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Abstract: The opinion dynamics literature argues that the way people perceive social influence
depends not only on the opinions of interacting individuals, but also on the individuals’ non-opinion
characteristics, such as age, education, gender, or place of residence. The current paper advances this
line of research by studying longitudinal data that describe the opinion dynamics of a large sample
(~30,000) of online social network users, all citizens of one city. Using these data, we systematically
investigate the effects of users’ demographic (age, gender) and structural (degree centrality, the
number of common friends) properties on opinion formation processes. We revealed that females are
less easily influenced than males. Next, we found that individuals that are characterized by similar
ages have more chances to reach a consensus. Additionally, we report that individuals who have
many common peers find an agreement more often. We also demonstrated that the impacts of these
effects are virtually the same, and despite being statistically significant, are far less strong than that
of opinion-related features: knowing the current opinion of an individual and, what is even more
important, the distance in opinions between this individual and the person that attempts to influence
the individual is much more valuable. Next, after conducting a series of simulations with an agent-
based model, we revealed that accounting for non-opinion characteristics may lead to not very sound
but statistically significant changes in the macroscopic predictions of the populations of opinion
camps, primarily among the agents with radical opinions (≈3% of all votes). In turn, predictions
for the populations of neutral individuals are virtually the same. In addition, we demonstrated
that the accumulative effect of non-opinion features on opinion dynamics is seriously moderated by
whether the underlying social network correlates with the agents’ characteristics. After applying the
procedure of random shuffling (in which the agents and their characteristics were randomly scattered
over the network), the macroscopic predictions have changed by ≈9% of all votes. What is interesting
is that the population of neutral agents was again not affected by this intervention.

Keywords: opinion formation models; influence networks; online social networks; the effects of
non-opinion characteristics; assimilative influence; bounded confidence

1. Introduction

Social influence is perhaps one of the most intriguing and fascinating phenomena
that affect our daily lives. In so-called opinion formation models (also known as social
influence models), the social influence effects are captured by specific mathematical rules
that outline how agents’ opinions (operationalized as discrete or continuous quantities
standing for agents’ choices or subjective attitudes toward predefined controversial issues)
are changed after being exposed to peers’ opinions [1,2]. These models are able to explain a
huge variety of macro-scale social phenomena, such as consensus, polarization, segregation,
and the formation of echo chambers [1]. However, the empirical foundation behind opinion
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formation models is rather limited—the majority of models have never been tested against
real data, with only a few of them being validated in empirical settings [3,4].

Over the past few years, the situation has slowly changed [5–10]. Partially, this be-
comes possible due to the large amount of open data available from online resources. In
some situations, these data allow reconstructing opinion dynamics of Internet users—social
media sites give a perfect opportunity to make unobtrusively repeated measurements of
users’ communications with high resolution. After being carefully pretreated (for example,
users’ opinions should be estimated using some opinion mining techniques), such informa-
tion can be used to test hypotheses regarding social influence at both the qualitative and
quantitative levels [11–18].

An extremely important issue in studies of social influence and information dissemi-
nation is to understand how influential a particular individual is (that is, how effectively
they influence other people) and how strongly they are attached to their own opinion [19].
Empirical research suggests that individuals are not homogeneous in influence percep-
tion [9], and the way they distribute trust over their communication networks may depend
on many factors, both demographic (age, gender, education level, etc.) and structural (the
number of friends, the number of common friends, betweenness centrality, etc.). Not to
mention that the current opinion of an individual does also affect the individual’s level of
confidence—more radical people tend to be more stubborn and less easily influenced [5].

Despite our advantages in understanding the structure of trust in social networks,
we still lack a systematic investigation and comparison of various factors affecting how
effectively individuals influence each other. In this paper, we attempt to challenge this
problem by studying empirical longitudinal data derived from an online social network.
In these data, detailed information on users’ opinions (estimated based on users’ digital
footprints), structural (social ties), and demographic (age and gender) attributes is provided.
This gives us an opportunity to rigorously investigate and compare the effects of various
factors, both opinion and non-opinion, that influence the way individuals distribute their
trust across communication networks.

The rest of the paper is organized as follows. Section 2 reviews the relevant literature.
Section 3 briefly describes the plan of our analysis. Section 4 introduces the empirical data.
Section 5 outlines our notations and terminology. In Section 6, we investigate the data
using regression analysis. Section 7 conducts a series of simulation experiments to test the
results of the empirical analysis from Section 6. Section 8 discusses the results and makes
concluding remarks. In the Appendices A–C, auxiliary information is provided.

2. Literature

We would like to start the review of the relevant literature from the classical DeGroot
model [20]. In this model, agents’ opinions are represented on a continuous scale (for
example, [0, 1]), and an agent i’s opinion at the next time model xi(t + 1) is defined as a
convex combination of their current opinion xi(t) and the opinions of the agent’s peers at
the previous time moment:

xi(t + 1) = wi,ixi(t) + ∑
j∈Vi

wi,jxj(t) (1)

In Equation (1), Vi is the list of i’s peers, and wi,j represents how strong is the influence
directed from j to i. In turn, wi,i outlines how stubborn (self-confident) agent i is. The
quantities wi,i,

{
wi,j
}

j∈Vi
are usually called the influence weights; the weight wi,i is some-

times referred to as the self-weight. The set of all influence weights defines the influence
network—a directed weighted graph whose edges represent how individuals influence
each other and how individuals’ trust is distributed among their peers. Despite this ter-
minology usually being applied within the framework of the DeGroot model (and other
models that are extensions of the DeGroot model [21]), we will use the term “influence
network” in a broader context—to describe how open individuals are to the influences from
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their peers and how strong are their attachments to their own opinions (without assuming
that opinions evolve in accordance with the DeGroot model).

Using this terminology, we paraphrase our main objective as follows: we will study
how the users’ influence weights depend on the nodal and structural characteristics of the
networked social system.

A large line of studies is dedicated to the extraction of the influence network from
repeated measurements of individuals’ opinions [22]. A different line of research inves-
tigates how influence weights are linked to the intrinsic characteristics of people. At the
moment, we already know a lot about how individuals perceive their peers’ opinions in
information exchanges. For example, we know that individuals with radical opinions tend
to be more stubborn [5,16]. Further, we know that the level of stubbornness may vary
across ideological groups [9]. An important observation is that younger individuals are
considered to be more vulnerable to social influence [23]. Next, according to Refs. [24–26],
females cooperate better than males, and thus we should hypothesize that females are more
easily influenced. However, such differences may stem from status inequalities [27]—for
example, according to empirical studies, males tend to have more friends and thus may
perceive themselves as more valuable [28]. Further, we know that the perception of a
message depends on how distant the message is from the focal individual in terms of the
opinion space—too distant opinions may be less attractive [8], a phenomenon referred to
as bounded confidence [29–31]. Next, empirical studies indicate that individuals that have
common non-opinion features (such as age, place of residence, or culture) display more
trust toward each other even if their opinions differ significantly [32]. In addition to this,
structural similarity, measured, for example, as the number of common friends, fosters the
propagation of opinions and ideas [33].

Further, an individual’s perception of external information and openness to influence
may depend on how influential the individual’s opinions were in previous discussions,
even if these discussions were dedicated to completely different topics (the theory of
reflected appraisals) [34]. According to this theory, individuals whose opinions contributed
most to previous conversations will reinforce their self-confidence in the next conversation
and so on.

In the current paper, we investigate various factors that may affect the organization of
influence networks. We will consider not only the effect of individuals’ opinions but also
demographic (age, gender) and structural (the number of friends, the number of common
friends) effects. What is even more important, we will systematically compare the strength
of these effects thus trying to figure out what factors have the greatest impact.

3. Overview of Our Analysis

Our analysis builds upon a longitudinal dataset that describes the opinion dynamics
of a sample of online social network users. We use this dataset to investigate what factors
govern opinion dynamics at the microscopic level. Using regression analysis, we discern
statistically significant covariates (paying specific attention to non-opinion ones) and
compare their effects. Those factors that are estimated to be significant are then employed
in simulations with an agent-based model. These experiments are focused on comparing
two models: in the first one, the non-opinion features are not accounted for. In contrast,
the second model includes the non-opinion features. Both models are calibrated on the
empirical data. We check the outcomes of these two models at the macroscopic level—
our main objective is the public opinion states predicted by the models. The schematic
representation of our analysis is presented in Figure 1.
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Figure 1. The workflow of the analysis.

4. Data

We investigate the dataset introduced for the first time in Ref. [28]. That dataset
includes two snapshots of the online network VKontakte (VK), describing friendship-type
connections and the opinions of a sample of N = 29,248 VK users, all citizens of the same
city. The snapshots were made in March and September 2019. Information regarding users’
ages and genders is also available. Users’ opinions (on a political issue) were measured on
the scale [0, 1] using information on users’ subscriptions to information sources (public
pages and bloggers) with the help of the methodology from Ref. [35]. It is worth noting
that the sample was cleaned of any accounts that were employed in the opinion estimation
procedure (to facilitate the independence of estimated opinions). The sample comprises
adults (age > 17) with open VK accounts that were active no less than one time per month
during the observation period. One more filter restricts users to have no less than 10 and
no more than 200 followers (this ensures the highest accuracy of the opinion estimations).
However, similarly to Ref. [28], we focus on the giant connected component that includes
~95% of all vertices. As a result, we end up with a sample of N = 27,861 users. For more
information regarding the dataset, we refer the reader to Ref. [28] (Sections 4 and 5, and
Appendix B). Further, Figure A10 (Appendix C in the current manuscript) presents some
histograms that help the reader to understand the organization of the data.

5. Notations and Terminology

We denot. the network snapshots by G(t1) = [V, E(t1), x(t1)] and G(t2) = [V, E(t2), x(t2)],
where V. represents t. he sample users and E(t1), E(t2) stand for edges between them at
times t1 (March 2019) and t2 (September 2019). Correspondingly, the vectors x(t1) and x(t2)
outline estimated users’ opinions. For a user i, their opinion is denoted by xi(t) ∈ [0, 1], and
their age and gender are signified as agei ∈ N and genderi ∈ {1, 2} (1–females, 2–males),
respectively. Throughout the paper, the set of natural numbers from 1 to m ∈ N is denoted
by [m]. To denote the cardinal number of a set, we use the notation #{. . .}. The number of
the user i’s friends at time t is fi(t) = #{j | (i, j) ∈ E(t)}. The number of peers users i and j
have in common at time t is presented by fi,j(t) = #{k | (i, k) ∈ E(t), (j, k) ∈ E(t)}.
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Following Ref. [10], we will say that a positive opinion shift is undertaken if it is directed
toward the opinion of the influence source. If an opinion shift is directed oppositely, then it
is negative.

If an individual j influences an individual i, then we will say that i is an influence
object (focal individual) and j is an influence source.

6. Analysis of Opinion Dynamics
6.1. Map of Opinion Shifts

We first need to answer the following question: given the opinions of two befriended
users at time t1, can their opinions at time t2 be predicted? To answer this question, we
discretize the opinion scale [0, 1] into aggregated opinion values Ξ1 =

[
0, 1

m

]
, . . . Ξm =[

m−1
m , 1

]
, and then the probabilities of all possible opinion changes Ξs → Ξk (including

static ones Ξs → Ξs ) are computed across all possible influencing opinions Ξl . These
probabilities are captured by the quantities

{
ps,l,k

}
s,l,k∈[m], where for given s, l, and k,

variable ps,l,k measures the probability that opinion Ξs will be changed to Ξk after being
influenced by opinion Ξl (see Appendix A for details on their computation). The quantities
ps,l,k can be informatively grouped into m square row-stochastic matrices P1, . . . , Pm, where
Ps = [ps,l,k]l,k∈[m] for a fixed s showcases how users with opinion Ξs react to peers’ opinions.
Organization of matrix Ps is schematically presented in Figure 2. In Figure 3, we depict
the values of ps,l,k estimated from our empirical data. Within such an encoding strategy, in
matrix Ps, the s-th column contains the self-confidence rates of users with opinion Ξs across
different values of the influence source opinion. From Figure 3, we conclude that:

- Individuals change their positions relatively rarely.
- Users with radical positions are more stubborn.
- Both positive and negative opinion shifts can happen, but positive shifts occur more

often.
- Positive shifts tend to feature the assimilative influence mechanism, whereby more

distant opinions induce positive responses with larger probabilities.
- Individuals with the right radical opinion Ξ5 (see the matrix P5 in Figure 1) display a

tendency to distrust too distant opinions (also known as moderated bounded confidence).

It is worth noting that all these observations are in line with the previous empirical
studies on opinion dynamics [3,5,8,10,15,16].

6.2. Effects of Non-Opinion Characteristics on Opinion Shifts

In the previous analysis, we completely ignored the possible effects of non-opinion
characteristics on opinion changes. As we said in Introduction, the way individuals perceive
information could largely depend on the non-opinion characteristics of the interacting
agents, such as age, gender, or the common number of friends. Let us now shed light on
this issue. For this purpose, we employ the quantity

yi,j = [xi(t2)− xi(t1)]× sign
[
xj(t1)− xi(t1)

]
as a dependent variable. It measures the magnitude of an opinion shift xi(t1)→ xi(t2)
subject to its direction: if the shift is pointing towards the source’s opinion xj(t1), then the
dependent variable is positive. Otherwise, yi,j is negative. By doing so, we want to find
out what conditions facilitate the likelihood that the opinion stimuli will receive a positive
response (will induce a positive opinion shift).

The list of independent variables is presented in Table 1. At the same place, we provide
our intuition regarding the effects of these covariates on the dependent variable. Apart
from the covariates that measure different sorts of similarity (structural one—as in the case
of the common number of friends, or demographic one—as in the case of the differences
in age or gender), we also control for various characteristics of the focal node i (influence
object). This allows us to discern any specific nodal-level effects.
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Figure 2. We demonstrate the organization of the matrix Ps =
[
ps,l,k

]
l,k∈[m] for a fixed s ∈ [m].

Each of its rows sums up to one as it covers all possible alternatives. Let us consider the l-th row
that outlines how individuals with opinion Ξs react to opinion Ξl . Overall, there are m possible
alternatives: Ξs → Ξ1, . . . , Ξs → Ξm . The resulting estimated probabilities of these alternatives
are described by the quantities ps,l,1, . . . , ps,l,m. Other rows are elaborated analogously. We would
like to emphasize that row s stands for the situations when the influence comes from the coherent
opinion Ξs, whereas column s contains the probabilities of holding the current opinion Ξs. In this
regard, the elements of the s-th column (the quantities ps,1,s, . . . , ps,m,s) represent how stubborn are
individuals with opinion Ξs. According to the previous empirical research [5,9,16], we should ex-
pect that this column will dominate the others. In matrix Ps, the components standing for positive
and negative opinion shifts are easily located. The zone of positive shifts is defined as follows:
Dp = {l, k | l < s, k < s} ∪ {l, k | l〉s, k > s}, where l and k are the row and column indices, respec-
tively. In other words, Dp is the union of the second and fourth “quadrants”, given that the origin
of coordinates is located at l = k = s (the component ps,s,s). Correspondingly, the zone of negative
shifts is the union of the first and third “quadrants”: Dn = {l, k | l > s, k < s} ∪ {l, k | l < s, k > s}.

To develop a corpus of observations, we take each edge (i, j) ∈ E and then calculate
the quantities introduced above by considering first i as an influence object and j as an
influence source and then reverse. As a result, each user i may potentially appear in 2 fi
observations (due to the filters specified below, not all observations will participate in the
further analysis). The weakness of such an approach is that each edge (i, j) is considered
(twice) in isolation, thus ignoring potential influence from the rest of the peers of i and
j. However, the influences of these peers are also added to the corpus as independent
observations (we will return to this confounding factor in Section 6). As in the case of the
computation of the probabilities of opinion changes presented in Figure 1, this approach
silently assumes that during the observation period, each user was influenced by each
of their friends strictly one time, with all these influences being independent of each
other. In fact, such a sort of interactions (also known as one-to-one) is widely adopted
in opinion formation models—see Refs. [29,36–38]. However, the assumption that each
pairwise interaction has happened is quite strict. We will return to this point in Section 6.
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Figure 3. These heatmaps represent the estimated matrices P1, . . . , P5 that were computed after
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Ξ3 = [0.4, 0.6), Ξ4 = [0.6, 0.8), Ξ5 = [0.8, 1]. The values are presented to three decimal places.

Table 1. Independent variables (i—influence object, j—influence source).

Independent Variable Definition Hypothesis

∆xi,j =
∣∣xj(t1)− xi(t1)

∣∣ The absolute difference in opinions
∆xi,j should have a positive effect on the
dependent variable—from Figure 3 it follows that
more distant opinions tend to be more attractive.

∆agei,j =
∣∣agei − agej

∣∣ The absolute difference in age

∆agei,j should have a negative effect on the
dependent variable—a non-opinion similarity
stimulates the decrease in opinion
discrepancies [32].

∆genderi,j =
∣∣genderi − genderj

∣∣ ∈ {0, 1}
This variable demonstrates if two users have
different genders (genderi,j = 1) or not
(genderi,j = 0)

∆genderi,j should have a negative effect on the
dependent variable—a non-opinion similarity
stimulates the decrease in opinion
discrepancies [32].

fi The nodal degree of the influence object

fi may have a negative effect on the dependent
variable—we hypothesize that individuals that
have many friends should perceive themselves as
more valuable and having a higher social status
and thus should be more attached to their own
views [27].

fi,j The number of common friends
fi,j should have a positive effect on the dependent
variable—strong ties are more effective in
conducting social influence [33].

xi(t1) The opinion of the influence object

xi(t1) should have a negative effect on the
dependent variable—from Figure 3, it follows that
users whose opinions are close to the right
endpoint of the opinion spectrum are more
stubborn.

1genderi=1
This dummy variable shows if the gender of i
is female

1genderi=1 should have a positive effect on the
dependent variable—according to Refs. [24–26],
females cooperate better than males.

agei The age of i
This covariate should have a negative effect on the
dependent variable—younger individuals tend to
be more sensitive to influence [23].
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To facilitate the comparability of the covariates’ effects, we standardize the data by
making a zero mean and unit variance for each factor. Further, we exclude from our analysis
those observations (i, j) that violate the following restrictions:

- (i, j) ∈ E(t2) (the tie should remain unchanged).
- fi,j(t1) = fi,j(t2) (the number of common friends should be constant as it could have

an effect on opinion dynamics).
-

∣∣xj(t2)− xj(t1)
∣∣ < 0.05 (the influence source’s opinion should not undergo significant

changes during the observation period—otherwise, we cannot precisely locate its
value). (In fact, if in a pair of connected vertices (i, j), one vertex (say, i) has changed
its opinion for more than 0.05, then the inverse pair (j, i) will not appear in the corpus
of observations. Further, if both the vertices have substantially modified their opinions,
then the tie is completely ignored).

As a result of such filtering, we end up with a corpus of 390,149 observations.
However, preliminary analysis (see Table 2) revealed that age is highly correlated

with other covariates. On this basis, we decided to exclude it from the list of independent
variables. To investigate the effects of the independent variables on yi,j, we run Ordinary
Least Squares (OLS) regression. Table 3 shows the results of OLS regression, and Figure 4
depicts the estimated values of the regression coefficients. We see that all the covariates,
except the absolute difference in gender and the nodal degree, appear to have significant
effects on the dependent variable. Further, the effects of those covariates that were estimated
to be significant (at the level of 0.05) coincide with our prior intuition (see Table 1). A
surprising exception is that females appeared to be less easily influenced than males, other
things being equal. From Figure 4, we conclude that the opinion-related covariates (xi(t1)
and ∆xij) have the highest effects on the opinion formation processes (the highest effect is
provided by ∆xij). The contributions of other covariates are far less strong and, additionally,
roughly similar. The small values of the estimated coefficients stem largely from the fact
that for most observations, the dependent variable is zero or small (see Figure A10 in
Appendix C).

Table 2. The variance inflation factor computed for the covariates in two cases: (1) the age covariate
is accounted for (the upper row); (2) the age covariate is omitted (the bottom row).

∆xij ∆ageij ∆genderij fi fi,j xi(t1) 1genderi=1 agei

2.508 1.857 1.448 1.874 1.483 3.432 1.901 5.346
2.247 1.556 1.422 1.853 1.45 2.948 1.701 –

Table 3. The results of OLS regression.

Coefficient Std Error t P > |t|

Intercept 0.0027 8.53 × 10−5 31.467 0.000 ***
∆xij 0.0022 8.63 × 10−5 25.451 0.000 ***

∆ageij −0.0003 8.6 × 10−5 −3.724 0.000 ***
∆genderij −0.0002 8.57 × 10−5 −1.826 0.068

fi −0.0002 9.06 × 10−5 −1.911 0.056
fi,j 0.0002 9.01 × 10−5 2.018 0.044 *

xi(t1) −0.001 8.71 × 10−5 −11.329 0.000 ***
1genderi=1 −0.0002 8.67 × 10−5 −2.276 0.023 *

Note. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ ’ 1.
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7. Simulations
7.1. Motivation

The results presented in the previous section indicate that despite some non-opinion
features having significant effects on the way opinions change at the microscopic level, their
impacts are not very sound. As such, the question arises if accounting for these features
will change the macro-level behavior of the social system at stake. To answer this question,
we perform auxiliary simulations with an agent-based opinion dynamics model using the
empirical data from the dataset (see Section 2) to calibrate the model’s parameters.

7.2. Agent-Based Models

As a workhorse model, we employ the one from Ref. [38]. That model was specially
designed to investigate and simulate the patterns of opinion dynamics of empirical systems.
In this model, agents connected by a social network are initially endowed with opinions
from an abstract opinion alphabet Ξ = {Ξ1, . . . , Ξm}. At each moment t = 1, 2, 3, . . ., a
randomly chosen agent i communicates with one of their neighbors j in the social network
(which is also chosen by chance). Let us assume that the opinions of i and j are Ξs and Ξl ,
respectively. As a result of the communication, the agent i’s opinion stochastically updates
according to the distribution

{
ps,l,1, . . . , ps,l,m

}
, in which the quantity ps,l,k stands for the

probability that the opinion shift Ξs → Ξk will occur (the low indices are synchronized
with the indices of the underlying opinions Ξs, Ξl , and Ξk). After that, the next iteration
begins and so on.
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The quantities ps,l,k form a 3D mathematical object P = [ps,l,k]s,l,k∈[m] that is called the
transition matrix. In some cases, it is convenient to represent the transition matrix as a list of
2D row-stochastic matrices P1, . . . , Pm, where Ps = [ps,l,k]l,k∈[m]. In fact, previously, we have
already worked with this kind of object—see Figures 2 and 3. However, on that occasion,
we used such a construction to investigate the already existing opinion dynamics. For now,
we employ the transition matrix to develop our own opinion dynamics with the aim of
predicting the further evolution of the empirical system at stake.

The macroscopic behavior of the model can be captured by the variables Y1(t), . . . , Ym(t)
that describe the populations of opinion camps Ξ1, . . . , Ξm at time t. Further, we will employ
the normalized versions of these quantities: ys(t) = Ys(t)/N.

Below, the model introduced above will be referred to as the Basic Model.
However, in its current form, the Basic Model assumes that the outcome of an in-

teraction depends on the interacting agents’ opinions only, thus ignoring the effects of
non-opinion covariates, which, as reported in Section 6.2, have some impact on opinion
dynamics. To account for this issue, instead of applying a single transition matrix, we will
use several ones, with each transition matrix dedicated to the description of its own specific
combination of non-opinion characteristics of the interacting agents.

To be more specific, motivated by the results obtained in Section 6.2, we introduce
two new features of agents (we use the same notations as in Section 5): (i) agei ∈ N and
(ii) genderi ∈ {1, 2} (1–females, 2–males). For now, the opinion dynamics protocol is
organized as follows. Similar to the Basic Model, at each time moment t, a randomly chosen
agent i is influenced by one of their friends j (chosen by chance). Let us assume that the
opinions of i and j are Ξs and Ξl , respectively. For now, we postulate that the outcome of
this interaction depends not only on the opinions of the communicating agents but also on
(i) how different the agents are in terms of age (∆agei,j =

∣∣agei − agej
∣∣), (ii) the number of

friends i and j have in common (denoted by fi,j), and, finally, (iii) the gender of the influence
object (agent i). Depending on the values of these variables, each pair of interacting agents
is assigned to one of the eight possible types (see Table 4). For each type f ∈ [8], a specific
transition matrix P f =

[
p f

s,l,k

]
s,l,k∈[m]

is recruited (which has the same properties as the

transition matrix in the Basic Model).
The resulting model is called the Advanced Model.

Table 4. Definition of the types of agent pairs.

Types of Pairs
The Values of the Variable

∆agei,j genderi fi,j

Type 1 ≤5 = 1 = 0
Type 2 ≤5 = 2 = 0
Type 3 ≤5 = 1 ≥1
Type 4 ≤5 = 2 ≥1
Type 5 > 5 = 1 = 0
Type 6 > 5 = 2 = 0
Type 7 > 5 = 1 ≥1
Type 8 > 5 = 2 ≥1

Note: the value of 5 that discretizes the range of ∆agei,j was chosen as the mean of this variable (the 60th percentile)
(Initially, we wanted to use the median value 3 to discretize the range of ∆agei,j, but we decided that this threshold
is too small to be used as a separator between ages. However, the results remain virtually the same if using the
threshold of 3). The threshold value 1 that separates the range of fi,j is the median.

7.3. Simulation Design

Now, we compare the macroscopic predictions (captured by variables ys(t)) of the
Basic and Advanced Models. We use the empirical data from the dataset to calibrate
the models’ parameters: (i) initial characteristics of agents, (ii) the social network, and
(iii) the transition matrices. To project the opinion scale [0, 1] (on which the empirical
opinions were estimated) to the opinion alphabet Ξ, we discretize the range [0, 1] into three
subintervals [0, 0.33}, [0.33, 0.66), [0.66, 1] standing for a three-element opinion alphabet
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Ξ = {Ξ1, Ξ2, Ξ3} (m = 3). Next, we use the dataset snapshots to calibrate the transition
matrices by replicating the algorithm presented in Appendix A. In the case of the Basic
Model, non-opinion covariates are not accounted for, and we end up with one transition
matrix (see Appendix B, Figure A1). For the Advanced Model, eight transition matrices are
constructed (see Appendix B, Figures A2–A9).

For each model, we conduct 20 independent simulations. Each simulation starts from
the same state defined by the first snapshot of the dataset (y1 = 0.45, y2 = 0.47, y3 = 0.08).
The network structure and the agents’ characteristics are delicately inherited from the
empirical data. To isolate the effect of the correlations between the network and agents’
features ([28] revealed that the underlying networked system is assortative with respect
to the opinion, age, and gender covariates), we also randomly shuffle the nodes of the
network (keeping the nodes’ characteristics fixed) so that all the correlations between the
nodal characteristics and the network disappear. (It is worth noting that this procedure
does not suppress the correlations at the nodal level—for example, even after applying the
shuffling, younger agents will be biased towards the right opinion Ξ3). As a result, we end
up with four possible Scenarios (see Table 5). Each simulation lasts 4,000,000 iterations:
pilots revealed that this time ensures that the system reaches equilibrium in terms of
the populations of the opinion camps. (To be more specific, equilibrium is reached at
t ≈ 2,000,000 . To understand what this time span stands for, one should recall that in
our case, one Monte Carlo step (30,000 iterations) corresponds to the observational period
( months). From this perspective, according to the model, the empirical social system should
reach an equilibrium in ≈33.5 years. Of course, such estimations are unlikely applicable to
the description of real-life processes because the underlying empirical system is not closed
and is subject to external affairs that affect its development).

Table 5. Simulation scenarios.

Agents’ Characteristics Used in Simulations
Random Shuffle of Nodes

Opinion Non-Opinion Characteristics

Scenario 1 + − −
Scenario 2 + − +
Scenario 3 + + −
Scenario 4 + + +

7.4. Results

Figure 5 compares the aggregated results of simulations across Scenarios 1–4. We see
that if ignoring the non-opinion covariates, then the shuffle procedure does not affect the
macroscopic behavior of the model—in both cases, the system finds itself in the equilibrium
state y1 = 0.33, y2 = 0.47, y3 = 0.2. However, simulations with the Advanced Model
revealed two important observations. First, we report that if not applying random shuf-
fling (Scenario 3), then the Advanced Model stabilizes around the distribution y1 = 0.35,
y2 = 0.46, y3 = 0.19, which differs from the prediction of the Basic Model by ≈1000 agents
(4% of all votes). However, topologies with suppressed assortativity lead to even larger
deviations: simulations within Scenario 4 tend to end up in the state y1 = 0.4, y2 = 0.45,
y3 = 0.15—the advantage of leftists over rightists has increased by ≈ 9% of all votes, if
compared to Scenario 3. In all Scenarios, the population of the neutral opinion camp at the
equilibrium remains virtually the same (y2 ≈ 0.46). Of course, one should keep in mind
that all these differences in opinion distributions appear in the long run.
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Figure 5. The figure demonstrates the averaged dynamics of the populations of leftists (upper panels)
and rightists (bottom panels) across Scenarios 1–4 (marked with different colors). For each Scenario,
the colored area is formed by the upper and lower contours of the corresponding simulations, and
the curve represents the trajectory averaged over simulations. The left panels depict the time span
1 ≤ t ≤ 500,000 ; the right panels investigate the range 500,000 ≤ t ≤ 4,000,000 . The final populations
of leftists and rightists are depicted on the right side of the figure in absolute and normalized (in
brackets) values.

8. Discussion and Conclusions

In this paper, using longitudinal data from an online social network, we systematically
analyzed how individuals’ opinion and non-opinion characteristics affect opinion dynamics.
We revealed that females are harder to convince than males. Next, we found that individuals
that are characterized by similar ages have more chances to reach a consensus. Finally, we
report that individuals who have many common peers find agreement more often.

In general, these results align with the literature (perhaps, the effect of gender is
somewhat novel). We believe that our contribution here is that we demonstrated that the
impacts of these effects are virtually the same. Further, our analysis indicates that the effects
of non-opinion characteristics, despite being statistically significant, are far less strong than
those of opinion characteristics: knowing the current opinion of an individual and, what is
even more important, the distance in opinions between this individual and the person that
attempts to influence the individual is much more valuable than information regarding
their ages, genders, and the number of peers they have in common.
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To gain a better understanding of this issue, we conducted a series of agent-based
experiments using the underlying empirical data to calibrate the agents’ characteristics
and the way they interact with each other. We revealed that accounting for non-opinion
characteristics leads to not very sound but statistically significant changes in the macro-
scopic predictions of the populations of opinion camps in the long run, primarily among
the agents with radical opinions (≈3% of all votes). In turn, predictions for the populations
of neutral individuals are virtually the same. In addition, we demonstrated that the effect of
non-opinion features is seriously moderated by whether the underlying social network cor-
relates with the agents’ characteristics. After applying the procedure of random shuffling
(in which the agents and their characteristics were randomly scattered over the network),
the macroscopic predictions have changed by ≈9% of all votes. What is interesting is that
the population of neutral agents was not affected by this intervention.

The main disadvantage of our analysis is that it draws upon the data from the natural
experiment, so we have no opportunity to control for many confounding factors. For
example, we completely dismiss external effects [39]. In fact, we do not know the history
of users’ interactions during the observational period. Likely not all users were active in
promoting their views to their friends. Usually, individuals with radical opinions are those
who translate their opinions more often [40]. In turn, our assumption was that each user
influenced each of their friends. Further, we considered each pair of befriended users i and
j as two independent observations, sequentially changing the roles of the agents (influence
object and influence source). This approach is weakened by the following confounding
factors: it ignores the possibility that the dynamics of the opinions of i and j may be
subject to some external effects, such as opinions of the i’s and j’s peers (external stimuli).
Despite this possibility being partially suppressed by the fact that we also considered the
influences of i’s and j’s peers as independent observations, the assumption of independent
observations is likely violated on this occasion, so our regression analysis, as well as our
algorithm for the calibration of the transition matrices, may lead to inaccurate estimations.
In Refs. [15,16], this issue was controlled to some extent because the influence directed on a
user i was estimated as the mean of the opinions of the user i’s friends. However, in our
case, this approach is questionable because apart from opinions, we attempt to consider
other users’ characteristics. For a given user, the joint distribution of these characteristics
among the user’s friends may be quite complex and nontrivial, and simple averaging may
suppress some important information.

In the end, we would like to highlight that in our analysis, we concentrated on the role
of observable and easily recoverable user characteristics in opinion formation processes.
Indeed, ages, genders, and the numbers of users’ peers can be promptly retrieved from
the Web using Application Programming Interface (API) facilities with a relatively small
investment in resources. Of course, using more detailed information can lead to more
precise predictions. For example, Ref. [13] reported that the allocation of a user’s trust is
highly correlated with how intensively the user likes their peers, with more likes indicating
more trust. However, this sort of information requires employing API facilities that were
unavailable to us on this occasion. Nevertheless, it would be a promising direction for
further research.
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Appendix A

The quantities ps,l,k were computed via the following formula:

ps,l,k =
#
{
(i, j) ∈ E(t1)

∣∣ xi(t1) = Ξs, xj(t1) = Ξl , xi(t2) = Ξk
}

#
{
(i, j) ∈ E(t1)

∣∣ xi(t1) = Ξs, xj(t1) = Ξl
} . (A1)

It is worth noting that in formula (A1), each edge (i, j) appears two times: (i) when i is
an influence object and j is an influence source; (ii) when i is an influence source and j is
an influence object. (This approach silently assumes that during the observation period,
each user was influenced by each of their friends strictly one time, with all these influences
being independent of each other. In fact, such a sort of interactions (also known as one-to-
one) is widely adopted in opinion formation models—see Refs. [29,35,36]. However, the
assumption that each pairwise interaction has happened is quite strict). Next, to control
for the confounding factors conditioned by the dynamics of ties and possible changes in
the opinion of the influence source, we discard those observations from our analysis that
violate the following restrictions:

- (i, j) ∈ E(t2) (the focal tie should remain unchanged).
- fi,j(t1) = fi,j(t2) (the number of common friends should be constant as it could have

an effect on opinion dynamics).
-

∣∣xj(t2)− xj(t1)
∣∣ < 0.05 (the influence source’s opinion should not undergo signifi-

cant changes during the observation period—otherwise, we cannot precisely locate
its value).

The transition matrix for the Basic Model (see Figure A1 in Appendix B) is constructed
using the same approach. The transition matrices for the Advanced Model are calculated
in a similar fashion. For example, the components of the transition matrix that describe
interactions of type 1 (see Figure A2 in Appendix B) are defined as follows:

ps,l,k ==
#
{
(i, j) ∈ E(t1)

∣∣ xi(t1) = Ξs, xj(t1) = Ξl , xi(t2) = Ξk, ∆agei,j ≤ 5, genderi = 1, fi,j = 0
}

#
{
(i, j) ∈ E(t1)

∣∣ xi(t1) = Ξs, xj(t1) = Ξl , ∆agei,j ≤ 5, genderi = 1, fi,j = 0
} . (A2)
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