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Abstract: In the dynamic landscape of vehicular communication systems, connected vehicles (CVs)
present unprecedented capabilities in perception, cooperation, and, notably, probability of collision
management. This paper’s main concern is the collision probability of collision estimation. Achiev-
ing effective collision estimation heavily relies on the sensor perception of obstacles and a critical
collision probability prediction system. This paper is dedicated to refining the estimation of collision
probability through the intentional integration of CV communications, with a specific focus on the
collective perception of connected vehicles. The primary objective is to enhance the understanding of
the potential probability of collisions in the surrounding environment by harnessing the collective
insights gathered through inter-vehicular communication and collaboration. This improvement
enables a superior anticipation capacity for both the driving system and the human driver, thereby
enhancing road safety. Furthermore, the incorporation of extended perception strategies holds the
potential for more accurate collision probability estimation, providing the driving system or human
driver with increased time to react and make informed decisions, further fortifying road safety
measures. The results underscore a significant enhancement in collision probability awareness, as
connected vehicles collectively contribute to a more comprehensive collision probability landscape.
Consequently, this heightened collective collision probability perception improves the anticipation
capacity of both the driving system and the human driver, contributing to an elevated level of road
safety. For future work, the exploration of our extended perception techniques to achieve real-time
probability of collision estimation is proposed. Such endeavors aim to drive the development of
robust and anticipatory autonomous driving systems that truly harness the benefits of connected
vehicle technologies.

Keywords: connected vehicles; collective perception; collision probability of collision estimation;
integrated communication strategies; road safety enhancement

1. Introduction

In recent years, vehicular communication has evolved, driven by the rapid conver-
gence of emerging technologies. Among the most promising advancements in this domain
is the emergence of Connected Vehicles (CVs), a paradigm that has revolutionized tradi-
tional concepts of mobility, safety, and efficiency.

This system comprises various vehicular components, including radar detectors,
forming a joint automotive radar and vehicular communication system that utilizes the
dedicated automotive bandwidth for both applications, as explained by Wang et al. and
Aydogan et al. [1,2]. The distinctive characteristics of vehicular ad hoc networks (VANETs),
characterized by high mobility, frequent topology changes, sporadic connectivity, and
limited communication range, present intricate challenges in designing effective routing
protocols as explained in the work of Sharma and Nidhi [3]. The central goal of VANET
routing protocols is to establish reliable and efficient communication pathways between
vehicles, infrastructure nodes, and even pedestrians. Achieving this objective necessitates a
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delicate equilibrium between optimizing communication performance and adapting to the
dynamic nature of vehicular networks.

Researchers in the VANET domain have delved into designing routing strategies that
tackle diverse challenges [4,5].

Safety-critical applications, such as collision avoidance and emergency messaging,
demand ultra-low latency and high reliability [6]. To cater to these demands, protocols like
geographic routing and beacon-less routing focus on swift message dissemination while
considering vehicular movement patterns. In contrast, traffic efficiency applications, such
as traffic congestion mitigation and route planning, require strategies, ensuring efficient
data dissemination and load balancing. Protocols like probabilistic broadcasting and
cluster-based routing leverage the collaborative nature of vehicular networks to effectively
distribute traffic-related information. Various studies have established a classification of
existing clustering approaches [7–10]. This approach, as outlined, enhances the effectiveness
of routing protocols by reducing control traffic and simplifying data routing [11–13]. Several
clustering algorithms have been proposed and evaluated by Cooper et al. [10]. Notably,
Husnain et al. [14] introduced a probabilistic clustering method inspired by whale behavior
in VANETs, employing the p-WOA algorithm.

Central to this transformation is the concept of collective perception; this is an inno-
vative approach that harnesses the collaborative capabilities of interconnected vehicles to
enhance sensor perception, information exchange, and probability of collision management.
Collective perception exploits vehicular networks to create a comprehensive and dynamic
understanding of the environment, as depicted in the work of Shan Mao et al. [15]. Through
seamless real-time data exchange, networked vehicles access an extended sensory range,
surpassing the limitations of individual sensors, including radars. This framework enables
vehicles to collectively “see” and “sense” beyond their immediate line of sight, establishing
a virtual sensor network that spans the entire vehicular ecosystem.

The advent of collective perception holds wide-ranging implications across road safety,
traffic management, and autonomous driving. By amalgamating sensor data and insights,
collective perception enhances obstacle detection accuracy, road condition assessment,
and hazard anticipation. Consequently, this fosters a safer driving environment, enabling
intelligent transportation systems to make informed real-time decisions. Notably, connected
vehicles enhance traffic safety in foggy conditions, with results indicating significant
improvements through CV approaches [15–17]. Research has demonstrated that utilizing
cooperative automated vehicles (CAV) can reduce the frequency of rear-end conflicts at
signalized intersections by 40% (according to Fyfe et al. [18]), improve the safety index by
up to 45% (according to Olia et al. [19]), and demonstrate improved safety and mobility on
highways in the context of CV [20].

Rahman, M.S. et al. and Karbasi et al. [16,21] have demonstrated that connected
vehicles can improve traffic safety in foggy conditions, with the results indicating that both
CV approaches significantly improve safety. AVs may not accurately identify environmental
factors with 100% certainty, such as road boundaries, lanes, rules, and signals. AVs possess
a certain level of confidence or degree of certainty about these aspects, as described by
Freitas et al. [22]. The use of deep learning sensor fusion algorithms has shown potential to
improve the performance of AV systems in short-range or local vehicle environments, with
a focus on perception, localization, and mapping [23].

In [24], Tian et al. proposed a stochastic model to evaluate the collision probability
for a heterogeneous vehicle platoon, which accounted for the distribution of inter-vehicle
distances. However, the model did not consider other factors that may contribute to
collisions, such as road geometry, vehicle speed, and driver behavior. Despite its limitations,
the model has the potential to provide valuable insights into the potential reduction of
chain collisions and their severity.

The adaptation of the CBL-G system to support the collective perception message
(CPM) and the inclusion of better indicators for the probability of collision estimation can
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result in significant benefits. However, the use of CPMs may increase the probability of
collision of saturating the communication channel and making the network unstable.

The purpose of this paper is to refine the collision probability of collision estimation in
intelligent transportation systems, particularly focusing on connected vehicles (CV). By
integrating CV communications and emphasizing collective perception, this paper aims
to enhance the understanding of the potential collision probability of collisions. Through
extended perception strategies, the goal is to provide improved anticipation capabilities for
both the driving system and human drivers, thereby contributing to heightened road safety.
The study’s results underscore a significant enhancement in collision probability awareness,
emphasizing the potential for more robust and anticipatory autonomous driving systems.

This paper is described as follows: We analyze existing methods of collective per-
ception for collision probability estimation of connected vehicles (Section 2). The study
introduces a new collective perception level (Section 2.1), including extended local per-
ception (Section 2.1.1), extended branch perception (Section 2.1.2), and global perception
(Section 2.1.3).

We further investigate existing methods for estimating the probability of car collisions,
focusing on vehicle modeling with uncertainties and multi-dimensional configuration mod-
eling between vehicles (Section 3). We describe the simulation configuration in Section 4.

Proposing a multi-level approach, we present the local probability of collision esti-
mation, extended local probability of collision estimation, extended branch probability
of collision estimation, and global probability of collision estimation (Section 5). The pa-
per concludes with insights and future perspectives on collision probability of collision
estimation for intelligent transportation systems (Section 6).

1.1. Communication Strategy

For our study, the communication and environment system is described as follows:
To start, we used the algorithm of Sabrine Belmekki et al. [25,26]. It is a decentralized
approach known as CBL-G (chain branch leaf gateway). It operates on the principle of
establishing a hierarchical structure among communication nodes to form clusters. This
allows each “cluster member” node to communicate directly with a “cluster head” node
through a single hop, without the need to rely on an intermediate node. It uses additional
infrastructure nodes (roadside unit-RSU) as a gateway to enhance the coverage (QoS)
quality of service [27].

CBL architecture features a centralized design for each cluster, where only the branch
node can establish communication with other clusters. In this way, CBL distinguishes
two distinct node types: “branch” nodes and “leaf” nodes. Both types of nodes broadcast
periodic HELLO messages to dynamically construct a structure known as a “chain.” The
chain connects the “branch” nodes and, by extension, the clusters in each direction, as
illustrated in Figure 1.

Figure 1. The CBL-G infrastructure representation of vehicles on a three-lane highway and full
deployment of roadside units.

CBL employs a metric—known as the connection time—to construct stable chains.
This metric measures the time it takes for nodes in the network to connect and allows nodes
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to manage the selection of their branch node. The following are the definitions of “branch”
nodes, “leaf” nodes, chain, and connection time:

The branch: The “branch” node is the cluster head elected by other nodes within its 1-hop
neighborhood. It sends HELLO messages like other nodes but has exclusive
permission to send topology control messages, transmit request messages,
and participate in chain construction. A “branch” node can relay messages
to its leaf nodes, upstream and downstream branches, and branches in other
directions of traffic, based on the request specified in the header fields.

The leaf: A leaf node is a regular node that connects to the nearest branch node. When
no branch node is detected, the leaf node chooses the neighbor moving with
the lowest speed and in the same direction as its branch. A leaf node only
sends HELLO messages and application data traffic.

The chain: The resulting CBL structure is comparable to a virtual spinal structure that
is maintained through links between the nodes. Each node contains the
following parameters: BranchChoice (the address of a selected branch node),
ChainUP (the address of the branch node to relay upstream traffic), ChainDO
(the address of the branch node to relay downstream traffic), and connection
time (CT), which is the expected communication duration between two nodes
that maintain the same speed. BranchChoice is null if the node is a branch,
and ChainUP/ChainDO are empty if the node is a leaf.

1.2. Cbl-G Functional Diagram

The diagram represented in Figure 2 unwinds the mechanism of CBL-G from the
reception of a Hello message until the end.

Figure 2. CBL-G algorithm processing upon reception of a Hello message.

A leaf node endeavors to establish a connection with a branch node located a single
hop away from its current position. This process of neighborhood discovery occurs through
the periodic transmission of the “HELLO” message, persisting even after integration into
a cluster.
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In cases of isolation, where neighboring nodes remain undetected, the leaf node
designates the roadside unit (RSU) as its proximate branch node. The arrival of a branch
node within its range triggers the identification of a potential branch in the vicinity. This
prompts the branch node to disengage from the RSU and form a connection with the newly
identified branch.

The RSU assumes the role of a relay point for isolated vehicles, facilitating their
connection to the infrastructure. Simultaneously, the isolated node identifies a branch for
affiliation, effectively averting its isolation. Post-integration with the RSU, the previously
isolated leaf nodes persist in periodic “HELLO” message-based neighborhood exploration.

Upon detecting a neighboring node, an isolated leaf node follows the connection
protocol akin to the chain branch leaf (CBL) approach. Should the offered connection time
(CT) surpass that provided by the RSU, the leaf node nominates the detected node as its
connecting branch.

Subsequently, the elected branch node endeavors to find another branch for chain
formation. In cases where such a branch is not found, a leaf node is designated as the front
branch. Subsequent nodes along the route identify the presence of branches and establish
connections accordingly.

2. Analysis of Existing Methods of Collective Perception for Collision Probability
Estimation of Connected Vehicles

In the context of V2X communications, the CPM generation rules dictate the frequency
and content of CPM transmissions. The ETSI standard establishes that a vehicle must check
every CPM generation time (T_GenCpm) interval to determine if a new CPM should be
generated and transmitted, with T_GenCpm ranging between 0.1 s and 1 s [28].

A new CPM must be generated if a new object is detected or if certain criteria, such
as position or velocity changes, are met for previously detected objects. The frequency of
CPM transmissions and the amount of information included in each message can impact
the overall channel load and reliability of V2X communications.

In CBL-G, a periodic control message, referred to as the “HELLO message”, is used
to discover neighboring vehicles. The HELLO message and the CPMs are important
to distinguish, as the first maintains the communication architecture and link between
vehicles, while the second, the CPM, shares each vehicle’s perception information, allowing
for the expansion of the nodes’s local map.

The vehicle is assumed to have a frontal view of 200 m and a communication range of
500 m. The ego vehicle generates CPMs following ETSI’s current CPM generation rules
(Figure 3). Upon receiving a new control message from a neighboring vehicle Vj, vehicle Vi
will send a CPM containing information about the detected object Vj. If vehicle Vi does not
detect any new vehicle after one second, it will send an empty CPM message, to signal that
it can detect and share objects.

The adaptation of CBL-G for the collective perception is conducted by the adapta-
tion of the structure of the vehicle; indeed, we introduce a new element, which is the
detected object.

Figure 3. Our collective perception message proposition.

To address these findings, we considered incorporating specific parameters into the
structure of our vehicle to accommodate various usage scenarios. Consequently, we
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integrated several additional fields, such as acceleration, dimensions (length × width),
mass, trajectory, occurrence, and vehicle type (urban, van, motorcycle, etc.).

These new parameters are necessary to improve the accuracy of the perception system
by enabling more precise identification and tracking of vehicles within the environment.
By considering these factors, we can develop more robust and effective perception systems
that can operate in a variety of environments and under different conditions.

2.1. Collective Perception Level Proposal

Autonomous vehicles rely on perception systems to make decisions and ensure safety
while navigating through different scenarios. The perception system’s performance heavily
depends on the density of the environment and the number of leaves per branch. CBL-G is
an architecture that can be used to enhance the perception of autonomous vehicles.

The local perception is limited to the capacity of the onboard sensor i.e., it is limited to
its perceptive capacity and the surrounding obstacles (fields of vision). Figure 4 represents
the local perception of vehicle F1, which is vehicle F2.

Figure 4. Vehicle “F1” local perception representation.

In this study, we measured the number of leaves per branch and the local probability
of collisions calculated per branch for different scenarios using the CBL-G architecture.
We found that the number of leaves per branch in CBL-G is about 1.94 for low-density
scenarios (S1), 4.75 for medium-density (S2), and 7.03 for high-density (S3). However, due
to the perception limitation, the mean number of obstacles perceived per branch is 0.5 in a
low-density scenario (S1), 3.48 in a medium-density scenario (S2), and 5.89 in a high-density
scenario (S3). This results in a loss of important data. We propose establishing different
levels of extended perception for connected vehicles in the CBL-G structure.

2.1.1. The Extended Local Perception

The extended local perception is a mechanism that enables a cluster head to obtain
a shared perception of its cluster members, thereby allowing it to perceive the actions of
its leaves. In the context of vehicular networks, the extended local perception approach is
employed to enhance a branch’s perception by using information shared by its leaves.

As depicted in Figure 5, the local perception of vehicle B does not provide information
about the presence of any vehicles. However, utilizing the information perceived by
vehicles L1 and L3, we can detect the presence of vehicles L2 and L4.

This example demonstrates how the extended local perception approach can be ap-
plied to limit the perception to the front zone of vehicles (i.e., RADAR) and model the
uncertainties on vehicle localization obtained with GPS, as well as frontal obstacle detection
obtained with RADAR.

Thanks to the CBL communication system, a branch can receive the local perceptions
of its leaves (L1, L2, L3, L4). Consequently, while the perception of B may be empty, its
extended local perception will contain the four nodes of its cluster (L1, L2, L3, L4), as
illustrated in Figure 5. The extended local perception approach allows a branch to detect
more vehicles, on average, than those directly connected to the branch since it utilizes
information shared by the leaves to enhance the branch’s perception.

The average number of new nodes perceived by a branch using the extended lo-
cal perception approach was calculated to be 1 new node in low-density environments,
6.96 new nodes in medium-density environments, and 11.78 new nodes in high-density
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environments. However, the accuracy of the perception heavily relies on several factors,
such as traffic density, perception distance, and the quality of perception sensors utilized.

Figure 5. Vehicle “B”; the extended local perception representation.

2.1.2. The Extended Branch Perception

The extended branch perception involves the perception of the downstream neighbor-
ing branch shared with its upstream branch and the perception of the upstream neighboring
branch shared with its downstream branch. This allows the central branch to receive per-
ceptions of objects (obstacles) that it cannot see using only its embedded equipment from
both sides (upstream and downstream). We can perceive further than we could previously
with extended local perception, which is limited to the cluster.

Figure 6 illustrates the extended branch perception case: The extended branch per-
ception of vehicle B2 does not allow it to detect any vehicles. However, thanks to the CBL
communication system, the branch will receive the local perceptions of its upstream and
downstream branches (B3, B1).

Indeed, as the adjacent branches communicate to form a chain, the B2 branch will also
be able to receive the GPS positions of the B1 and B3 branches. The collection of all the
information on the branch’s perception will then make it possible to estimate a map of the
extended branch perception, which can be used to build a map of the extended branch
probability of collisions. B1 will share its perception with its upstream branch, Branch B2.

Figure 6. Representation of Branch B2’s extended perception in the CBL environment.

B3 will share its perception with its downstream branch, Branch B2. Node B2 possesses
a perception that solely comprises its own location information. Meanwhile, Node B1
generates a dynamic perception, incorporating its location and the detection of Nodes
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L5 and L3. Similarly, Node B3 generates a similar map, comprising its location and the
detection of Node L6.

From these perceptions, Branch B2 builds its own extended branch perception. Utiliz-
ing the extended branch perception approach, which involves the local extended perception
of neighboring branches, we determined the average number of new nodes perceived by
a branch to be 0.56 new nodes in low-density environments, 3.05 new nodes in medium-
density environments, and 5.69 new nodes in high-density environments. However, since
some vehicles can be detected both in the extended local perception of neighboring branches
and in the extended local perception of leaves connected to a branch, using the extended
local perception of neighboring branches may result in the redundant detection of nodes
that have already been perceived in the extended local perception of leaves connected to
the central branch.

Nonetheless, there are instances where the extended local perception of leaves con-
nected to a branch does not cover all nodes in a densely populated area around the central
branch, leading to gaps in detection. In these cases, utilizing the extended local perception
of neighboring branches can cover a wider area and detect nodes that were not perceived
in the extended local perception of the leaves connected to the central branch.

2.1.3. The Global Perception

Expanding the perception of the ego vehicle beyond its immediate vicinity is achieved
by utilizing the perception of branch nodes positioned further than the upstream and
downstream nodes of its location. This technique, known as global perception, facilitates
the sharing of perception information among more distant branch nodes.

This approach provides the ego vehicle with a comprehensive understanding of its
surroundings, including areas that are beyond the immediate upstream and downstream
clusters, thus enabling the projection of global situational awareness while the vehicle is
in motion.

By employing the global perception approach, which extends local perception to
distant neighboring branches, we observed that the number of new nodes detected varied
with the density of the scenario. In a low-density scenario (S1), the average number of newly
detected nodes is one. In a medium-density scenario (S2), 3.48 new nodes were detected,
and in a high-density scenario (S3), 8.68 new nodes were detected. These findings illustrate
that global perception detects a significantly higher number of new nodes compared to local
perception extended only to neighboring branches, as shown in Figure 7. This is due to the
fact that global perception utilizes more distant branches to augment the central branch’s
perception, thereby encompassing a wider area and obtaining a more comprehensive view
of the environment.

Figure 7. Global perception of B3.

It is important to note that the accuracy of the perception heavily relies on several
factors, such as traffic density, perception distance, and the quality of perception sensors
utilized. However, the global perception approach provides a more holistic and detailed
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understanding of the environment, which is essential for ensuring the safe operation of
autonomous vehicles.

The introduction of extended perception levels within the connected-vehicle collision-
avoidance system (CBL-G) framework represents a notable advancement in overcoming
existing limitations. By incorporating local, branch, and global perception approaches,
this proposal aims to comprehensively evaluate the probability of collision in connected
vehicle scenarios. Each perception level brings forth distinct advantages and challenges,
contributing to a nuanced understanding of collision probability of collision dynamics.

The exploration of local perception allows for a detailed assessment of immediate sur-
roundings, providing the system with granular data for potential collisions in close proximity.
However, it may be limited in anticipating collisions beyond its immediate vicinity.

Branch perception, on the other hand, extends the system’s awareness along specific
trajectories or pathways, enabling a more proactive approach to potential collision proba-
bility of collisions. This approach introduces challenges related to accurately predicting the
future behavior of surrounding entities.

Global perception, encompassing a broader spatial context, offers a comprehensive
view of the environment, allowing for a more holistic evaluation of the collision probability
of collisions across varied scenarios. Nevertheless, this approach may present challenges in
terms of real-time processing and the potential for information overload.

By systematically exploring these extended perception levels, the CBL-G structure
seeks to strike a balance between granularity and scope, aiming to enhance the system’s
ability to evaluate the collision probability of collision in diverse connected vehicle environ-
ments. This multifaceted approach holds promise for advancing the collision probability
of collision assessment, contributing to the overall safety and effectiveness of connected
vehicle communication systems.

3. Analysis of Existing Methods for Estimating the Probability of Vehicle Collisions

In recent years, there has been a significant increase in research efforts toward col-
lision probability of collision estimation methods between autonomous and connected
vehicles. This is driven by the need for safe and efficient transportation in future intelligent
transportation systems.

The time-to-collision (TTC) metric combines spatial proximity and speed to estimate
the probability of collision; it is considered reliable but ineffective in low congestion periods
and for measuring lane change conflicts [29,30]. Extended perception and alternatives such
as modified time to collision (MTTC) evaluate collision likelihood over time, while TTC
provides a snapshot of the situation at a specific point in time. Time-integrated time-to-
collision (TIT) is used to evaluate the collision-avoidance system performance but only
under congested highway conditions.

According to Charly et al. [30], during low congestion periods, such as overnight,
the use of TTC alone is insufficient. While TTC can be used directly from the perspective
of the following vehicle in simple two-vehicle scenarios, Demmel et al. [31] state that ex-
tended perception can enable more complex representations of driving collision probability.
However, due to the limitations of TTC in complex scenes, alternative approaches such as
time-to-closest-encounter (TTCE) have been proposed. Eggert et al. [32] describe TTCE
as an improved version of TTC, which accounts for occlusion and dynamic objects, and
utilizes a Gaussian and spatial occupancy probability approach as well as survival analysis.

Modified time-to-collision (MTTC) provides a comprehensive view of the likelihood
of a collision over time, considering various scenarios and conditions. It is often used
to evaluate the performance of collision-avoidance systems. On the other hand, TTC, or
time-to-collision, measures the time elapsed between the detection of a potential collision
and the actual impact, providing a snapshot of the situation at a specific point in time.
While both are used to evaluate the probability of collision of a collision, TTC focuses on
the immediacy of a potential collision, while MTTC considers the average time it takes for
a collision to occur, taking various factors into account.



Computers 2024, 13, 21 10 of 23

TIT, or time-to-impact, is another measure used to evaluate the performance of
collision-avoidance systems. It measures the time elapsed between the detection of a
potential collision and the actual impact, similar to TTC [33]. However, TIT is consid-
ered more effective at capturing individual crash probability of collision, especially under
congested highway conditions [33]. Integrating important aspects of different driving envi-
ronments into an indicator, such as connecting lanes or ramps, can also provide insights
into collision probability of collision [34,35].

Responsibility-sensitive safety (RSS) is a mathematical formulation of the duty of care
in autonomous vehicle safety [36]. It takes into account various factors, including reaction
time and maximum acceleration, to determine a vehicle’s ability to avoid a collision. One
of the key advantages of RSS is its consideration of additional factors, such as the state of
the ego-vehicle, road geometry, and environmental parameters, making it a more complete
indicator in terms of key elements present in a driving scenario [37,38]. However, the
implementation of the RSS indicator may have limitations, such as the requirement for
precise data input and the potential added complexity to the driving experience.

A game-theoretic approach was proposed by Fox et al. [39] to estimate the collision
probability of collisions of two autonomous vehicles in a merging scenario. However, game
theory models can be computationally expensive to solve, which can limit their real-time
applications Muzahid et al. [40] provided an AI-enabled conceptual framework and a
decision-making model with a concrete structure of the training network settings.

This paper’s main concern is the collision probability of collision estimation, as high-
lighted in previous sections; achieving effective collision estimation heavily relies on the
sensor perception of obstacles and a critical probability of collision prediction system. Im-
proving these details will require extensive research and development to enable real-time
perception and tracking of more objects, as discussed in Section 2.1.

Additionally, Section 3 discusses various proposed metrics for estimating the driving
probability of collision based on parameters such as speed, time, or distance between vehicles.
However, these metrics have limitations in accounting for uncertainties and multi-dimensional
factors that are essential to represent the complexity of the driving environment.

3.1. Vehicle Modeling with Uncertainties

To model the configurations between two vehicles in the driving environment, it is
important to have a physical representation of the two objects. In our methodology, we
denote the vehicles as rectangles with five geometrical points: the center of the rectangle
and the four angles of the rectangle [41]. The coordinates of these points are determined
using the length and width of the vehicle, as shown in Equation (1).

xi = xe ±
L
2

; yi = ye ±
W
2

(1)

where L and W are the length and width of the vehicle, and xe and ye are the coordinates of
the center of the rectangle.

To model the position uncertainties due to the accelerations of the moving objects, we
assume that the borders of the vehicle shape (space occupancy) are slightly farther away.
Therefore, an acceleration value is applied to the current vehicle or obstacle positioning,
resulting in extended vehicle space occupancy coordinates (x′i , y′i) with uncertainties. The
extended vehicle space occupancy coordinates are given by Equations (2)–(4).

x′i, f ront = xi +
alongi,max

2
.dt2 (2)

x′i,rear = xi +
alongi,min

2
.dt2 (3)

y′i = yi +
alat,max

2
.dt2 (4)
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where alongi,max and alongi,min are the maximal and minimal longitudinal accelerations,
respectively, alat,max is the maximal lateral acceleration, and dt is the time step. The lateral
acceleration is fixed between −0.5 and +0.5 m·s−2, as by Mahajan et al. in [42].

Figure 8 shows the vehicle modeling with uncertainties. The uncertainties are used
to represent the configurations of the vehicles in space to assess the relative probability of
collision between them.

Figure 8. Schematic representation of the vehicle position uncertainties with ellipsoids representing
the vehicular space occupancy [41].

3.2. Multi-Dimensional Configuration Model between Vehicles

To take into account the multi-dimensional context with uncertainties, we propose
using the Gruyer distance [43] This distance has already been used to assess the distance
(similarity) between two vehicles represented by a probabilistic model of a set of points
(two clusters of points). The distance function Di,u is defined as follows:

• The function Di,u gives a result scaled between 0 and 1 if the measurement has an
intersection with the cluster u. Value 0 indicates that the measurement i is the same
object as the cluster u with complete confidence.

• The result is above 1 if the measurement i is out of the cluster u.
• This distance has the properties of distance functions.

4. Experimental Configuration

In our implementation, we utilize two software tools: Firstly, SUMO facilitates the
generation of mobility data, and secondly, Matlab (R2020b) is employed to implement the
CBL-G architecture.

The scenarios are set on a motorway network modeled as a standard one-way, three-
lane highway that spans 5 km in length, with vehicles traveling in the eastbound direction.
Each vehicle is assumed to have a randomly generated velocity and is equipped with
onboard units (OBUs), enabling communication with others within a range of up to 500 m.
Referring to our previous research work [25,26], it is observed that the maximum average
frame loss begins to increase after 427 m, with a tolerated frame loss of 26%. The number of
roadside units (RSUs) is determined based on the relationship between the optimal number
of RSUs and the range of the highway.

Consequently, in the CBL-G simulation environment, each RSU is strategically placed
at intervals of 1 km from one another, resulting in a total of 5 RSUs covering the entire 5 km
length of the road. This configuration proves sufficient for comprehensive coverage in the
simulated scenario.
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5. Proposal for Multi-Level Estimates of the Probability of Collision

We introduce a multi-level collision probability of collision estimation method based
on CBL-G structure and communication, which aims to estimate the local and extended
collision probability of collisions. The CBL-G method will be adapted for CPM and reorga-
nized to include better indicators for the probability of collision estimation.

The goal of calculating the collision probability of collision in the context of the
advanced driver assistance system (ADAS) is to enable the definition of various levels
of alert, each of which corresponds to a specific reaction. For instance, the lowest level
may correspond to audible alerts, while the highest level may involve taking control of
the vehicle to avoid an accident. This paper focuses specifically on the estimation of the
collision probability, rather than the precise prediction of collision times.

To achieve this goal, a method is proposed that takes into account a set of instants
sampled along the predicted interval. The collision probability is then calculated for each
sample. This approach allows for the consideration of multiple potential collision events, as
opposed to a singular predicted collision time. Additionally, the sampling period is sensor-
independent, can be freely adjusted during trajectory prediction, and is finite enough to
not interfere with real-time processing.

This paper proposes a method for the multi-level collision probability of collision
estimation for connected vehicles (CVs), focusing specifically on the probability of collision
estimation rather than the precise prediction of collision times. The proposed approach
considers a set of instants sampled along the predicted interval and calculates the collision
probability for each sample. This method allows for the consideration of multiple potential
collision events, as opposed to a singular predicted collision time. Additionally, the sam-
pling period is sensor-independent and can be freely adjusted during trajectory prediction.
It is finite enough to not interfere with real-time processing.

5.1. Local Probability of Collision Estimation

To model the configurations that exist between two vehicles, an ego vehicle, and an
obstacle, we studied two different scenarios in different situations.

In selecting vehicle positions and considering speed modes and lane numbers, we
prioritized their significant influence on collision probabilities. Our goal was to replicate
common and critical scenarios for determining collision probability. The chosen configura-
tions were deemed representative and impactful in the evaluation of the effectiveness of
our proposed methodology.

The first scenario (E1) involves the ego vehicle colliding with a slower obstacle vehicle
coming from behind on the central lane.

The second scenario (E2) involves the ego vehicle being in lane 2, parallel to the leading
obstacle vehicle in lane 3.

5.1.1. Scenario A

To ensure the accurate estimation of the local probability of collision, two scenarios
are presented in this study, as shown in Figures 9 and 10. The scenarios are described
as follows:

1. Involves the ego vehicle colliding with a slower obstacle vehicle approaching from
behind on the central lane (E1).

2. Involves the ego vehicle driving in lane 2, parallel to the lead vehicle (obstacle vehicle)
driving in lane 3 (E2).

For scenario E1, the ego vehicle (E) is positioned at 205 m in lane 2 at a speed of 35 m/s.
The obstacle leader (vehicle 1) is positioned at 370 m in lane 2, moving at a speed of 15 m/s.
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Figure 9. Schematic illustration of scenario 1−E1.

For scenario E2, the ego vehicle (E) is positioned at 431 m in lane 2, traveling at a speed
of 20 m/s. The obstacle leader (vehicle 2) is positioned at 491 m in lane 1, also moving at a
speed of 20 m/s. Figures 9 and 10 illustrate these scenarios.

Figure 10. Schematic illustration of scenario 1−E2.

5.1.2. Scenario B: Perception Uncertainty

In this section, we consider scenario B, where we investigate perception uncertainty
with perfect vehicle localization using GPS RTK++. Specifically, we assume that the
perception of the vehicles is imperfect within their perception field of 200 m. Moreover, the
communication within the cluster is perfect, instantaneous, without delay, and without loss.

For scenario 2−E1, as illustrated in Figure 11, the ego vehicle (E) is positioned at 205 m
in lane 2, moving at a speed of 35 m·s−1, and the obstacle leader (vehicle 1) is positioned at
370 m in lane 2, moving at a speed of 15 m·s−1.

Figure 11. Schematic illustration of scenario 2−E1 with perception uncertainty (scenario B).

Similarly, for Scenario 2−E2, as depicted in Figure 12, the ego vehicle (E) is positioned
at 431 m in lane 2, moving at a speed of 20 m·s−1, and the leader vehicle (2) is positioned at
491 m in lane 1, moving at a speed of 20 m·s−1.

Figure 12. Schematic illustration of scenario 2−E2 with perception uncertainty (scenario B).

To address the perception uncertainty, we employ the Kalman filter [44], which is
well-suited for data assimilation to estimate the state and parameter values. We use this
filter to predict the vehicle’s next position by considering the system and sensor noise.
However, we do not incorporate GPS noise in this structure since we calculate it from the
data returned by the sensor.

When perception uncertainty exists, as shown in Figure 13, we apply white Gaussian
noise to the signal and estimate the position using the Kalman filter. The figure represents
an example of the real positioning of a vehicle (green square) and the estimated location
(red diamond), obtained by applying the Kalman filter to our application.
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Figure 13. Representation of the real vehicle position superimposed on the estimated location
obtained by applying a white Gaussian noise in the Kalman filter method.

For each scenario, we calculated the normalized probability of collision functions of
the extended time-to-collision (TTC), extended time-headway (TH), and extended Gruyer
distance (DG), as well as the probability of collision associated with them and the probability
of the collision indicator based on multi-dimensional modeling and uncertainty (RIMUM).
The collision occurs at 9 s.

In scenario 1−E1, both the TTC and TH probability of collisions increase earlier and
more rapidly than the RIMUM, making them more effective for anticipation. The increase
in the RIMUM probability of collision is closer to the moment of collision. This can be
explained by the fact that the TTC and TH probabilities of collision are at their maximum
several seconds before the actual collision, while the RIMUM is at its maximum only when
the two vehicles collide. In scenario 2−E1, regarding the probability of collision of death,
the RIMUM values are low in scenario 1−E2. The probability of collisions based on TTC
and TH results in a probability of collision that reaches 0.15, which means a 15% probability
of death. This is a high value considering that the vehicles are not on the same lane. RIMUM
still displays a high value of 0.07 but is lower than the probability of collision estimators
based on TTC and TH. Figure 14 presents extended TH and TTC, the probability of collision
based on TH, and the probability of collision based on TTC for scenario 1−E1.

Figure 14. Scenario 1−E1 extended TH and TTC, probability of collision based on TH, probability of
collision based on TTC.
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5.2. Extended Local Probability of Collision Estimation

To estimate our first extended probability of collision “extended local probability of
collision”, we used the scenario illustrated in Figure 15. The ego vehicle studied in this
situation is in the given branch (B1) of cluster 1, with an average velocity of 12 m·s−1.

The obstacles are the two following leaves (L2 and L3), illustrated by the gray vehicles.
Their respective velocities are 34 m·s−1 and 26 m·s−1.

The local perception map of the ego-vehicle is obtained using RADAR or light detec-
tion and ranging (LiDAR) and the localization uses a GPS.

B1 can only perceive the vehicle in front of it, L1, and cannot see the two leaves, L2 and
L3, behind it. This potentially results in two ignored probabilities of collision: R2:{B1,L2}
and R3:{B1,L3}, as shown in Figure 15.

However, by using our extended local perception method, we can detect two new
vehicles and, thus, estimate two extended local probabilities of collision: R2{B1,L2} and
R3{B1,L3}. The likelihood of a collision between vehicles B1 and L2 was assessed us-
ing the extended TTC model (depicted in Figure 16) and the TH model (illustrated in
Figure 17). The probability of collision between the branch, B1, and the leaf, L2, R2 {B1,L2},
is represented in Figures 18 and 19.

Figure 15. The extended local probability of collision estimation environment (B1).

In this scenario, the extended TTC (Figure 16) and TH (Figure 17) models were used
to evaluate the probability of collision between vehicles B1 and L2.

The extended TH model reached its maximum collision probability value one second
before the actual collision, while the extended TTC model gave an alert five seconds before
the collision, providing a longer reaction time but saturating the probability of collision
several seconds before the collision.

The probability of collision for R3 started to increase as the vehicles approached each
other, while for R1, the probability of collision decreased as the vehicles moved away from
each other. This extended local probability of collision estimation method can provide
more accurate and detailed information on the potential collision probability of collisions
in complex traffic situations (Figure 18).
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Figure 16. Extended local probability of collision of R2{B1,L2} and collision probabilities for the CBL
scenario (A) based on TTC.

Figure 17. Extended local probability of collision of R2{B1,L2} and collision probabilities for the CBL
scenario (A) based on TH.

The probability of collision for R3 started at zero at the beginning of the simulation and
increased as the vehicles approached each other, while for R1, the probability of collision
started at 0.18 at the beginning of the simulation and decreased as the vehicles moved away
from each other.

R2 had the highest probability of collision of all, and we were able to estimate the
danger of this second probability of collision five seconds before the collision. The results of
scenario B were very close to those of scenario A (the difference was within a hundredth).
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Figure 18. The extended local probability of collision (R1,R2,R3) of B1 in the CBL-G scenario A.

Figure 19. The extended local probability of collision RIMUM (R1,R2,R3) of B1 in the CBL-G
scenario A.

The distance between Gruyer and RIMUM reached 1 at the exact moment of the
collision. In this situation, RIMUM is more realistic than the estimators based on TTC
and TH. However, the estimators based on TTC and TH are more effective in terms
of anticipation.

The global probability of collision (GR) of the cluster is the maximum probability of
collision that the branch has with its leaves and the maximum probability of collision the
branch has with its upstream and downstream branches.

GR = Max{RL,RB} with RL = Max{R{B,i}..., R{B,n}} being the maximum branch-to-leaf
probability of collision, with n being the number of leaves in the cluster.
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RB = Max{R{B, Bupstream}, R{B, Bdownstream}} being the maximum branch-to-branch
probability of collision.

The extension of the local probability of collision estimation allowed us to achieve
two main objectives. Firstly, it enabled us to raise the perception of the branch to a level
that allowed for the detection of all leaves in the cluster without being constrained by
the perception of the onboard equipment. This means that the branch’s extended local
perception took into account 100% of the average number of leaves per cluster.

Secondly, it allowed us to calculate all potential probabilities of collision ahead of time
and provide enough time for the driver or the system to react. As demonstrated, although
B1 had a unique local probability of collision R1B1, L1, we were able to estimate two new
extended local probabilities of collision, R2B1, L2 and R3B1, L3, using this method. The
second probability of collision, R2, was found to be the highest probability of collision of
all, and we were able to estimate the danger of the second probability of collision 5 seconds
before the collision.

The results of scenario B were very close to those of scenario A (the difference being at
the hundredth place).

5.3. Extended Branch Probability of Collision Estimation

The extended branch probability of collision is the probability of collision calcu-
lated by the branch in the CBL-G structure from the information transmitted by the adja-
cent branches ( upstream and downstream) of the ego vehicle, i.e., their local perception.
This implies that for each Branch (B), we will have several probabilities of collision (R):
{R{B, BUpstream}, R{B, Bdownstream}, R{B, i},... R{B, n}} with i ∈ [1, n], n being the number
of perceived vehicles by the adjacent branches.

The branch, B2, is the branch of cluster 2; its local perception of B2 is empty, while its
extended local perception contains the leaves belonging to its cluster (L1,L2,L3,L4).

As for the two adjacent branches of B2 are B1 (the branch of cluster 1) and B3 (the
branch of cluster 3), vehicle B1 perceives vehicle L6, while B3 perceives two vehicles: L5
and L3.

All of these vehicles (B1,B3,L3,L5,L6) are outside of B2’s perception range. So, for
vehicle B2’s extended probability of collision branch estimation, it will consider multiple
probabilities of collision: R{B2,B1}, R{B2,B3}, R{B2,L3}, R{B2,L5}, and R{B2,L6}.

The extended branch probability of collision scenario is represented in Figure 20.
Unlike the other probability of collision, vehicle L3 is a member of the second cluster, B2,
so the probability of collision between vehicle B2 and L3, R{B2,L3}, is estimated in the
extended local probability of collision of B2.

Figure 20. Representation of the extended branch perception of branch B2 in cluster 2 from the
extended local perceptions of B1 and B3 for scenario A with correct perception and perfect localization.
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The inter-distance between branches B1, B2, and B3 is 500 m. Vehicle B2 is in lane B
traveling at a speed of 15 m/s. Vehicle L5 is in lane A moving at 32 m/s. The extended
branch probability of collision between B2 and L5 is R5{B2,L5}. R5 results show that the
probability of collision is low, with a speed difference of 5 m/s; however, it showed an
increase at the 19th second when vehicle L5 overtook vehicle B2. Regarding the probability
of collision, RIMUM has a very low value (0.17), which can be explained by the differential
speed of 5 m/s, and also considering that the severity function is null; for the extended
TTC and TH values, which are low (0.49 and 0.42) but still high considering this driving
situation, since the vehicles are in different lanes, RIMUM presents the lowest value and,
thus, is the most realistic estimate for this case.

We observe that the perception of the downstream branch is part of the ego branch’s
local extended perception, which creates redundancy. Indeed, the detected vehicles in the
extended branch perception are—most of the time—already present in the local extended
perception, which creates a duplication of the probability of collision assessment since
this probability of collision is already calculated at the level of the extended probability of
collision of the ego branch.

On the other hand, we noticed that the extended branch probability of collision, based
on the upstream branch perception, brings a new perception and, thus, allows us to estimate
a more distant probability of collision, making it more relevant. Following these results, we
will only use the perception of the upstream branch in our future works. Nonetheless, this
discovery is not a flaw, but rather a strength of the method. This redundancy can be used
to improve the certainty, reliability, and robustness of the probability of collision indicators
that utilize it. As a result, a more comprehensive probability of collision estimation will
be required.

The extended branch probability of collision estimation method was applied to evalu-
ate the probability of collision between vehicles B1 and L2, which eventually collided at 5 s.
The extended TTC and TH values were deemed high but still acceptable given the driving
situation. RIMUM was considered the most realistic in this situation, with a very low
probability of collision of 0.17, as explained by differential speed and zero gravity function.

The results show that the downstream branch perception creates redundancy as it is
often already taken into account in the extended local perception of the ego branch, creating
a duplication of the probability of collision assessment. On the other hand, upstream
branch perception allowed for estimating a more distant probability of collision, making it
more relevant.

5.4. Global Probability of Collision Estimation

This probability of collision is calculated by the branch nodes only, based on the
information collected from the communication outside of the clusters i.e., indirect commu-
nication between branches that are more than one hop away.

The global probability of collision estimation scenario is described as follows: The ego
vehicle is the branch, B3, illustrated in Figure 21. The neighboring branches are B2 and B4.
Vehicle B3’s perception contains vehicle B4, the perception of the vehicle of the downstream
branch, B2, contains vehicles B3 and B4, and the perception of the upstream branch, B4,
does not contain any vehicles. In this case, these neighboring branches (one hop) do not
give the ego vehicle (B3) the possibility of adding new vehicles to its perception outside its
two neighboring branches (up and down).

However, the global probability of collision is based on the extended local perception
of the branches beyond one hop; so, to calculate the global probability of collision of the
branch (B3), we use the extended local perception of the B1 and B5 branches, i.e., the leaves:
L1, L2, and L3.

The global probability of collision between the branch (B3) and the leaf (L1) is the
probability of collision R1{B3,L1}, the global probability of collision between the branch
(B3) and the leaf (L2) is the probability of collision R2{B3,L2}, and the global probability of
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collision between the branch (B3) and the leaf (L3) is the probability of collision R3{B3,L3}.
The overall global probability of collision of the branch (B3) is GR = Max{R1,R2,R3}.

Figure 21. The road section studied in the context of the global probability of collision estimation.

In this scenario, we do not create any probability of collision situations; instead, we
estimate the overall probability of collision. B3 travels in the second lane at an average
speed of 35 m/s, while L2 travels in the third lane at about 26 m/s.

The vehicle (L3) travels in the third lane at a speed of 29 m per second. This means
that the L3 vehicle and the ego vehicle are nearby and parallel. In a longitudinal position,
the two vehicles are less than 4 m apart at the moment (6 s). This type of scenario can
be considered similar to scenario1-E2 studied for the estimation of the local probability
of collision.

Vehicle L1 drives in the same lane and behind vehicle B3 at a speed close to the B3
branch speed (35 m/s). At the start of the simulation, the distance between B3 and L1 is
100 m, so the R1 probability of collision should be very low. To simulate a probability of
collision situation, we adapt the speed of the rear vehicle, i.e., we assume that the driver
accelerates until reaching a speed of 45 m/s; the collision happens at 14 s.

By using the global probability of collision, we estimated a collision probability 7 s
before the actual collision. Indeed, the local probability of collision of B3 allows us to
estimate only one close probability of collision (with B4); however, the global probability
of collision allows us to estimate many new distant probabilities of collision (R1, R2, R3),
as represented in Figure 22. By their definitions, the probability of collision is physically
distant for the most part and the level of the probability of collision remains low. However,
in terms of anticipation, it proves to be effective. Indeed, if we task the RSU or another
element with launching an alert system with a threshold of 0.6, for example, we will be
able to detect the vehicle 14 seconds ahead and anticipate the collision probability by 7 s.

Figure 22. Representation of collision probability of collision R3{B3,L3}.

The global probability of collision is based on the extended local perception of branches
beyond a hop and is calculated by the branch for each leaf. To estimate the global probability
of collision of branch B3, we use the extended local perception of branches B1 and B5,
allowing us to calculate a more distant probability of collision with leaves L1, L2, and L3.
Using the concept of the global probability of collision, we were able to predict a collision
probability of collision 7 seconds before it occurred.

The global probability of collision allowed for detecting three new distant probabilities
of collision (R1, R2, R3). Although these probabilities of collision are physically distant and
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have a low level of probability of collision, their anticipation proves to be effective in terms
of safety. Thus, if we program the RSU or any other element to trigger an alert system with
a threshold of 0.6, for example, we can detect the presence of the vehicle 14 s in advance
and anticipate a collision probability of collision of 7 s.

Regarding the probability of collision metrics, the results suggest that the RIMUM is
a useful tool for modeling the probability of collisions associated with different vehicle
configurations. It takes into account the multi-dimensional nature of the problem and
the uncertainty associated with it, providing a more accurate representation of the prob-
ability of collisions involved. The study also highlights the importance of considering
different scenarios and situations when modeling the probability of collisions associated
with vehicle configurations.

6. Conclusions and Perspectives

In this paper, we presented a comprehensive approach to the probability of collision
estimation in intelligent transportation systems, specifically addressing connected and au-
tonomous vehicles. Our study covered various aspects, including the evaluation of the prob-
ability of collision methods, vehicle modeling with uncertainties, and multi-dimensional
configurations between vehicles, leading to multi-level collision probability estimations.

In our exploration of collision probability evaluation methods, we carefully selected
metrics such as time-to-collision (TTC), modified time-to-collision (MTTC), time-integrated
time-to-collision (TIT), as well as alternative approaches like time-to-closest-encounter
(TTCE), and responsibility-sensitive safety (RSS). These metrics were chosen based on their
widespread use and recognition in the literature, making them suitable for comparative
analysis and providing a comprehensive understanding of collision probability.

Our proposal included a detailed representation of vehicle configurations using rect-
angles and ellipsoids, and we introduced the concept of the Gruyer distance for multi-
dimensional modeling. These choices were motivated by their practical relevance in
capturing the dynamic nature of real-world driving scenarios, enhancing the realism of our
collision probability estimation framework.

Regarding the spatial arrangement of cars and the consideration of speed modes
and the number of lanes, our choices were informed by their significance in influencing
collision probabilities. However, it is essential to acknowledge that our simulations might
not encompass all possible real-world scenarios, and certain limitations exist in the repre-
sentatives of the chosen configurations. We aimed to simulate scenarios that are not only
common but also critical in determining collision probability. While there may be various
options, the chosen configurations were deemed representative and impacted in evaluating
the effectiveness of our proposed methodology.

In summary, our choices in metrics, vehicle modeling, and spatial configurations were
carefully considered to ensure the relevance and practical applicability of our collision
probability estimation framework. We believe that these choices contribute to the robustness
and effectiveness of our proposed methodology in enhancing road safety in the era of
connected and autonomous vehicles.

Looking forward, future research could further explore alternative configurations
and assess their impact on collision probability, providing additional insights into the
complexities of intelligent transportation systems.
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