Related Works

Numerous studies have been conducted to find the most effective DL-based models
for correctly detecting COVID-19 in X-ray images [8–33]. However, computed tomography
(CT) scanning is more expensive and time-consuming than traditional X-ray imaging.
Therefore, in some cases, models based on X-ray imaging with high accuracy are used to
identify COVID-19 in patients. Although several models demonstrate promising accuracy,
these models are still not fully implementable for all sorts of data sets. As a result, further
research into the development of COVID-19 detection models based on DL remains an
open question. The results of this investigation were compared to some of the most popular
and well-known models.

COVID-19 detection model based on DL from chest X-ray has been developed us-
ing various architectures such as VGG-16, VGG-19, ResNet-50, ResNetV2, InceptionV3,
DenseNet-121, DenseNet-161, DenseNet-169, DenseNet-201, and others. Different DL
models for COVID-19 detection have been presented in Table 1, and a brief description is
also given in the following.

Table 1. Summary of related works.

Ref Methods Images Classes Performance Limitations

[8]

Ensemble learning with a
convolutional network
(Adaptation of DenseNet-201,
ResNet50V2, and
Inception50V3)

1006 2 Accuracy: 91.6% Insufficient data.

[9] DenseNet, InceptionV3 and
Inception-ResNetV4 15,498 3

Accuracy: 92% (DenseNet),
83.47% (InceptionV3), 85.57%
(Inception-ResNetV4)

Compared three DL
models only.

[10]
VGG-19, Inception,
MobileNet-V2, Xception and
Incdeption-ResNet-V2

1427 3 Accuracy: 92.85% to 93.48%
(Maximum found by VGG-19) Insufficient amount of data.

[11] nCov-NET 1821 3 Accuracy: 97%

There is insufficient data to
discriminate between COVID
pneumonia and bacterial
(non-COVID) pneumonia.

[12] DeepCOVID-XR 5853 2 Accuracy: 83% Low accuracy.

[13] DenseCapsNet 750 2 Accuracy: 90.7% Insufficient data and
unsatisfactory accuracy.

[14] DCCNet 2200 2 Accuracy: 99.97% Huge computational time,
insufficient data.

[15] Machine learning (ML)
algorithms - 3 Divided into

COVID-19-impacted areas
Applied for a
particular district.

[17] U-Net++ lung segmentation 138, 662 2 Accuracy: 98% Only tuberculosis
(TB) diagnosis.

[25] NASNet-Mobile and
NASNet-Large 3411 2 Accuracy: 82.42%, 81.06% Only CT images and

low accuracy.

A. K. Das et al. [8] developed a model in which automatic detection of COVID-19
was shown by ensemble learning with a convolutional network using 538 COVID-19 and
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468 non-COVID-19 X-ray images. The accuracy was found to be 91.6%, and in this work,
DenseNet-201, ResNet-50-V2, and Inception-V3 were also adopted to compare the accuracy
with the proposed models. The data that were considered to propose a new model were
not -perfect, and the accuracy was also not good enough for practical deployment.

S. Albahli et al. [9] performed a simulation on 15,498 X-ray images which were classi-
fied as healthy normal, pneumonia, and COVID-19 using pre-trained DenseNet, Inception-
V3, and Inception-ResNet-V4. The DenseNet model showed maximum accuracy with 92%,
while the accuracies of Inception-V3 and Inception-ResNet-V3 were 83.47% and 85.57%,
respectively, and such performance was not fully satisfactory.

I.D. Apostolopoulos et al. [10] used 1427 X-ray images, where 224 images of COVID-19,
700 images of bacterial pneumonia, and 504 images of normal conditions were present. In
this research, five different types of models: VGG-19, Inception, MobileNet-V2, Xception,
and Inception-ResNet-V2, were considered to distinguish three classes. The accuracy
varied from 92.85% to 93.48%, and the maximum accuracy was found using VGG-19, which
requires more improvement.

C. Polat et al. [11] proposed two classes based DL model called nCov-NET after
modifying the DenseNet-161 model. For developing this model, 299 X-ray images of
COVID-19 and 1522 X-ray images of non-COVID-19 patients were considered. Though
the accuracy was 97%, this model could not distinguish between COVID pneumonia and
bacterial (non-COVID) pneumonia, which is the most important fact as, most often, due to
not confirming the type of pneumonia, providing treatment protocol is delayed.

R. M. Webbe et al. [12] proposed a new deep convolutional network-based algorithm
called DeepCOVID-XR to find out COVID-19 from X-ray images considering 5853 patient
X-ray images. The dataset was collected from the U.S. Clinical Dataset, but the accuracy
was not up to the mark. This work showed an accuracy of only 83%.

H. Quan et al. [13] developed a model known as DenseCapsNet, in which a DL
framework was designed using a convolutional neural network and capsular network.
Using 750 chest X-ray images, the accuracy of detecting COVID-19 was found to be 90.7%,
which was not good enough, and the number of data considered in this work was not
well enough.

A hybrid method was introduced named DCCNet by Ayalew et al. [14], which could
detect COVID-19 from the chest X-ray images dataset. The model depicts the best per-
formance with overall training accuracy of 99.97% by utilizing CNN and Histogram of
Orientated Gradients (HOG). Although it showed higher accuracy, it was only proposed for
diagnosing COVID positive cases; instead, it failed to detect other similar lung disorders.
The overall performance was compared with standalone models used in that study in terms
of computational times as well as training and validation accuracy.

N. Indumathi et al. [15] conducted recent research for the prediction of COVID-19
using ML algorithms in a district of Tamil Nadu state in south India. The overall system
was proposed to classify into different zones for a particular period from March to July
2020. The COVID-19-impacted areas are divided into different zones by the algorithms,
including danger, medium, and secure zones. In recent work, a DenseNet was applied to
classify lung diseases. In this case, the DL model was applied to a CT scan dataset with
1043 images and two separate X-ray datasets with 5935 and 5002 images, respectively [16].

S. Gite et al. [17] proposed a new lung disease diagnostic DL model for detecting
tuberculosis (TB) from X-ray images. Four segmentation techniques, namely, FCN, U-Net,
U-Net++ lung segmentation, and SegNet, were applied to the dataset, where U-Net++
lung segmentation performed the best with more than 98% lung segmentation accuracy.
The dataset used here contains two datasets: 138 X-ray images, including 58 TB infected
cases, and 662 X-ray images from Shenzhen Hospital with 336 TB cases. Several studies
reported the application of artificial intelligence and DL for the case of healthcare, including
COVID-19 [27–38]. One interesting study compared a multilayer network technique with
a single network for the case of COVID-19 vaccinations; however, they did not consider
disease diagnosis [35]. Another study proposed a technique that converts a ResNet into a
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multilayer network, allowing analysis of the related ResNet using the theory of complex
networks. However, the proposed model was not used in the study on any dataset related
to infectious diseases [36]. DL techniques demand a substantial amount of data for training
and evaluation. Due to the lack of generalization, DL models trained on restricted datasets
are unreliable. Literature indicates that data augmentation approaches can be utilized to
tackle problems with tiny datasets [26]. In addition, the majority of the currently available
research works [27–30] focus on the binary classification of COVID-19, whereas only a few
studies [31–34] deal with the multiclass classification of COVID-19.

Analyzing the issues associated with the papers mentioned above, it is noticed that this
work will advance the field from the present state of knowledge for predicting COVID-19
from chest X-ray datasets. With a new architecture tuned to X-ray images combined from
multiple datasets, the models will overcome the limitations of existing architectures suitable
for a single dataset. To propose a COVID-19 detection model based on DL, adequate training
and testing data must be available, as well as the capacity to distinguish between normal,
COVID-19, and bacterial pneumonia with the best possible accuracy. This research has
provided a modified framework of the DenseNet-169 and DesneNet201 models that were
constructed utilizing a significant amount of data and can accurately recognize normal,
COVID-19, and pneumonia.

3. Materials and Methods
3.1. Dataset

A data set of X-ray scanned images has been assembled in the three-level classification.
One with the label “Non-COVID-19 X-ray”, another class labeled “COVID-19 X-ray”, and
the last one labeled “pneumonia Chest X-ray” were used for trial-and-error purposes. The
dataset consists of 3312 images, of which pneumonia-affected and normal patient X-rays
were 694 images each, and COVID-19-affected patients’ X-rays were 1924 images from
publicly available primary datasets [22,23]. Among these, 2020 random images have been
selected. Afterward, the whole dataset was split into 85% for training and 15% for testing.
Note that some of the most prominent biases in X-ray imaging datasets are demographic
bias, illness prevalence bias, data collection bias, labeling bias, and technical bias concerning
equipment conditions. Biases in X-ray image datasets can have a major impact on the
performance of DL models, resulting in erroneous diagnoses, inequities in treatment, and
decreased faith in the technology. To maintain the fairness of the proposed model, these
biases were reduced by forming a novel dataset from the combination of two separate
X-ray imaging datasets. Furthermore, the dataset was divided into three classes without a
significantly high sample imbalance between classes. When looking at the chest X-ray data
set, it can be noticed that these three categories seem to be closely related. Figure 1 shows
some sample images of the dataset.
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3.2. Data Preprocessing and Augmentation

The performance of deep neural networks usually improves as the amount of data
available in the dataset increases. In ML, data preprocessing is the process of preparing
data from a dataset into an efficient format. Data augmentation is a technique that improves
the variety of data for training models without increasing the number of training samples.
However, augmentation of data not only enables the model to learn a greater variety of
features that increase the size of the dataset but also assists in preventing the model from
overfitting. Image augmentation allows us to add more data images to the current dataset
without spending more time adding data manually. Transformed versions of images in the
training dataset include a range of operations from the field of image manipulation, such as
zooms, rotations, shifts, flips, and many more. Image data augmentation is only applied to
the training dataset and not to the test dataset. These tasks can be performed using Keras,
which is a DL library that provides the ability to use data augmentation automatically when
training a model. Image augmentation is achieved by using the Image Data Generator class.

In this study, data augmentation is also used with 15◦ rotation, a sheer range of 0.1, a
zoom range of 0.1, horizontal and vertical flipping are permitted, and the mode to fill new
pixels as the “next” mode for better robustness and broader data. The databases consist of
various dimensions of images, which were resized to 224 × 224 pixels. Table 2 summarizes
our experimental dataset split into training and testing images.

Table 2. Summary of our experimental dataset.

Class Training Images Testing Images

Normal 589 105

Pneumonia 587 107

COVID-19 1639 285

Total: 3 2815 497

3.3. Transfer Learning

Transfer learning is a type of machine learning in which learned and existing neural
networks are used as the foundation for another model. DenseNet uses a unique approach
called “skip connections” between layers, which allows for better reuse and propagation of
features throughout the network. This dense connectivity pattern reduces the number of
parameters required to train the model, improves its accuracy, and helps prevent overfitting.
However, it is important to note that this approach is not related to the transmission of
information between people. This strategy discards significant data and retrains the model’s
existing knowledge while adapting it to new tasks. Finally, it trains the following model
with new data until it converges to a higher value.

3.4. DenseNet Architecture

Dense blocks were initially proposed by Gao Huang et al. [18] in the DenseNet model,
one of the new discoveries in Convolutional Neural Networks (CNN), which is designed
to perform image classification using densely connected layers through dense blocks with
each other. DenseNet model input consists of the RGB image, shape −1, 3, 224, 224, and the
format of shape is B (batch size), C (channel), H (height), W (width), passed through a stack
of layers consisting of concatenated attributes, combining the output of all the previous
layers with the future layers. This connectivity pattern is the main idea behind DenseNet
models. For example, suppose the input of a layer X3 = H3 ([X0, X1, X2]) is the output
from its previous layers, such as X2, X1, X0, and the original input, all combined to make
one deep feature map with the same spatial resolution but a different number of filters.
Combining dense blocks all in a row continually with each other will result in very deep
inputs. The architecture is divided into dense blocks with all the successive layers in each
block in such a way that uses one-by-one convolution to preserve the spatial resolution,
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but it shrinks the depth of the feature map, followed by max pooling to reduce the feature
map size. There are different DenseNets, such as DenseNet-121, DenseNet-169, DenseNet-
201, DenseNet-264, etc., among which this study employed DenseNet-169 consisting of
169 layers, and DenseNet-201 consists of 201 layers with more than 20 M parameters.

DenseNets require fewer parameters compared to traditional CNNs because there
are no redundant feature maps. If the structure of DenseNets is seen, it is divided into
dense blocks where the feature map dimensions remain constant inside a block having
different filters.

A dense block concatenates multiple inputs into a single tensor, where a composite
function of three sequential operations occurs: batch normalization (BN), followed by
a rectified linear unit (ReLU) activation function, which is used as training gradients
deteriorate because of the rate of unsaturated nonlinear functions, and a 3 × 3 convolution
(Conv). The vital part of convolutional networks is down-sampling, which divides the
network into dense blocks where 1 × 1 convolution (Conv) can be introduced as a bottleneck
layer before 3 × 3 convolution (Conv) to reduce the number of input feature maps in which
computational efficiency is improved and finally, concatenation is performed. There is a
transition layer between two dense blocks in which batch normalization, rectified linear
unit (ReLU) activation function and a 1 × 1 convolution followed by a 2 × 2 average
pooling layer. A transition layer between dense blocks reduces the number of features.
Initially, before entering the first dense block, a convolution with a kernel size of 7×7
followed by a 3 × 3 max pooling is performed. Then the dense block 1 × 1 Conv and 3 × 3
Conv layers followed by one pixel to keep the feature map size fixed. Between two blocks,
1 × 1 Conv and 2 × 2 average pooling as transition layers are used to reduce the volume of
the dense block’s output size by half. At the end of the final dense block, a global average
pooling with some activation functions along with dropout layers is performed, and then
softmax classification is attached.

In the basic DenseNet model, dense blocks as well as the transition layer, consist of an
unsaturated nonlinear activation function called ReLU (rectified linear unit), which is often
employed in convolutional networks. The activation function mainly determines which
neuron will produce the matching output from a specific input. The following Equation (1)
shows the mathematical form of the activation function [19], where r is denoted as the input,

f(r) =
{

0, if r < 0
r, if r ≥ 0

(1)

A convolutional neural network has a deeply connected layer in its hidden layer in
which every layer receives input from all the neurons of its prior layer. Initially, the input
layer is provided to the model, and then a dense layer followed by a ReLU activation
function is added. The dense layer is implemented as a dot product of input shape (X) and
weights matrix (W) added with bias (b), as shown in Equation (2).

y = XW + b (2)

The most vital component of a neural network is the convolutional layer, which has
different types of weighted filters to produce different feature maps by a convolution
operation. Suppose the input image is represented as X matrices and a filter represented as
f matrices perform mathematical operations of these matrices point-multiplication addition
that outputs Z, so the mathematical expression will be Z = X ∗ f.

For the case where the input image has dimensions of W1 × H1, the number of filters
is N, the filter size is F, the stride length is S and the length of zero padding is P, then the
resulting output volume will be of size W2 × H2 × D2 where:

W2 =
W1 − F + 2 × P

S
+ 1 (3)



Computers 2023, 12, 95 8 of 19

H2 =
H1 − F + 2 × P

S
+ 1 (4)

D2 = N (5)

The convolutional layer uses parameter sharing, which means that each filter uses
the same set of F ∗ F ∗ D1 weights (parameters) and K biases. This results in a total of
(F ∗ F ∗ D1) ∗ K weights and K biases for the layer. To produce the output volume, the layer
convolves each filter with the input volume using a valid convolution operation with a
stride of S, adding a specific bias term to that filter. The resulting output volume has a
depth of K, with each depth slice of size W2 × H2 [21].

Width and height are computed equally by symmetry. The term D2 will be based on
the number of layers and filters in dense blocks and transition layers. Convolution neural
networks also perform some operations in the pooling layers, from which average pooling
entails calculating an average for every patch on the feature map. During each training
phase, a generalized technique is used to increase the accuracy by preventing the model
from being overfitted. Dropping off neurons can be applied to hidden neurons but does
not consist of forward and back propagation in a neural network. This process temporarily
does not allow some neurons to emit with a certain probability, and other than that neurons
probability of (1 − p) [20], both learning and training have been performed. The dropout
layer should be placed before the ReLU or after the other activation function.

3.5. Performance Metrics

To propose any model, its performance must be evaluated first based on some standard
parameters. If the new models satisfy all the benchmarks of the parameters that are
considered, then the proposed model can certainly be declared as an implementable model.
The proposed models in this research have been evaluated using confusion matrices such
as accuracy, sensitivity or recall, specificity, precession, F1-score, and ROC curves.

A confusion matrix is a tabular form of representation of a predictor’s performance in
which each item denotes the number of predictions produced by the model in which the
classes were properly or incorrectly categorized. It also allows measuring the performance
of the model by accuracy, recall, precision, and AUC-ROC curve.

Accuracy (ACC) is the calculation of all the truly recognized cases. It is identified as
the number of all true predictions divided by the total number of the dataset. Accuracy can
be computed as follows:

ACC =
TP + TN

TP + TN + FN + FN
(6)

Here, TP = true positive, TN = TRUE NEGATIVE, FP = false positive, and FN = false
negative. Sensitivity, or recall, is for measuring a classifier’s completeness by identifying
True Positives. It is calculated as the number of true positive values divided by the total
number of positives. Recall can be computed as follows:

Sensitivity or Recall =
TP

TP + FN
(7)

Specificity is measured as the number of true negative values divided by the total
number of true negative and false positive data.

Specificity =
TN

TN + FP
(8)
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Precision is denoted as a positive predictive value. Precision is calculated as the
number of true positive predictions divided by the total number of positive predictions.
Precision can be computed as follows:

Precision =
TP

TP + FP
(9)

The F1 score is a combination of precision and recall. The formula of the F1 score is
denoted as:

F1 − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(10)

The ROC (receiver operating characteristic) curve is a graph known as a receiver
work function that suggests the overall performance type of a version based primarily on
parameters including a true positive and false positive rate. AUC (area under the curve) is
evaluated for both training and testing epochs.

These are typical machine learning assessment measures, including DL-based disease
categorization tasks. Specificity assesses a model’s ability to accurately identify genuine
negatives or the fraction of actual negatives correctly detected by the model. Specificity is
crucial in illness classification because it allows us to assess how effectively the model can
identify healthy persons who do not have the condition. The ability of a model to accurately
identify real positives, also known as sensitivity, is measured by the recall, which is the
proportion of actual positives correctly detected by the model. In the context of illness
classification, recall is crucial because it allows us to assess how effectively the model can
identify individuals with the condition while avoiding false positives. Precision assesses a
model’s ability to detect genuine positives or the fraction of anticipated positives that are
truly positive. Precision is crucial in the context of illness classification because it allows
us to assess how effectively the model can identify individuals who have the condition
without incorrectly labeling healthy persons as positive. The F1 score is a harmonic mean of
precision and recall that gauges a model’s ability to balance precision and memory. When
the dataset is unbalanced, i.e., when one class has considerably more samples than the other,
the F1 score is a relevant assessment statistic. In the context of illness classification, the F1
score is crucial since it allows us to assess the model’s overall performance in recognizing
both positive and negative instances. We can gain a more comprehensive understanding of
the DL-based disease classification model’s performance by evaluating specificity, recall,
precision, and the F1 score, including its ability to accurately identify both positive and
negative cases, avoid false positives and false negatives, and balance precision and recall.
This data is crucial for establishing if the model is appropriate for usage in clinical settings,
where accuracy and dependability are critical.

4. Proposed Architecture

A densely connected neural network is a stack of continual layers from which hidden
layers extract features. In this research, the DenseNet architecture is one of the highway
networks to increase the depth of the convolutional neural network by stacking on more
subsequent convolutional layers. The depth of the model will be controlled with 1 × 1
convolutions and pooling layers. This model comprised two parts of the network. Firstly,
feature extraction uses DenseNet-169 and DenseNet-201—secondly, fully connected layers
with a softmax activation function for the classification. Figures 2 and 3 depict the overall
architecture of the proposed models. There is some tuning of hyperparameters in the
classification stage. After the feature extraction part, the output nodes from the final dense
block have been flattened, and batch normalization has been conducted. After that, each
node maps into a column vector with 1024 rows using the LeakyReLU activation function,
followed by a 0.5 dropout layer. Then the fully connected layer transforms this column
vector of 512 rows using the ReLU activation function, followed by another fully connected
layer which reduces the column vector to 256 rows. The third fully connected layer employs
a sigmoid activation function. Again, a dropout layer with a 0.5 dropout probability is
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applied before the last fully connected layer to the training dataset. The last fully connected
layer using a softmax activation function, maps the column vector into a column vector
with 3 rows, equivalent to the number of three classes. Additional layers in the classification
stage were trainable, whereas the weights from the feature extraction phase were left frozen
in the pretrained DenseNet. With each successive epoch, the training accuracy began to
increase according to the unique arrangement of the layers and parameter efficiency in the
classification phase. The resulting training accuracy improved by resolving the vanishing
gradient problem by including Nadam optimization techniques and several dropouts in
these layers. Nesterov’s Adaptive Movement Estimation (Nadam) is applied here to train
the model in less time and more efficiently with a dynamic learning rate. In the transfer
learning scheme, three neurons in a fully connected layer, a softmax layer, and a new
classification layer with three classes such as normal, pneumonia, and COVID-19, are used.
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Initially, to aid in data generation, X-ray images are resized to 224 × 224, and data
augmentation is also applied. After that, the experimental dataset is segregated into two
parts (training and testing). Afterward, the dataset is trained using the proposed models.
The data was trained up to 30 epochs with an initial learning rate of 0.002, and the batch
size was 64. The best accuracy for the proposed model was observed within 30 epochs.
The overall accuracy of the model was observed based on some performance metrics. The
summarization of the results of sample images from the classification layer is identified
correctly and incorrectly by a confusion matrix.
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5. Results and Discussion

This section describes the experimental results based on performance metrics. The
implementations of the architectures were performed by Google Collaboratory, known as
Google Colab, which is an open-source cloud-based platform to write and execute arbitrary
Python code to be used for experimental purposes. Moreover, for the experiment, ML
libraries such as Numpy, Scipy, Scikit-learn, Matplotlib, etc., were used. Various optimizers
have been examined based on DL and the CNN framework to obtain the greatest accuracy
in the proposed model. Because ML and DL approaches are stochastic models in general,
experiments were carried out for numerous runs, multiple optimizers, and learning rates
to ensure the robustness of the proposed models. In this work, different optimizers such
as Nadam, Adam, and SGD are considered. Table 3 shows that the Nadam optimizer
performs the best for our proposed models. Moreover, the learning rate is varied for the
Nadam optimizer. Table 4 shows that the learning rate of 0.003 is the best for the proposed
models with the Nadam optimizer. Next, the models were trained and evaluated with
multiple runs. The mean of the performance metrics was calculated across all runs. The
higher the number of runs, the more accurate the estimation of the model’s performance
and variability. Table 5 shows the performance metrics for multiple runs of the proposed
models. Table 5 indicates that the results for runs 1 through 4 do not differ significantly. In
the remaining experiments, Nadam, with a learning rate of 0.003, was used, and a single
run was considered. Finally, the model was compiled, and the model was saved.
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Table 3. Performance results for different optimizers.

Optimizer Model Accuracy Recall Loss Precision F1-Score

DenseNet-169 (SGD) 84.70% 81.35% 36.12% 81.25% 81.01%

DenseNet-169 (Adam) 88.45% 86.02% 29.73% 86.60% 85.89%

DenseNet-169 (Nadam) 91.90% 89.28% 24.07% 89.28% 88.95%

DenseNet-201 (SGD) 85.68% 82.78% 33.54% 82.91% 82.24%

DenseNet-201 (Adam) 89.76% 87.41% 27.15% 87.94% 87.08%

DenseNet-201 (Nadam) 92.30% 89.62% 22.45% 90.95% 90.23%

Table 4. Performance results for different learning rates with Nadam optimizer.

Model Learning Rate Accuracy Recall

DenseNet-169

0.003 91.90% 89.28%

0.007 88.20% 88.20%

0.05 72.60% 63.40%

DenseNet-201

0.003 92.30% 89.62%

0.007 91.41% 91.24%

0.05 74.26% 65.03%

Table 5. Results of the proposed DenseNet-169 and DenseNet-201 models for multiple runs.

Run Model Accuracy Recall Specificity Precision F1-Score

1

DenseNet-169 (Nadam)

91.90% 89.28% 92.42% 89.28% 88.95%

2 92.04% 89.32% 92.54% 89.29% 89.07%

3 91.97% 89.35% 92.49% 89.35% 89.02%

4 92.03% 89.40% 92.54% 89.40% 89.08%

1

DenseNet-201 (Nadam)

92.30% 89.62% 95.59% 90.95% 90.23%

2 92.35% 89.71% 95.65% 91.05% 90.33%

3 92.35% 89.67% 95.64% 91.00% 90.33%

4 92.40% 89.72% 95.69% 91.05% 90.38%

The proposed classification model of COVID-19 is contrasted with contender models
utilizing distinctive confusion matrix-based measurements. These measurements are
accuracy as shown in Figures 4 and 5, precision, F1 score, sensitivity, specificity, precision,
and ROC curve. The primary objective of this research is to use X-ray scans to determine
whether patients have been impacted by COVID-19 positivity, COVID-19 negativity, or
pneumonia. The dataset is divided into four categories: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN), as indicated by the confusion matrix
in Figure 6. In some cases, individuals may not be directly affected by COVID-19 or
pneumonia, but their outcomes or overall health status can still be affected. Moreover,
in some cases, patients were found to have COVID-19 or pneumonia but were found to
be unaffected.
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Patients’ actual classes may or may not correspond to their test results. There should
be some numerical metrics used to validate the proposed model’s performance. Since this
is a three-level classification model, the TP, TN, FP, and FN values are not derived directly,
as they are in a binary classification problem. These values were determined separately
for each class. The cell in the confusion matrix designated by the column and row for the
positive class contains TP, for which both the actual and anticipated classes are normal.
Second, the rows and columns that show cells in the negative class are called FN. They
have a real class for normal people and a predicted class for people with pneumonia or
COVID-19. Third, cells identified by the column for positive class contain FP and rows for
negative class, where the actual class for pneumonia or COVID-19-affected patient differs
from the predicted class for a normal patient. Finally, cells outside the row and column for
the positive class contain TN with the actual class for COVID-19 or pneumonia patients
and the predicted class for COVID-19 or pneumonia patients. A wrong prediction within
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the negative class is still called a true negative. The overall performance evaluation of this
proposed model is shown in Tables 6 and 7.
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Table 6. Performance evaluation of the proposed DenseNet 169.

Class Accuracy Recall or
Sensitivity Specificity Precision F1 Score

Normal (Class:0) 92.56% 82% 95.15% 83% 82%

Non-COVID-19 pneumonia (Class:1) 95.37% 90% 90.20% 89% 89%

COVID-19 (Class:2) 95.98% 96% 92.06% 96% 96%

Table 7. Performance evaluation of the proposed DenseNet 201.

Class Accuracy Recall or
Sensitivity Specificity Precision F1 Score

Normal (Class:0) 93.96% 89% 97.19% 82% 85%

Non-COVID-19 pneumonia (Class:1) 94.57% 81% 92.13% 97% 89%

COVID-19 (Class:2) 96.18% 99% 97.60% 94% 97%

The numeric values of Tables 6 and 7 are calculated from the above-mentioned perfor-
mance measures. Figures 4 and 5 show the training and testing accuracy of the proposed DL
model with respect to the number of epochs. Note that the accuracy values are calculated
at several epochs during the training phase to evaluate the model’s performance on the
testing data. This allows the model’s performance to be tracked over time and detects
any overfitting or underfitting. We can find the epoch at which the model obtains the best
accuracy on the testing data by tracking the testing accuracy values at different epochs.
This epoch is then utilized to choose the final model for deployment because it marks the
point in the model’s ability to generalize to new data.

Figure 6 presents the confusion matrix from which TP, TN, FP, and FN can be cal-
culated, which are useful metrics in the data-driven diagnosis of lung diseases. Since
the dataset contains three different classes, the values for TP, TN, FP, and FN are calcu-
lated for each individual class from the confusion matrix. When the “normal” case is
considered, the FP indicates the model wrongly predicts an individual to be normal and
not have COVID-19 or non-COVID-19 pneumonia. FN, in the case of the “COVID-19”
class, arises when the model fails to detect the existence of COVID-19 in individuals who
have the condition. Similarly, for the “non-COVID-19 pneumonia” class, FN occurs as
the model fails to detect non-COVID-19 pneumonia. Any case that involves the unde-
tection of lung disease can be dangerous. Such mistakes can have major effects on the
diagnosis and treatment of lung diseases. Other categorization problems include misclas-
sifying distinct types of lung diseases or failing to discriminate between disease stages
or severity. These mistakes can also have serious consequences for patient care and re-
sults. The different values of FP, FN, etc., metrics can be observed in Figure 6a,b. For
example, the metrics for the normal class for DenseNet-169 can be obtained from Figure 6a
as: TP = 87, TN = 95 + 1 + 2 + 275 = 373, FN = 9 + 9 = 18, FP = 11 + 8 = 19. Similarly, the
metrics for the normal class for DenseNet-201 can be obtained from Figure 6b as: TP = 86,
TN = 104 + 1 + 7 + 269 = 381, FN = 17 + 2 = 19, FP = 9 + 2 = 11. By combining the metrics
for each individual class, a single measure is obtained for the whole model.

Figure 7 shows the ROC curves for three classes of the proposed DenseNet 169 and
DenseNet 201 models.

The figures show that the model obtains higher accuracy, recall, precision, F1 score,
specificity, and loss values at the 30th epoch and that the whole model is computationally
efficient due to its high speed. It is advised in medical research to reduce all false positive
and false negative cases so that diseases are not incorrectly classified. The number of incor-
rectly diagnosed instances is recommended to be reduced, as any incorrect diagnosis can be
potentially dangerous. After assessing the confusion matrices, the proposed architectures
could reliably classify approximately 92% of the cases. The confusion matrices demonstrate
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fewer false positive and false negative cases of three types of lung datasets categorization
with more correctly predicted cases. As a result, the architecture may be appropriate for
reliably diagnosing lung diseases.
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In order to compare the proposed models with the baseline models, DL architec-
tures, such as VGG-16, AlexNet, and RestNet, were applied to the same dataset. Table 8
indicates that the proposed models with the Nadam optimizer outperform the baseline
models. Table 9 shows the comparison of different models of References [8,9,12,13] with
the proposed models in terms of performance metrics.
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Table 8. Performance comparison with popular baseline models.

Model Accuracy Recall Specificity Precision Loss

VGG-16 84.73% 82.12% 87.05% 84.91% 43.49%
AlexNet 86.70% 84.30% 88.10% 85.90% 35.10%
ResNet 88.00% 86.50% 89.30% 87.20% 46.80%
DenseNet-169 (Nadam) 91.90% 89.28% 92.42% 89.28% 24.07%
DenseNet-201 (Nadam) 92.30% 89.62% 95.59% 90.95% 22.45%

Table 9. Comparison of the proposed method with the state-of-the-art literature.

Ref. Models Accuracy Recall or
Sensitivity Specificity Precision F1-Score

[8]

Ensemble learning with a
convolutional network
(Adaptation of
DenseNet-201,
ResNet50V2, and
Inception50V3)

91.60% 88.33% - - 91.54%

[9] DenseNet 92% 91% 96% - -
[9] InceptionV3 83.47% - - - -
[9] Inception-ResNetV4 85.57% - - - -
[12] DeepCOVID-XR 83% 92% - - -
[13] DenseCapsNet 90.70% 96% - - 90.9%
[24] CO-ResNet 90.20%

This Paper
DenseNet 169 with Nadam
Optimizer 91.95% 89.33% 92.47% 89.33% 89%

DenseNet 201 with Nadam
Optimizer 92.35% 89.67% 95.64% 91% 90.33%

The ROC curve shows the classification performance of the model on two cases true
positive and false positive rates. Figure 7a,b demonstrate that the COVID-positive case
(class 2) performed considerably better on the DenseNet-169 and DenseNet-201 models
compared to other cases. Consequently, the over-fitting phenomenon is minimized in
these optimized structures. These could be employed to reliably classify COVID-positive,
healthy, and pneumonia-affected cases. It can be seen from the comparisons in Table 5
that the proposed architectures offer a better evaluation of the model with all basic metrics.
However, other relevant research in the literature has certain drawbacks in measuring
the model’s performances, including all parameters. Hence, for the cases considered,
our proposed models outperformed existing models in comparison. The model can be
applicable for classifying other related lung illnesses. Many hospitals now lack skilled
doctors to diagnose many types of lung infections. Therefore, the proposed models can
be used as a backup strategy for correctly diagnosing respiratory problems. The model-
building technique is visually oriented as the most effective way to assess its generalization
as a medical decision support system. This architecture can bring a revolutionary change
in the field of medical technology as the world is now technology dependent.

The research has a few limitations as well. Firstly, the overall model accuracy has to be
improved to around 99–100%. Another limitation is that the proposed model includes three
class classifications, and it should classify more diseases similar to COVID-19. Furthermore,
a GUI based on the proposed models can be deployed, allowing medical experts to identify
and isolate COVID-19 patients immediately. In the future, it is planned to develop a more
accurate model to detect COVID-19 correctly. Thus, the limitations of the architecture can
be overcome by more optimized models in the future.
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6. Conclusions

In this paper, a model is proposed for three class classifications of COVID-19 diag-
nosis compared with normal and healthy patients’ X-ray images as well as non-COVID
pneumonia-affected patients with the help of DenseNet-169 and DenseNet-201. The pro-
posed model classifies the X-ray images with training and testing datasets with an overall
model accuracy of 91.95% and 92.35% for DenseNet-169 and DenseNet-201, respectively.
The proposed architectures are both computationally and parameter efficient. The addi-
tional layer arrangements and hyperparameter adjustments enabled both models to obtain
higher accuracy. Comparative analysis indicates that the mentioned optimized algorithms
outperform other well-known DL models considerably better. In the future, confidence
intervals can be calculated for the proposed models to evaluate their robustness. Moreover,
the proposed models may be applied to datasets with more than three classes.
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