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Abstract: Knowing the correct positioning of the tongue and mouth for pronunciation is crucial for
learning English pronunciation correctly. Articulatory animation is an effective way to address the
above task and helpful to English learners. However, articulatory animations are all traditionally
hand-drawn. Different situations require varying animation styles, so a comprehensive redraw of
all the articulatory animations is necessary. To address this issue, we developed a method for the
automatic generation of articulatory animations using a deep learning system. Our method leverages
an automatic keypoint-based detection network, a motion transfer network, and a style transfer
network to generate a series of articulatory animations that adhere to the desired style. By inputting
a target-style articulation image, our system is capable of producing animations with the desired
characteristics. We created a dataset of articulation images and animations from public sources,
including the International Phonetic Association (IPA), to establish our articulation image animation
dataset. We performed preprocessing on the articulation images by segmenting them into distinct
areas each corresponding to a specific articulatory part, such as the tongue, upper jaw, lower jaw,
soft palate, and vocal cords. We trained a deep neural network model capable of automatically
detecting the keypoints in typical articulation images. Also, we trained a generative adversarial
network (GAN) model that can generate end-to-end animation of different styles automatically from
the characteristics of keypoints and the learned image style. To train a relatively robust model, we
used four different style videos: one magnetic resonance imaging (MRI) articulatory video and three
hand-drawn videos. For further applications, we combined the consonant and vowel animations
together to generate a syllable animation and the animation of a word consisting of many syllables.
Experiments show that this system can auto-generate articulatory animations according to input
phonetic symbols and should be helpful to people for English articulation correction.

Keywords: computing methodologies; artificial intelligence; machine learning

1. Introduction

For language learners, how to learn accurate pronunciation is a very important task
that even directly determines the success of language learning. When Chinese people
learn English, many of them struggle with accurate pronunciation due to the influence
of their native language. For example, they often confuse the pronunciation of “θ” and
“s” or have difficulty distinguishing between the sounds of “i” and “i:”. At times like
these, simply relying on audio recordings and teacher guidance is not enough. However,
if they have pronunciation videos, they can visually observe the typical positions of the
articulatory organ, such as the teeth, lips, tongue, and jaw. This allows them to understand
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the characteristics of the aforementioned sounds and consequently learn to pronounce
them accurately. In order to solve the above problems, some researchers have proposed a
pronunciation visualization method, which uses deep learning, graphics, voice processing,
and other technologies to display the position and motion characteristics of the tongue and
other important parts in the process of articulation in an animated way. Researchers have
undertaken much work in the area of articulatory visualization and achieved success [1].

1.1. Related Research

Some researchers have created pronunciation animations through anatomical methods
and physical modeling methods, while others have generated pronunciation animations
using 3D computer graphics and deep learning methods.

Li et al. [2] proposed a 3D visualization method for tongue movement in Chinese
pronunciation. By extracting the electromagnetic articulometer (EMA) data from three
points on the surface of the back of the tongue as the driving source, the tongue move-
ment in Chinese pronunciation can be truly reproduced using spring-mesh technology.
Furthermore, a computer graphics method is used to simulate the detailed effect of tongue
movement, and its X-ray images are compared. The experiment showed that the 3D tongue
movement realized by the method conformed to the real tongue movement.

Mi et al. [3] proposed a lip animation method synchronized with speech based
on muscle models and co-articulation modeling according to the pronunciation habits
for Chinese and the requirements for natural and continuous lip animation in speech
visualization technology. The co-articulation modeling method was designed based on a
differential geometry description. Experiments and analysis showed that the lip animations
generated by this method were more realistic and conformed to the pronunciation habits
for Chinese.

Zheng et al. [4] proposed an improved cooperative articulatory model and used this
method to synthesize the articulation track of Chinese characters. The experiment showed
that the synthetic articulation track obtained by the improved method was closer to the real
articulation track. Zhi et al. [5] analyzed and discussed the physiological characteristics
of vowel articulation by using an electromagnetic articulation instrument and carried
out visual voice training research based on the 3D articulation physiological model. The
experiment showed that the scores of subjects using the 3D articulation model for vowels,
consonants, and tones were higher than those using audio, indicating that the visual 3D
articulation model was more helpful for learners’ pronunciation learning than audio.

Yu [6] proposed a facial animation system for visual singing synthesis. With a recon-
structed 3D head mesh model, both the finite element method and an anatomical model
were used to simulate the articulatory deformation corresponding to each phoneme with a
musical note. Based on an articulatory song corpus, articulatory movements, phonemes,
and musical notes were trained simultaneously to obtain the visual co-articulation model
using a context-dependent hidden Markov model (HMM). Articulatory animations corre-
sponding to all phonemes were concatenated by a visual co-articulation model to produce
the song-synchronized articulatory animation. Experimental results demonstrated that the
system could synthesize realistic song-synchronized articulatory animations and increase
the human–computer interaction capability objectively and subjectively.

Jiang et al. [7] proposed an accurate 3D tongue model based on anatomy and biome-
chanics and calculated the dynamic deformation of the tongue model through anatomical
modeling, biomechanical modeling, and the finite element method. The experiments
showed that the model had high accuracy and could generate realistic tongue move-
ments according to muscle excitation and synthesize highly realistic tongue animations.
Chen et al. [8] introduced visualization for articulatory animation. On the basis of the study
of the anatomical structure and movement patterns of the tongue, a 3D tongue muscle
model was established to simulate the common movements and shapes in articulation by
combining the X-ray images of the articulation. Then, this visualization technology was
used to help the hearing-disabled and speech-disabled achieve correction and rehabilitation.
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Generative adversarial networks (GANs) are currently the most popular generative
deep learning model. GANs mainly consist of a generator (G) and a discriminator (D).
The goal of the generator is to generate data that are as close to real as possible, while the
discriminator aims to judge whether the data are real or fake. During training, the generator
tries its best to fool the discriminator, and the discriminator keeps honing its investigation
skills. Through continuous confrontation, the model reaches a converged result. GANs
have different variant structures, like the DCGAN [9], WGAN [10], and StyleGAN [11],
which can be applied to different generation tasks.

1.2. Key Technologies in Articulatory Animation Generation

The key technologies for articulatory animation generation in our method included
keypoint detection, motion detection, motion estimation, and image generation.

The most commonly used method for keypoint detection is the heatmap method [12].
Compared with the regression method, the heatmap method has the characteristics of
stability and easy training, especially in human pose detection where the body movements
vary a lot, making it difficult for the network to learn. Thus, researchers use the heatmap
prediction method to detect keypoints, which can achieve good training results.

First, a convolutional neural network (CNN) was used to extract features; then, a
fully connected network output heatmaps with N channels. Each channel in the heatmaps
represented one keypoint. The number of channels equaled the number of keypoints. In
each channel, the keypoint location was modeled as a 2D Gaussian distribution centered
at that point. The most straightforward approach is to find the point with the maximum
response above a certain threshold in each channel and take its coordinates as the location
of that keypoint category. Classical heatmap neural networks include Hourglass [13],
Openpose [14], and HRNet [15].

StyleGAN [11] is a new type of generative adversarial network (GAN) that has made
significant progress in image generation. Its main advantages include the following:

1. It employs a stylized generator architecture that can explicitly control the style and
content of images;

2. It uses a mapping network to match the distribution of random noise, resulting in
more diverse generation results;

3. It introduces a feature mapping technique that can synthesize high-quality, high-
resolution images;

4. It utilizes noise input, making the image quality clearer and the style more coherent;
5. It can generate highly realistic scene images.

StyleGAN has broad application prospects in many generative model applications.
The StyleGAN series models are continuously improving and developing and are an
important technology in the current field of image generation.

1.3. Main Innovation of Our Method

Based on the advancements in the self-supervised training [16–18] and the image gen-
eration mode of GANs [11,19], we developed a model that can generate a target articulatory
animation using a driving articulatory animation and a typical target-style articulation
image. The main innovations of this paper are as follows:

1. Different occasions require pronunciation animations of different styles, and the
workload of manual drawing is very high. With our system, given a specific style
image and a driving articulation animation, the system can automatically generate an
articulation animation of the target style based on the image, thus greatly reducing
the workload of manual drawing;

2. Our method creatively uses the techniques of keypoint extraction and keypoint reg-
istration to realize the automatic generation of articulation animations. Firstly, the
keypoint extraction network is used to extract the keypoints of the target image. Then,
the keypoints of the keyframe of the driving video are extracted. Next, there is a
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registration match between the keypoints of the two images. This is followed by the
prediction of pixel motion in the target animation through a dense motion field and
animation generation is realized through a GAN network;

3. In order to improve the accuracy and visual effect of the generated animation, we also
provide a manual configuration method. If the keypoints extracted from the original
target image and the keyframe of the driving video do not match perfectly or have
errors, we can calibrate them through manual methods. This can greatly improve
the accuracy and visual effect of our video generation and only requires a very small
increase in manual workload;

4. With the articulatory animation for each vowel and consonant, we provide a method
to combine them into phonemes and to combine animations of different phonemes to
form word animations to help English learners to improve their pronunciation.

2. Method

Some articulatory animations currently exist. We mainly collected three datasets:
the animation dataset from Glasgow University in the UK [20], shown as Figure 1; the
dataset from the University in Canada (UBC) [21]; and the dataset from SpeechTrainer in
Germany. Each of the above animation datasets has its own animation style. However,
we found that, in practical applications, people’s needs for animation styles vary. Some
textbooks need cartoon animation styles, some videos need medical-style animation, and
some need 3D style animation. To meet these different requirements, our method involves
creating a picture of the target style and then selecting the existing driving animation
so as to obtain the articulation animation in a new style. Of course, the auto-generated
articulatory animation will not be perfect and will need to be manually fine-tuned, but it
can greatly reduce the human workload. In addition, our system can also form syllable
animations with vowels and consonants and then form word animations and sentence
animations. Vowels and consonants drive the acquisition of animations, and ultrasonic
images of vowels and consonants were obtained through various resources, as well as some
animation images made by previous workers. Here, we need to see that the MRI image is
complete and the manually drawn image is incomplete. Figure 2 shows the publicly used
standard articulatory image and the decorated articulatory image drawn by our team.

(a) (b)

Figure 1. (a) Original MRI video, (b) hand-drawn articulation animation.

(a) (b)

Figure 2. (a) Original low-quality standard articulation image from textbook, (b) well-drawn articula-
tion image from the original image.
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2.1. Selection of Driving Video and Target-Style Image

We use the deep-learning motion transfer model to drive the target images to generate
articulatory animations of different styles. There are five main implementation steps in
the method:

1. First, we collect the publicly used articulatory animations to form our dataset. These
animation datasets can be used as driving animations and also as training datasets;

2. In the second step, we preprocess the dataset, detect the articulatory region, and clip
the region of interest, which can optimize the training data and greatly improve the
follow-up training effect;

3. The third step is to design and train a deep learning network that includes keypoint
detection, movement transfer, and style transfer. This network can transfer the style
of the target image to the driving animation, thus forming a new style of animation.
In the training process, the network collects a series of video samples, which contain
different samples of the same object, and learns the potential expression of video
motion features. With the characteristics of a single image frame, the model can
reconstruct the video;

4. The fourth step is animation cascade by cascading consonants and vowels into a
syllable animation. When multiple syllables are cascaded into a word animation,
multiple connecting words can be cascaded into a sentence animation;

5. The fifth step is to optimize and perfect the animation manually according to the
situation such that the articulation is accented, toned, and connected and, finally,
a relatively complete system can be generated. The system framework is shown
in Figure 3.

Figure 3. Flowchart of the implementation of the articulation animation system.

2.2. Keypoint Detection in Feature Space

Inspired by former research [22–24], we designed a motion migration model using
artificial intelligence to realize style migration for articulation animations. There are two
main tasks. First, the driving video is an MRI image, and the target image is a beautiful,
manually drawn standard tongue image. The second step is to form a similar animation
with the beautiful tongue image driven by MRI animation and then to form a clear and
beautiful animation of the causal consonant pronunciation through a small amount of
manual processing by artists.

In the training process, the model collects a series of video samples, including different
samples of the same types of objects, such as different facial expressions and postures
and different running horse videos. Then, the model learns the potential expression of
the video motion features. With the features of a single image frame, the model can
reconstruct the video. By observing a pair of different image frames extracted from the
same video, the model can learn the motion coding, which mainly includes the specific
keypoint displacements of the motion, and the affine transformation of the local image.

We adopted the method from [22–24] and introduced three constraints without the
supervision of handmade labels. The detected keypoints must be able to reflect the visual
concept consistently with human perception. Specifically, each landmark has a corre-
sponding detector. The detector convolution outputs the detection score heatmap, and
the detected landmark will be at the maximum value. In this framework, we use the deep
neural network to convert the image I into a (K + 1) channel detection confidence map
D in [0, 1]W×H×(K+1). This confidence map detects K landmarks, and the (K + 1) channel
represents the background. The resolution of DW×H can be equal to or less than I, but they
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should have the same aspect ratio. A lightweight hourglass network was developed to
obtain the original detection score chart, as Equation (1) shows.

R = hourglassl(I; θl) ∈ RW×H×(K+1) (1)

Here, θl represents a parameter. The hourglass architecture allows the detector to focus
on the key local mode of the landmark location while taking advantage of the higher-level
context. Then, we convert the unbounded original score into a probability and encourage
each channel to detect different patterns. To this end, we use softmax to normalize the R
across channels (including the background) to obtain the detection confidence diagram, as
Equation (2) shows.

D(u,v) =
exp(Rk(u, v))

∑K+1
k′=1 exp(Rk′(u, v))

(2)

where matrix DK is the kth channel of D, scalar DK(u,v) is the value of K at pixel (u, v), and
the vector D(u, v) in [0, 1]K+1 can also be used to represent the multi-channel value of D at
(u, v). The same representation is also applicable to other triaxial tensors. In DK, there is a
weighted map. We take the weighted average coordinates as the location of the k landmark,
as Equation (3) shows.

(xk, yk) =
1
ζk

H

∑
v−1

W

∑
u=1

(u, v) ·Dk(u, v) (3)

By observing a pair of different image frames extracted from the same video, the model
can learn the motion coding, which mainly includes the specific keypoint displacement of
the motion, and the affine transformation of the local image, as shown in Figure 4.

(a) (b)

Figure 4. The keypoint detection model located the left 10 landmarks in the source image (a) and the
right 10 landmarks in the target image (b).

2.3. Style Transfer Model for Articulation Image

In our approach, inspired by the method from [25,26], we trained a motion transfer
model with a small sample. We set the source image S and the drive video frame D as the
input. By combining a single frame and the potential expression of motion in the learned
video, we can train a model to reconstruct the training video. We extract two different
image frames from the same video. The model encodes the keypoint displacement motion
and obtains the local affine transformation.

Our model consists of two modules: a motion estimation module and an image
generation module. The purpose of the motion estimation module is to predict a dense
motion field from an image D in R3×H×W with dimensions of H ×W in the drive video D
combined with the source image frame S in R3×H×W .

Assuming an abstract reference frame R, we independently estimate two changes:
from R to S(TS←R) and from R to D(TD←R) . Therefore, we can process D and S, respec-
tively. The source image and drive image of the model input may be quite different. The
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motion estimation module does not directly predict TD←R and TSleftarrowR and instead the
prediction is carried out in two steps.

In the first step, we approximate these two transformations from the sparse track set
and obtain them by using the keypoints from the self-supervised learning. The positions
of keypoints in D and S are predicted by the coder–decoder network. This sparse motion
representation is very suitable for animation. During the test, the keypoints of the source
image can be moved using the keypoint track in the driving video. We use local affine
transformation to build a motion model near each keypoint. Local affine transformations
allow us to model a larger family of transformations than if we use only key displacements.
We use Taylor expansion to express TD←R through a set of keypoint positions and affine
transformations. To this end, the key detector network outputs the key position and the
parameters of each affine transformation.

In the second step, the dense motion network is combined with local approximation
to obtain the dense motion field T̂S←D. In addition to dense motion fields, the network
also outputs an occlusion mask ÔS←D that indicates which image parts of D can be
reconstructed by distorting the source image and which parts should be redrawn; that
is, inferred from the context. Finally, the generation module renders the moving image
provided by the source object in the drive video. Here, we use a generator network G,
which is based on T̂S←D, and it distorts the source image and fills the occluded part in the
source image. The framework is shown in Figure 5.

Figure 5. The system architecture, The lower graph demonstrates the model used to detect the
keypoints and estimate the dense motion field, while the upper graph demonstrates the animating
generator combined with the motion transformation.

2.4. Animation Generation for Syllables and Words

In English pronunciation, stressed and unstressed sounds correspond to the intensity
and duration of the pronunciation. In terms of generating the syllable animation, in
accordance with the characteristics of English pronunciation, we combine consonants and
vowels into syllables and generate an animation. We can then easily control the duration
of the animation generation, primarily through the control of the duration of consonants
and vowels. Our statistics show that, for stressed sounds, consonants are approximately
1.1 times longer in duration and vowels are approximately 1.5 times longer. For unstressed
sounds, consonants are about 0.9 times longer and vowels are about 0.67 times longer in
duration. we prepare each word into a series of syllable combinations.

3. Experiments and Results

The experimental platform utilized Ubuntu 20.04 and Python 3.8. Four NVIDIA
GEFORCE 3090 GPUs were used to train and tune the deep learning network. In the exper-
iment, we chose the Pytorch 1.12 deep learning framework and created an independent
virtual environment with miniconda3.
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3.1. Dataset Preparation

The image dataset in this study included four kinds of videos, with 50 videos for
each type and 200 videos in total. The first type were MRI videos of vowel and consonant
pronunciation, and the other three types were animation videos with different styles. The
videos mainly showed the animation of the tongue, lips, and upper and lower jaw on the
side of the mouth during pronunciation. As the experimental process was unsupervised,
all samples were test samples. Video samples from the dataset are shown in the Figure 6.

Figure 6. Samples of the articulation images and animations created from public sources.

We standardized and normalized the video mainly via the following three steps.

1. The articulation videos were extracted into frame-by-frame images in RGB format.
All image frames for the same video were saved in the same directory. Each image
contained different numbers of frames: the minimum was 10 frames and the maximum
was 120 frames;

2. For the original images that were large, most of the areas were still and did not move,
and the moving parts were mainly in the lower right corner. We used software to
automatically intercept the lower right corner area of each image. The width and
height of the intercepted area were equal, and it was a square area;

3. We normalized the intercepted area into RGB images 256 pixels in height and width
with three channels in image format and finally obtained 256 × 256 × 3 RGB images.

3.2. Evaluation Method

It was difficult to evaluate the effect of the image animation generation model. Refer-
ring to past experience, we used two tasks to evaluate the model. The first was to evaluate
the video reconstruction task performed by the model by extracting the keypoints of each
frame of the driving video and, at the same time, extracting the first frame of the target
image to regenerate the driving video. The second was to manually evaluate the accuracy
of keypoint extraction. In the experiment, we selected 10 key points, including 3 points
on the tongue, 2 points on the lips, 1 point on the lower teeth, 1 point on the vocal cords,
1 point on the small part of the tongue, and 2 points on the lower jaw.
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3.3. Training

Before the formal training of the model, we downloaded the pre-trained model. As
the number of samples was small and the results of training images from scratch are poor,
our main training work was in optimizing the pre-trained model. In the process of model
optimization, it was necessary to reasonably set the initial values of the parameters. The
model was easier to train and tended to converge quickly. The batch size for network
training was set to 24, and the total number of training epochs was set to 100. The learning
rate of the model decreased with the increase in the number of training epochs. The model
training curve is shown in Figure 7.

Figure 7. Training loss with the model.

3.4. The Results of Keypoint Detection

The trained network could automatically extract keypoints, as shown in Figure 8. We
tested the test pictures and estimated the average error to be 12.3%. The error is the relative
error. The average error D represents the error for the corresponding point between the
model output result and the annotation result. As shown in Equation (4), pi indicates that
10 keypoints were detected, qi refers to the 10 pre-labeled keypoints, and W refers to the
image width. We calculated the square sum of relative errors for keypoint extraction from
a single photo.

D =
n

∑
i

(pi − qi)
2

W2 (4)

Figure 8. The result of keypoint detection.

3.5. Animation Generation

The sample frames in a generated animation is shown in Figure 9. Assessing the
quality of the images generated by the method was a rather challenging task due to the
subjective nature of evaluation criteria and the absence of annotated datasets. Therefore, we
employed a manual evaluation method, comparing the animations generated by the model
with animations manually crafted in MAYA software. In the first step, we randomly selected
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108 pairs of videos with similar object poses in the first frame. We presented three videos to
the evaluators—one as the driving video, the second as the video automatically generated
by the model, and the third as the video hand-drawn in MAYA—but the evaluator did
not know which one was generated from the network and which was drawn by hand.
The evaluators were asked to select the video that best resembled the driving video. We
engaged 25 evaluators to assess the videos, and the evaluation results are presented in
Table 1. For vowel animations, the videos generated by our model were superior to the
hand-drawn MAYA videos. Conversely, for consonant videos, the model-generated videos
were slightly inferior to the hand-drawn MAYA videos.

(a) (b) (c) (d)

Figure 9. The generated animation with slight manual fine-tuning. (a–d) are the sample frames at
different time from the animation.

Table 1. User appraisal: animation generated via model generation vs. animation hand-drawn
in MAYA.

Types Video Automatically
Generated by the Model

Video Hand-Drawn in
MAYA Software

Consonants 56.22% 43.78%
Vowels 48.17% 51.83%

3.6. Discussion

Advantages. The accuracy and quality of our method mainly depend on three factors.
First, it is critical that the extraction of the 10 keypoints is accurate and that they can be
registered correctly. If the extraction and registration of the 10 keypoints are not precise,
it will significantly affect the accuracy of subsequent work. Second, after extracting the
10 keypoints, the prediction of the dense motion field for each pixel based on the keypoints
must be accurate. Third, an excellent style-based generative model is needed to produce
the desired style for the articulation animations. Our method is continuously improvable
and optimizable. Improvements in these three steps can significantly enhance the output
of our method. If the keypoint extraction becomes more accurate, the system will be able to
generate animations fully automatically without manual intervention. If the prediction of
the dense motion field is accurate, it will result in better image quality.

Disadvantages. The extraction of the 10 keypoints was sometimes not very accurate.
At these times, manual intervention was required through interactive operation to adjust
the keypoints. We hope that future improvements will significantly enhance the accuracy
of the extraction of the 10 keypoints. At present, we lack a baseline model and evaluation
formula to determine the effectiveness of our method. Currently, we can only evaluate the
outputs through manual methods. Our method involves an animation generation model,
which is different from image generation. The baseline model and evaluation methods
for image generation are not directly applicable in evaluating the quality of the generated
articulation animations. We hope to have such a baseline model in the future.

Future research. As we continue to improve our style transfer and generative models,
such as by using the currently more effective diffusion model [27,28], we might achieve
better results. We plan to generate videos based on the diffusion model in our future work.
Going beyond GANs, diffusion models [27] have emerged as powerful new deep generative
models, achieving state-of-the-art results in image synthesis and other generation tasks. By
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gradually blurring the original image by continuously adding noise and then gradually
restoring a clear image through a reverse process, this process of progressively adding
Gaussian noise and then gradually denoising can generate high-quality synthetic images.
The main advantages are:

1. The process can generate high-resolution and high-quality images. The images are
rich in detail and the quality is close to that of real pictures;

2. The training process is more stable and can handle complex, high-resolution images;
3. The generation process is deterministic, and the same image can be generated each

time the same noise is input;
4. The model framework is simple and easy to implement.

There are a vary of diffusion models, including DDPM [29], DDIM [30], etc. As the
models continue to be optimized, diffusion models are becoming one of the important
methods in the field of image generation.

4. Conclusions

During the process of learning English, displaying dynamic mouth and tongue move-
ments can assist individuals in practicing pronunciation accurately. However, the creation
of articulation animations requires significant resources. To address these challenges, this
paper proposes a method that utilizes keypoint detection to locate crucial points during oral
articulation. Subsequently, a motion transfer model is trained to track the essential motion
trajectories, enabling the transfer of articulatory images. By combining different image
styles, the method generates articulation animations that can meet specific requirements.
The experimental results demonstrate the ability of this method to simulate realistic articu-
lation animations based on input phonetic symbols. Nevertheless, due to the limited size
of the driving animation dataset, the automatically generated animations may lack clarity,
necessitating further manual adjustments. Nonetheless, this approach significantly reduces
manual labor by over 90% and greatly improves the efficiency of animation generation.
Initial usage indicates that the method is beneficial for practicing English articulation,
particularly in correcting issues related to incorrect mouth and tongue positions that lead to
inaccurate articulation. Future work will involve acquiring additional driving video data,
further enhancing the motion transfer model to enable high-definition animation output,
and applying the developed model to synthesize voice-synchronized tongue animations.
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