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Abstract: Data science and machine learning (ML) techniques are employed to shed light into the
molecular mechanisms that affect fluid-transport properties at the nanoscale. Viscosity and thermal
conductivity values of four basic monoatomic elements, namely, argon, krypton, nitrogen, and
oxygen, are gathered from experimental and simulation data in the literature and constitute a primary
database for further investigation. The data refers to a wide pressure–temperature (P-T) phase
space, covering fluid states from gas to liquid and supercritical. The database is enriched with new
simulation data extracted from our equilibrium molecular dynamics (MD) simulations. A machine
learning (ML) framework with ensemble, classical, kernel-based, and stacked algorithmic techniques
is also constructed to function in parallel with the MD model, trained by existing data and predicting
the values of new phase space points. In terms of algorithmic performance, it is shown that the
stacked and tree-based ML models have given the most accurate results for all elements and can be
excellent choices for small to medium-sized datasets. In such a way, a twofold computational scheme
is constructed, functioning as a computationally inexpensive route that achieves high accuracy,
aiming to replace costly experiments and simulations, when feasible.

Keywords: machine learning; molecular dynamics; thermal conductivity; shear viscosity

1. Introduction

Machine learning (ML) has been integrated into material-related fields over the past
decade, suggesting the possibility of a powerful statistical technique that can be used to
aid and/or replace costly simulations and hard-to-setup experiments, and leading the
advances in a variety of areas. Accelerating simulations from quantum to continuum scales
has been made possible, since ML is exploited to identify the most important features of a
system and create simplified models that can be simulated much more quickly. In this way,
property calculation and prediction are feasible, even when experiments or simulations
are hard to perform. Data science and ML can be used to learn from historical data and
make predictions about the properties of materials [1–3], even those that have not yet been
studied, and even suggest symbolic equations to describe them [4–6].

The specific ML techniques that have been used in material-related fields include
supervised learning, unsupervised learning, and reinforcement learning [7]. Supervised
learning has been the most widely investigated field for regression or classification tasks. It
refers to labeled data, which is associated with known parameters that affect a property of
interest and tries to predict either interpolated or extrapolated values. Unsupervised ML
aims to discover interconnections inside unlabeled data, either with clustering techniques
(e.g., the k-means algorithm) or by applying dimensionality reduction in high-dimensional
data (e.g., proper orthogonal decomposition, POD, and principal component analysis, PCA).
Reinforcement learning is exploited in cases in which interaction with the environment is
significant, and is based on an observation/rewarding scheme employed to find the best
scenario for a process [8].
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Depending on the number of computational layers included in an ML model, another
categorization looks to shallow learning (SL) and deep learning (DL). Widely used SL algo-
rithms include linear (or multi-linear) regression, LASSO, ridge, support vector machine
(SVM), and decision-based algorithms (e.g., Decision Trees and Random Forest) [9], among
others. As these algorithms may perform better for specific parts of a dataset, ensemble
and stack methods have also emerged in which groups of more than one algorithm are
interconnected serially or in parallel, and in most cases, these present enhanced output
results [10]. However, in complex systems, such as turbulent fluid flows [11], more com-
plex computational layers (neural networks, NNs) are exploited, constructing a deeper
architecture better able to deal with the ‘big data’ in DL models [12].

In the field of molecular simulation, where the property extraction of materials is
of paramount importance, ML has gained a central role [13]. Atomic-scale simulations,
with molecular dynamics (MD) being the most popular method, involve costly (in time
and hardware resources) simulations which accurately calculate dynamical properties of
the materials in all phases (solid, liquid, and gas). They have oftentimes been used in
place of experiments when experiments have been difficult to perform. Moreover, they
have opened a new pathway for the calculation of properties that cannot be extracted by
theoretical or numerical simulations at the macroscale. The transport properties of fluids,
specifically, shear viscosity and thermal conductivity, are two of the most computationally
intensive properties to deal with in atomistic simulations, involving particle interactions,
positions, and velocities in multiple time-frames [14]. Molecular dynamics simulation,
either in an equilibrium (EMD) or non-equilibrium (NEMD) manner, has, to this point, been
incorporated to provide transport property data. However, data-driven approaches have
much to offer in this direction. Current research efforts have already reported methods that
combine physics-based and data-driven modeling [15].

Therefore, it would be beneficial to embed novel ML methods into molecular sim-
ulations. In this paper, a combined MD simulation/ML prediction scheme has been
constructed to accurately derive the transport properties, such as viscosity and thermal
conductivity, of basic elements (argon, krypton, nitrogen, and oxygen) at the bulk state.
The framework is embedded in a Jupyter Lab environment [16]. It starts by analyzing
historical data from the literature [17], performs property prediction with available data,
and functions in parallel to an MD computational flow that calculates the transport proper-
ties in phase space points where no data is available. The ML model is further fed with
MD-extracted points, and it is then retrained, achieving increased accuracy in most cases.
The fast ML platform is capable of extracting new phase-state points while remaining
linked to the MD simulations, ensuring that results are accurate and bound to physical
laws. Of equal importance is the enrichment of the data in the current literature with
new values of viscosity and thermal conductivity which can be further processed by the
research community.

2. Simulation Model and Data Analysis
2.1. Computational Framework

A flow diagram of the computational model constructed is given in Figure 1. His-
torical data from the literature [17], after being pre-processed and normalized, enters the
computational platform to feed a series of ML algorithms. The available data is divided
into a training dataset (80%) and a test dataset (20%) through a 10-fold cross-correlation
technique that randomly assigns ten different portions of data to the categories of training
and test data. In every iteration, a different portion of data is considered to be training
(e.g., 8 out of 10) and test (e.g., the remaining 2 out of 10), which is a common practice used
to minimize the possibility of overfitting [18].

To find the best-performing algorithm that fits in the transport properties dataset, a
number of different ML algorithms have been tested in order to determine their accuracy,
based on kernel, ensemble, and stack methods. In regression problems, it has been found
that different algorithms achieve different metrics in scalability and predictive accuracy [19].
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Here, the Gaussian Process Regressor (GPR), the Support Vector Regressor (SVR), the Ad-
aBoost Regressor (ABR), and the Extra Trees Regressor (ETR) are employed. GPR and SVR
are kernel-based methods, while ABR and ETR combine the decision-tree principle with an
ensemble learning approach. Furthermore, a stack method, employing various algorithms
in a stacked manner, has also been created. All algorithms are set after a hyperparameter
tuning procedure which adjusts their parameters to the specific problem [20], which ensures
that they run with the optimal parameters to achieve maximum accuracy [21]. The accuracy
of the computational procedure is validated by comparing it to newly extracted EMD
simulation data. The MD computational flow is executed in parallel in the open-source
LAMMPS software [22]. New data coming from the MD flow enter the ML process to
retrain and further validate the output.
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Figure 1. The twofold MD/ML computational framework for calculation of transport properties.

More specifically, the calculations begin by feeding the initial elements database into
the ML algorithm, and after the pre-processing stage, the algorithm is trained and validated
on existing data through the cross-correlation pipeline. This process is repeated for each
algorithm and for each element incorporated here. Next, the predictive accuracy of each
algorithm is assessed through a computational loop. At this point, an MD simulation is
established for a new phase space point (P-T) that does not exist in the initial database
and the derived viscosity and thermal conductivity values are added to the database. The
ML algorithm runs once more with the enriched database and its performance accuracy is
tabulated. It becomes clear that the MD simulations provide new data for processing, at
fluid states not reported in the literature, and, at the same time, an alternative ML model is
trained on this data and is capable of predicting more state points in a future step, bypassing
the MD simulations. This computation scheme exploits the accuracy of MD and combines
it with the ML speed to suggest a twofold procedure that could be employed in similar
property-prediction applications.

A major advantage of the proposed framework is the fact that all computational
subsystems are controlled by a Jupyter Lab Python environment. This means that MD
and ML codes communicate and can interact with each other, while data is available for
processing and analysis at every stage of the process.
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2.2. Data Description and Pre-Processing

The database of the elements used in our study [17] includes values for the viscosity
(η) and thermal conductivity (λ) of argon (Ar), krypton (Kr), nitrogen (N), and oxygen
(O). The data refer to (P-T) phase-state points, i.e., the obtained values for viscosity and
thermal conductivity at specific (P-T) values. This means that the ML models implemented
accept two inputs, P and T, and output η and λ. In the available database, viscosity data
for Ar and N were obtained using experimental methods such as capillary flow (CF) and
the oscillating disc (OD). Thermal conductivity data were acquired by techniques such
as the parallel plate (PP) and concentric cylinder (CC) apparatuses. For Kr, the principle
of corresponding states has been used to calculate the transport properties, while for O,
limited data for thermal conductivity, compared to the other elements, is given due to
challenges in obtaining reliable values, particularly at higher temperatures.

Data is provided for temperature (T), starting from the triple-point temperature up
to 500 K, and for pressures to the value of P = 100 MPa. The (P-T) phase space for each
element is presented in Figure 2. The critical and the triple points define the regions where
phase changes occur, and have different values for each element. Data statistics are given
in Table 1. The amount of data provided from the literature is sufficient for application to
an ML investigation, and the data will also be enriched by the MD we perform. The phase
space covers the range from ambient gas and liquid conditions to extreme, at supercritical
states. There is no investigation of solids in the present work.

Moreover, in order to check for possible correlations within the data, we also present,
in Figure 3, correlation maps for each element. The inputs P and T are clearly not correlated
for all elements. For Ar, a medium negative correlation is observed between T and both
transport properties (Figure 3a,b). Krypton’s properties are mostly affected by temperature.
Nitrogen’s properties are slightly correlated with those of T. On the other hand, the proper-
ties of O are strongly correlated only with those of T. In all cases, both thermal conductivity
and viscosity present near-to-zero correlation with P.
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Table 1. Element data statistics. Apart from the literature, phase-state points enhanced with MD
have also been calculated and incorporated in the analysis made. Critical points for T (Tc) and P (Pc)
are shown.

Element η (µg/cm·s) [17] λ (µW/(K·m)) [17] η (µg/cm·s)
(from MD)

λ (µW/(K·m))
(from MD)

T (K)
Range Tc (K) P (MPa) Range Pc

(MPa)

Ar 1219 1259 200 200 86–500 150.68 0.1–100 4.86
Kr 506 506 30 5 125–500 209.41 0.1–20 5.5
N 1275 1253 20 40 75–500 126.20 0.1–100 3.39
O 814 814 18 14 75–500 154.60 0.1–35 5.04
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Data is normalized in order to restrict the input value range and allow the ML algo-
rithms to perform better, whereby a data point, x, transforms to

z =
x − x

s
, (1)

where x is the mean value of the samples and s the standard deviation.

2.3. Machine-Learning Algorithms
2.3.1. Support Vector Regression

Support vector regression is a variation of support vector machines (SVM) that is
specifically tailored for regression analysis. SVR aims to find a regression function that
maps input data points to continuous output values while maximizing the margin between
the predicted values and a defined margin of error. This margin is controlled by two
parameters: the error tolerance (epsilon, ε) and a regularization parameter (C) which
balances the trade-off between achieving a smaller margin and minimizing prediction
errors. The implementation of the technique is summarized in five steps:

• Data preparation: Input data is collected, including features (variables) and corre-
sponding target values (continuous output).

• Feature scaling: It is essential to scale the features to ensure that they have simi-
lar ranges. Common scaling methods include normalization (scaling to [0, 1]) or
standardization (mean = 0, variance = 1).

• Kernel selection: SVR uses kernels to map the data into a higher-dimensional space
where it may be easier to find a linear separation. Common kernel functions include
linear, polynomial, radial basis function (RBF), and sigmoid kernels.
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• Model training: SVR aims to find a boundary window that has the maximum margin
on both sides of the data points, while allowing some points to fall within a margin of
error ε. The training process involves solving an optimization problem to determine
the support vectors (data points that influence the margin) and the model parameters.

• Prediction: Once the SVR model is trained, it can predict the continuous output values
for new unseen data points.

The SVR can be applied to various property estimation tasks in fluid mechanics,
such as the determination of the minimum miscible pressure in modeling membrane
separation systems, or the prediction of the pan evaporation in hydrological and ecological
settings [23–25], to mention a few.

2.3.2. Gaussian Process Regression

Gaussian process regression is a non-parametric ML algorithm used for regression
tasks. It uses probabilistic modeling to make predictions and provide uncertainty estimates
based on training data. GPR assumes that the relationship between input features and
outputs follows a Gaussian process distribution, which allows it to capture complex patterns
and provide confidence intervals for predictions. The equation for GPR is expressed as

y = µ+ ε, (2)

where y is the predicted output, µ is the mean of the Gaussian process distribution, and
ε is the random noise term. This method also uses kernels (or covariance functions) to
determine the shape and characteristics of the Gaussian process distribution. Common
kernel functions include both the Matèrn and exponential forms of the radial basis function
(RBF). The choice of kernel function influences how the GPR model captures correlations
between data points. Here, we have applied a Matèrn kernel, which is common choice
in the applied sciences and in engineering [26,27]. The algorithm has hyperparameters
that need to be tuned, such as the parameters of the kernel function and the noise level.
Properly tuning these hyperparameters is essential for the model’s performance and for its
ability to capture the underlying patterns in the data [28–30].

GPR not only provides point predictions but also estimates the uncertainty associated
with each prediction. It computes prediction intervals that indicate the range within which
the true output is likely to fall. This is particularly useful in fluid mechanics applications, for
which understanding the uncertainty of predictions can be crucial. Examples of applications
include property predictions such as fluid flow rate, pressure distribution, and heat-transfer
coefficients. GPR has also the advantage of dealing with limited and noisy data effectively
by further quantifying the uncertainty inside the predictions [31–33].

2.3.3. The Extra Trees Regressor

The Extra Trees Regressor is an ensemble learning algorithm that belongs to the
family of decision tree algorithms, functioning as an extension of the Random Forest
(RF) algorithm [34]. ETR builds multiple decision trees and combines their predictions to
provide more robust and accurate results. Each decision tree predicts the target variable
for a given input, and the final prediction is a combination of predictions from all trees.
However, unlike RF, the ETR does not consider bootstrap sampling, and it selects random
features at each split point without using any specific criteria. Equation (3) can express the
general prediction equation for the Extra Trees Regressor:

ŷ =
1
N ∑N

i=1 fi(X), (3)

where ŷ is the predicted target value, N is the total number of decision trees in the ensem-
ble, and fi(X) is the prediction of the ith decision tree for the input X. The randomness
introduced during the tree-building process can reduce overfitting. Additionally, the ETR
is computationally efficient due to its parallelism in training multiple trees. However, it
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is essential to note that the choice of hyperparameters, such as the number of trees and
their maximum depth, can impact the algorithm’s performance. Cross-validation is also
important here. In fluid mechanics applications, ETR has been employed to predict various
fluid-related properties, such as molecular separation in membrane systems, Vibrio fischeri
toxicities, properties of ionic liquid, ink droplet velocity profiles of printing cells, and drug
particle solubility optimization [10,35–38].

2.3.4. AdaBoost Regressor

The AdaBoost Regressor combines the predictions of multiple weak learners, often
decision trees, to create a strong ensemble model. The final prediction is a weighted average
of the predictions made by each weak learner. The general prediction equation can be
expressed by

ŷ = ∑N
i=1 wi f i(X), (4)

where ŷ is the predicted target value, N is the total number of weak learners in the ensemble,
wi is the weight assigned to the prediction of the ith weak learner, and fi(X) is the prediction
of the ith weak learner for the input X. In each iteration, the weights of misclassified
instances are increased, forcing the algorithm to focus more on those instances. The weak
learners are trained sequentially, with each one adjusting its predictions based on the
weighted errors of the previous iterations. ABR is particularly useful when dealing with
complex relationships in data, capturing non-linear patterns. It is effective in reducing bias
and improving the overall accuracy of predictions. However, it can be sensitive to noisy
data and outliers, as these can negatively impact the performance of weak learners. In fluid
mechanics applications, AdaBoost Regressor has been successfully employed to predict
fluid flow rates, pressure drop, concentration in water purification via porous membranes,
droplet volume in printing technologies, and biodiesel yield and viscosity [39–42].

2.3.5. Stacked Models

Stacking, also known as stacked generalization, is an ML ensemble algorithm that
combines multiple models (learners) to create a more accurate and robust predictive model.
The basic mechanism behind stacking is to train several diverse base models and then
use a meta-model to combine their predictions to make the final prediction. The stacking
algorithm involves two main steps: training base models and training a meta-model. For
stacking, multiple base models are trained on the same dataset. Each base model generates
predictions for the target variable based on the input features. The predictions from these
base models are then used as features for the next step. A meta-model, also known as a
blending or aggregator model, is trained using predictions generated by the base models
as features. The target variable is the same as the original target variable. The meta-
model learns how to weigh or combine the predictions of the base models to produce the
final prediction,

ŷ f inal = MetaModel(ŷbase1, ŷbase1, . . . , ŷbaseN), (5)

where ŷ f inal is the final predicted target value, ŷbasei is the predicted target value from the
ith base model, and MetaModel is the function that combines the predictions of the base
models. Stacking is powerful because it leverages the diversity of predictions from multiple
models. By combining the strengths of different models, it can achieve higher predictive
accuracy than individual models. However, it can be computationally intensive and may
require thoughtful tuning to avoid overfitting. In fluid mechanics applications, stacking
can be used to predict various fluid properties, like flows in membranes. Soil industry,
seismology, and geophysics have been the major utilizers of this method [43–48].

In this paper, we have employed the predictive power of ensemble, tree-based algo-
rithms to create the stacked model. More specifically, the ABR, ETR, and Random Forest
(RFR) algorithms have been used for calculations, and their outcomes are combined by
Decision Trees (DT) algorithm. A general flowchart is embedded in the ML side of Figure 1.
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2.4. Molecular Dynamics Model

Molecular Dynamics (MD) simulation is a computational technique widely used to
investigate the behavior of systems at the atomic level [49–51]. For our calculations, we
have employed the LAMMPS software to simulate the elements at the bulk state. The
Lennard-Jones (LJ) potential is considered for the construction of the system’s inter-relations
and the output of the simulation provides the two important thermophysical properties,
viscosity and thermal conductivity, η = f (P, T) and λ = f (P, T), respectively, through a wide
range of pressure (P) and temperature (T) values.

The 12-6 LJ potential is given by

uLJ = 4ε

( σ

rij

)12

−
(

σ

rij

)6
, (6)

with a cut-off radius rc = 2.5σ. The values of the LJ parameters σ and ε and the masses of
the particles, m, are presented in Table 2.

Table 2. LJ parameters of the elements incorporated in the MD simulations.

Element ϵ/k (K) σ (nm) m (a.u.)

Argon (Ar) 152.8 3.297 39.948
Krypton (Kr) 215.8 3.513 83.798
Nitrogen (N) 118.0 3.54 14.0067
Oxygen (O) 113.0 3.437 15.999

The simulation box that encloses the bulk fluids is a cube with dimensions (10× 10× 10)LJ
units (σ) in the x, y, and z directions. Fluid particles are initially placed in a face-centered cubic
(fcc) lattice and left to attain their final positions through an initialization stage. After an
equilibration phase of 106 MD timesteps (the timestep is ∆t = 1 fs), in which temperature and
pressure stabilize at constant values, the system reaches the stable state and parallel production
runs (at least 10 for every case, for statistical accuracy) begin for 107 MD steps. Fluid density,
pressure and temperature are the properties that control the simulations. Different combinations
produce new values for our MD database. Simulations evolve through the NPT (Isothermal-
Isochoric) ensemble, with a Nose–Hoover thermostat used to control the fluid temperature and
a barostat used to control the pressure [52–56].

2.4.1. Thermal Conductivity Calculation

The heat flux is calculated for each atom in the system. In an fcc lattice, the heat
flux vectors represent heat flow along the face diagonals of the cubic cells. Heat flux
quantifies the rate at which heat energy is transferred through the system. It is computed
for each particle by considering the particle’s kinetic energy, potential energy, and stress
contributions. It is a vector quantity, representing heat flow along each Cartesian direction
(x, y, z), with components defined as ‘Jx’, ‘Jy’, and ‘Jz’. The ‘fix ave/correlate’ LAMMPS
command is used to calculate the correlation of the heat flux components over time, and
the correlation function is then integrated to obtain the thermal conductivity components
λxx, λyy, and λzz.

The heat flux Jx(t) in the x-direction for each atom is computed using Equation (7), as

Jx(t) =
KE(t)

V
+

PE(t)
V

+
σxx(t)

V
, (7)
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where KE(t) and PE(t) are the kinetic and potential energies, respectively, and σxx(t) is the
stress tensor component along the x-direction. The Green–Kubo (GK) method is employed
to calculate the thermal conductivity λ, as

λ =
VkB

3

∫ ∞

0
⟨Jx(t)·Jx(0)⟩dt, (8)

with V as the system volume and kB the Boltzmann’s constant [57,58].

2.4.2. Viscosity Calculation

Viscosity characterizes a fluid’s resistance to flow. In this MD model, viscosity, η, is
calculated using the GK method from the components of the stress tensor σxy [59], in a
manner similar to thermal conductivity, as

η =
V

kBT

∫ ∞

0

〈
σxy(t)·σxy(0)

〉
dt. (9)

The stress velocity correlation function in Equation (9) is calculated to determine how
the stress (pressure) influences the fluid’s flow behavior,〈

σxy(t)·σxy(0)
〉
. (10)

3. Results and Discussion

With a series of parallel MD simulations, viscosity and thermal conductivity values
for (P-T) state points missing from the elements database have been calculated. We have to
note here that the base MD program has been verified on the specific database values. To
validate the results of the simulations, we first calculated the values of η and λ provided in
the database (i.e., the existing data points), for which we have taken the same or nearly the
same values, within statistical accuracy, and next, we proceeded to calculate the unknown
data points.

Next, characteristic algorithmic implementations concerning the MD code were de-
scribed; all calculated transport properties values are given in the respective Tables. All of
this data is embedded in the initial elements database and the predictive ability of our ML
algorithms is evaluated.

3.1. MD Programming

Both thermal conductivity and viscosity components are reported as running averages
over the whole simulation time [60]. Due to the sophisticated computational techniques
needed to automatically extract MD-calculated values for viscosity and thermal conductiv-
ity, a hypercomputer system (HPC) has been deployed. Computational techniques incorpo-
rated to manage data files for each element, for every (P-T) pair and for every simulation
instance (as discussed above, we have performed 10 parallel simulations to extract one
average value for statistical reasons), are embedded in a Jupyter Lab Python environment.

First, we prepare the input files and place them in separate folders for each available
case that runs on LAMMPS, and for each element (4 elements), temperature (20 different
temperature values), and pressure (10 different pressure values) range. This is performed
automatically for the (4 × 20 × 10) = 800 simulation instances; the procedure is shown
in Algorithm 1. Algorithm 2 depicts the MD program flow in LAMMPS. After proper
initialization, the code runs in 10 parallel instances to achieve better statistical accuracy
and calculates the properties of interest. This is performed for every case constructed by
Algorithm 1. In the final stage of a simulation, calculated values for viscosity and thermal
conductivity are stored in a Pandas DataFrame and, finally, in .csv files. All values are
embedded in the initial elements database.
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Algorithm 1. Prepare and run MD simulations

1: Open generic LAMMPS bulk fluid simulation file
2: Define element masses list, m = [·]
3: Create file path for every element
4: Define temperature range list, T = [·]
5: Create file path for every temperature value
6: Define pressure range list, P = [·]
7: Create file path for every pressure value
8: for i, j, k in mi = [·], Tj = [·], Pk = [·]
9: Create LAMMPS input files

Algorithm 2. Backbone of a bulk fluid MD simulation

1: Define simulation box, units, atom_style
2: Setup simulation variables (P, T, ρ, rc, lattice constant)
3: Setup LAMMPS computes: temperature and pressure
4: Initialization run for t = 106 timesteps
5: Give random initial velocity values to particles
6: Define pair styles and pair coefficients
7: Begin NPT simulation
8: for i = 1:10
9: ith production run:
10: Calculate kinetic and potential energy per atom
11: Calculate stress tensors and heat flux components
12: Perform time auto-correlations
13: Calculate pair correlation function
14: Calculate viscosity and thermal conductivity
15: Statistical averaging of the results
16 Store calculated values to pandas dataframe
17: Store calculated values to .csv in the respective folder

3.2. MD Simulations

Turning our attention to the transport properties extracted from the MD simula-
tions now, we present calculated viscosity and thermal conductivity values for Ar in
Tables 3 and 4, for Kr in Tables 5 and 6, for N in Tables 7 and 8, and for O in Tables 9 and 10,
respectively. These values are embedded in the initial property database (taken from the lit-
erature) and employed for transport property prediction in the ML model constructed. We
have to note that tabulated values shown here are taken far from the critical points, and their
values are close to neighboring, validated results found in the literature-only database.

Table 3. MD-extracted Ar viscosity values, in (µg/cm·s).

P, MPa
T, K 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

122 915.92 898.93 984.93 1031.25 918.71 966.45 1073.30 999.74 1038.84 1056.03
127 856.09 870.47 846.76 902.07 825.29 885.12 822.00 840.84 991.45 899.43
132 739.48 668.68 712.28 738.41 772.78 722.18 743.04 761.02 703.95 848.49
137 560.58 597.45 601.79 659.04 585.75 664.99 651.53 660.57 702.26 693.07
142 117.64 147.14 86.62 481.58 487.14 555.57 580.50 604.51 632.08 643.75
147 126.46 122.85 136.91 141.95 177.16 426.69 464.30 477.40 504.92 570.44
152 136.84 140.36 138.27 150.60 172.48 179.28 229.33 318.64 405.40 432.61
157 146.23 144.80 158.39 152.49 153.81 174.39 181.17 216.45 229.40 328.56
162 146.32 148.01 155.79 151.34 162.92 143.66 185.92 193.01 205.05 222.15
167 144.75 151.00 142.66 150.15 174.37 157.78 168.46 190.36 196.99 202.15
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Table 3. Cont.

P, MPa
T, K 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

172 154.98 138.00 149.39 162.98 162.99 178.80 186.19 191.40 192.16 196.04
177 155.70 160.01 157.61 163.30 155.16 187.89 192.83 184.26 197.63 205.62
182 162.06 151.75 174.93 177.68 191.47 185.64 177.72 180.83 199.93 185.79
187 146.68 151.42 177.72 172.29 171.85 185.45 191.96 187.61 198.33 229.21
192 162.91 173.95 173.98 190.22 172.68 184.91 177.29 187.52 208.48 193.12
197 163.13 164.06 164.92 185.37 165.11 169.06 168.62 184.49 184.17 191.25
202 181.09 183.14 190.11 175.38 180.24 181.74 188.42 184.45 200.43 208.96
207 173.99 190.19 185.76 181.99 183.47 170.59 198.19 210.16 178.74 220.90
212 160.56 165.03 193.46 192.82 201.60 223.12 175.56 202.08 205.86 217.05
217 177.43 183.18 179.69 198.42 183.86 189.87 198.23 205.96 191.67 194.21

Table 4. MD-extracted Ar thermal conductivity values, in (µW/(K·m).

P, MPa
T, K 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

122 73.01 75.49 75.33 80.60 75.38 80.08 79.08 81.27 80.28 76.70
127 70.15 71.65 69.81 70.66 68.74 75.77 68.74 76.76 72.10 79.16
132 60.03 54.50 64.09 61.41 66.34 64.24 66.48 67.14 68.02 68.29
137 55.45 56.01 55.10 54.23 58.52 62.14 63.14 59.00 64.63 60.67
142 11.67 13.90 41.27 45.68 44.05 49.00 56.23 55.53 51.21 54.05
147 12.15 13.38 14.27 17.60 25.02 43.41 41.95 47.16 48.43 47.37
152 10.60 13.16 13.59 14.24 15.50 18.73 27.72 37.90 42.08 42.11
157 11.79 13.52 11.81 14.62 15.62 17.45 21.61 24.00 28.83 31.95
162 11.09 12.87 13.66 15.46 16.29 15.85 18.25 20.91 23.91 26.93
167 11.33 12.33 12.41 13.80 14.55 17.83 16.66 18.88 23.75 22.84
172 11.31 12.04 14.30 14.84 14.97 16.51 15.68 18.25 19.41 22.22
177 12.83 13.69 12.74 13.01 14.54 15.99 13.68 18.77 18.71 18.90
182 13.25 13.60 13.36 13.72 14.70 16.79 15.49 17.32 18.46 19.23
187 12.23 12.72 13.80 14.91 15.73 15.95 16.18 17.75 18.02 16.17
192 12.50 13.32 14.78 13.14 15.07 15.02 15.34 16.42 17.57 19.08
197 12.25 13.18 14.29 14.67 15.63 15.92 18.09 18.02 18.31 16.61
202 12.65 11.92 14.41 15.18 15.43 16.39 16.80 16.39 19.76 17.96
207 12.26 12.18 13.90 14.91 14.45 17.36 15.49 17.00 17.20 19.44
212 13.41 13.86 14.22 14.74 15.62 17.12 17.11 17.27 18.23 19.74
217 13.09 14.85 14.30 14.23 16.53 15.45 16.87 17.78 19.61 19.38

Table 5. MD-extracted Kr viscosity values, in (µg/cm·s).

T, K P, MPa η, µg/cm·s T, K P, MPa η, µg/cm·s
177 0.5 157.74 152 6.0 2485.56
212 0.5 186.81 162 6.0 2143.70
152 1.0 2184.46 177 6.0 1647.74
157 1.0 1998.47 187 6.0 1314.75
162 1.0 171.38 192 6.0 1183.46
207 1.0 185.60 197 6.0 1151.88
147 2.0 2579.93 202 6.0 982.18
157 2.0 2136.94 207 6.0 830.09
162 2.0 1881.72 212 6.0 590.38
177 2.0 182.64 217 6.0 351.66
147 4.0 2511.72 162 10.0 2190.60
167 4.0 1868.86 167 10.0 2004.87
187 4.0 1223.95 172 10.0 1814.65
202 4.0 386.81 182 10.0 1548.39
217 4.0 223.73 197 10.0 1213.54
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Table 6. MD-extracted Kr thermal conductivity values, in (µW/(K·m).

T, K P, MPa λ, µW/(K·m)

122 2.0 96.48
127 2.0 90.52
137 2.0 82.57
147 2.0 75.04
152 2.0 72.04

Table 7. MD-extracted N viscosity values, in (µg/cm·s).

T, K P, MPa η, µg/cm·s T, K P, MPa η, µg/cm·s

122 0.1 82.73 127 4.0 188.13
122 0.5 84.40 132 4.0 158.94
132 1.5 95.71 137 4.0 124.86
142 1.5 100.94 152 4.0 123.76
147 1.5 105.32 132 5.0 196.40
122 2.0 95.71 152 5.0 135.21
157 2.5 115.14 137 6.0 227.88
122 3.0 120.58 142 6.0 176.06
137 3.0 110.32 147 6.0 165.24
127 3.5 137.57 217 6.0 157.40

Table 8. MD-extracted N thermal conductivity values, in (µW/(K·m).

T, K P, MPa λ, µW/(K·m) T, K P, MPa λ, µW/(K·m)

122 2.5 19.88 157 5 24.40
127 2.5 18.98 187 5 23.27
157 2.5 19.37 217 5 24.42
192 2.5 20.25 132 6 60.90
197 2.5 20.95 137 6 49.37
207 2.5 21.24 152 6 30.34
127 3 24.18 217 6 25.43
132 3 20.55 137 7 56.31
192 3 20.90 142 7 44.29
207 3 21.78 157 7 32.55
142 3.5 23.66 167 7 28.00
182 3.5 21.14 172 7 27.51
192 3.5 21.43 182 7 26.56
132 4 33.04 187 7 26.39
137 4 27.81 217 7 26.47
147 4 22.42 132 8 57.70
192 4 22.08 142 8 49.84
127 5 48.07 152 8 37.44
142 5 32.75 157 8 34.85
152 5 26.26 182 8 28.34

Table 9. MD-extracted O viscosity values, in (µg/cm·s).

T, K P, MPa η, µg/cm·s T, K P, MPa η, µg/cm·s
132 1.0 101.48 137 2.0 112.02
137 1.0 106.91 152 2.0 121.22
147 1.0 112.02 162 2.0 127.15
157 1.0 121.22 167 2.0 130.26
172 1.0 130.26 142 2.5 118.88
127 1.5 100.63 142 3.0 124.90
142 1.5 112.02 147 3.0 126.80
157 1.5 122.00 152 3.0 128.88
162 1.5 129.85 147 3.5 128.59

The initial database for Kr is significantly smaller compared to that for Ar (see Table 1).
The Kr MD simulations have given many outlier values; in order to ensure that our ML
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model performs in an equally fine manner, we have kept only the simulation values close
to neighboring ones. Also, a similar strategy has been followed for the N and O elements.

Table 10. MD-extracted O thermal conductivity values, in (µW/(K·m).

T, K P, MPa λ, µW/(K·m) T, K P, MPa λ, µW/(K·m)

207 0.1 19.09 172 5 25.94
212 0.1 19.65 177 5 25.23
217 0.1 19.94 192 5 24.11
127 1.5 27.39 182 6 27.39
152 4 26.74 187 6 26.74
157 4 25.23 192 6 25.94
162 4 23.89 197 6 25.74

3.3. Machine-Learning Predictions

The ability of the implied ML algorithms to predict the transport properties of the
elements is captured by the accuracy measures shown in Table 11. The mean absolute error
(MAE) is given by

MAE =
1
n∑n

i=1|Yi|, (11)

where Yi = y*
real,i − y*

pred,i for the ith data point; index real, the database value; pred, the
ML predicted value.

Table 11. Metrics of accuracy for viscosity (η) and thermal conductivity (λ) coefficients, as achieved
by each ML algorithm, for the initial database.

Ar Kr N O

η λ η λ η λ η λ

SVR

MAE 17.73 1.33 68.19 0.94 9.89 1.49 24.69 2.15

RMSE 69.41 4.01 292.16 4.08 41.07 7.87 83.94 7.36

MAPE 0.09 0.05 0.38 0.08 0.07 0.04 0.13 0.08

R2 0.99 0.99 0.95 0.98 0.99 0.97 0.99 0.98

GPR

MAE 27.22 2.76 55.15 1.45 19.30 2.14 33.43 3.48

RMSE 68.49 6.65 182.73 4.49 77.77 7.89 136.80 10.12

MAPE 0.08 0.07 0.19 0.13 0.07 0.04 0.11 0.09

R2 0.99 0.98 0.98 0.98 0.95 0.97 0.97 0.97

ABR

MAE 19.93 1.46 39.57 1.47 12.33 2.00 27.08 1.91

RMSE 84.54 4.79 72.67 6.39 50.62 8.61 99.60 9.05

MAPE 0.09 0.05 0.04 0.13 0.07 0.06 0.10 0.05

R2 0.98 0.98 0.99 0.97 0.98 0.96 0.98 0.98

ETR

MAE 10.20 1.03 41.75 0.80 8.3 1.24 14.28 1.15

RMSE 56.68 3.36 201.33 3.17 47.14 7.05 63.80 5.92

MAPE 0.06 0.04 0.22 0.09 0.05 0.04 0.08 0.06

R2 0.99 0.99 0.98 0.99 0.98 0.98 0.99 0.99

SA

MAE 12.38 1.01 48.25 1.09 9.33 0.98 13.29 0.88

RMSE 61.96 2.87 205.11 4.03 44.80 4.18 50.49 3.38

MAPE 0.06 0.04 0.20 0.07 0.05 0.04 0.06 0.03

R2 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99
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The root mean squared error (RMSE) is

RMSE =

√
∑n

i=1
(Yi)

2

n
, (12)

the mean absolute percentage error (MAPE) is

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣ Yi

y*
exp,i

∣∣∣∣∣, (13)

and, finally, the coefficient of determination, R2, is given by

R2 = 1 −
∑N

i=1

(
y*

real.,i − y*
real.

)2

∑N
i=1(Yi)

2 . (14)

In Table 11, only the initial database (without MD-extracted values) has been con-
sidered for the calculations. In general, the algorithms incorporated here are capable
of providing accurate predictions for all element-transport properties. As expected, the
stacked algorithm (SA) has given the most accurate results for all elements. However, the
ETR has given almost similar and in some cases, even more accurate results than SA. The
algorithms that exploit kernels, such as SVR and GPR, are also good choices, although
there may be some increased computational cost, as compared to the tree-based algorithms.
Nevertheless, this overhead is not important in small and medium-sized datasets, such as
the one that has been incorporated into this paper.

Furthermore, the initial database contains Kr values that have been calculated based
on the principle of the corresponding states [61]. This is an indirect method used to obtain
the properties of the elements, but we do not expect it to be of the same accuracy as an
experimental or a proper simulation technique. Taking also into consideration that the Kr
data points only number 516 (see Table 1), we believe that these are the two reasons why
the accuracy measures for Kr are smaller, as compared to all other elements.

In Table 12, the MD viscosity and thermal conductivity data have also been employed
in the training and validation process, and every ML algorithm has been retrained. The
accuracy of each algorithm is similar to those shown in Table 11, but some error metrics
here have slightly increased. This deviation is small; it falls within the range of statistical
accuracy. The new MD data points may be considered accurate, but, on the other hand,
they come from a different method, computational—not experimental, and this may cause
a kind of deviation from the real values. In any case, the deviations are small for Ar and N,
and they increase a small amount more for O and Kr.

Table 12. Metrics of accuracy for viscosity (η) and thermal conductivity (λ) coefficients, as achieved
by each ML algorithm, for the initial database with the addition of new MD-calculated data.

Ar Kr N O

η λ η λ η λ η λ

SVR

MAE 20.24 1.35 69.20 1.16 6.92 1.17 37.63 2.80

RMSE 58.84 4.03 255.79 4.44 28.04 5.15 128.81 12.41

MAPE 0.06 0.05 0.33 0.09 0.04 0.04 0.20 0.08

R2 0.99 0.99 0.95 0.98 0.99 0.99 0.98 0.96

GPR

MAE 42.11 3.12 57.24 1.53 17.34 2.06 50.39 3.22

RMSE 128.80 8.71 186.75 4.56 58.04 5.28 135.68 11.65

MAPE 0.08 0.08 0.16 0.13 0.04 0.05 0.23 0.06

R2 0.97 0.96 0.97 0.98 0.98 0.99 0.98 0.97
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Table 12. Cont.

Ar Kr N O

η λ η λ η λ η λ

ABR

MAE 18.68 1.38 27.10 1.33 3.69 1.53 22.89 2.77

RMSE 54.57 4.64 52.32 6.11 27.92 6.68 71.20 13.07

MAPE 0.04 0.05 0.03 0.12 0.02 0.05 0.09 0.04

R2 0.99 0.99 0.99 0.97 0.99 0.97 0.99 0.96

ETR

MAE 15.21 0.96 27.06 1.33 9.10 1.53 22.89 2.77

RMSE 66.62 3.28 52.32 6.11 27.92 6.68 71.20 13.70

MAPE 0.04 0.04 0.03 0.12 0.02 0.05 0.09 0.04

R2 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.96

SA

MAE 17.38 0.83 46.91 1.05 6.47 0.86 13.41 2.09

RMSE 76.91 2.62 172.13 4.51 32.16 3.90 35.01 8.53

MAPE 0.05 0.02 0.16 0.09 0.02 0.04 0.05 0.07

R2 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99

4. Conclusions

The transport properties of Ar, Kr, N, and O are examined in this paper. The main
objectives are to calculate and predict viscosity and thermal conductivity. Experimental and
theoretical data from the literature, after being pre-processed, has been initially exploited
to train various machine-learning algorithms.

Ensemble, classical, kernel-based, and stacked algorithmic techniques have been
proven effective in predicting the transport properties of fluid elements, achieving high
levels of accuracy and low levels of error. Notwithstanding their performance, we have
shown that they can be used in parallel with classical molecular dynamics simulations, in
a twofold framework capable of exchanging information between the atomistic simula-
tion and the machine-learning statistical backbone. The molecular dynamics framework
incorporated is capable of producing training data automatically over a broad range of
simulation conditions. Taking also into consideration that the observed accuracy of the de-
veloped machine-learning methods is enhanced, we expect that this twofold computational
model will lead to substantial improvements in simulation applications, where possible.

This could open new directions in dealing with and calculating material properties.
In cases where molecular dynamics (or another material-focused method’s) simulations
are too time-consuming or expensive, machine learning can be incorporated as a faster
and cost-effective alternative. Therefore, we believe that the bulk element simulation
presented here can be upscaled in the future to deal with more complex fluids and confined
geometries, even within wide ranges of temperatures and pressure conditions.

While the purpose of machine learning is not to create new physics, machine learning
can be exploited to accelerate traditional computational methods. The future challenge is
to become more interpretable, transparent, and explainable. This will allow scientists to
better understand how the models work, and it will make these processes easier to apply in
new and innovative ways. Incorporating machine learning into the field of fluid mechanics
still has much to offer, and there is great potential for this technology to revolutionize the
way that fluids are studied, modeled, and manufactured.
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