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Abstract: The distinguishing feature of hash-based algorithms is their high confidence in security.
When designing electronic signature schemes, proofs of security reduction to certain properties of
cryptographic hash functions are used. This means that if the scheme is compromised, then one of
these properties will be violated. It is important to note that the properties of cryptographic hash
functions have been studied for many years, but if a specific hash function used in a protocol turns
out to be insecure, it can simply be replaced with another one while keeping the overall construction
unchanged. This article describes a new post-quantum signature algorithm, Syrga-1, based on a
hash function. This algorithm is designed to sign r messages with a single secret key. One of the key
primitives of the signature algorithm is a cryptographic hash function. The proposed algorithm uses
the HAS01 hashing algorithm developed by researchers from the Information Security Laboratory
of the Institute of Information and Computational Technologies. The security and efficiency of
the specified hash algorithm have been demonstrated in other articles by its authors. Hash-based
signature schemes are attractive as post-quantum signature schemes because their security can be
quantified, and their security has been proven.
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1. Introduction

Confidential communications, financial transactions, and critical infrastructures—all
of these are at risk if encryption can be broken. Active research on quantum computing is
currently underway worldwide. Creating a computer that implements the quantum model
of computation will have negative consequences for a range of cryptographic mechanisms.
These computers promise significant advantages for information technology, especially in
combination with artificial intelligence. However, quantum computers can also be turned
into unprecedented surveillance machines, leading to a race between quantum computers
and quantum-resistant cryptography.

As is well known, cryptographic schemes can be divided into symmetric and asym-
metric types. In symmetric schemes, encryption and decryption keys are the same, while in
asymmetric ciphers, encryption and decryption keys differ, but are linked by some mathe-
matical function. The most common modern asymmetric cryptographic schemes are based
on complex problems, such as factoring large natural numbers (e.g., the RSA algorithm),
discrete logarithms in finite fields (DSA, DH, GOST R 34.10-94), and discrete logarithms in
the group of points on elliptic curves (ECDSA, ECDH, GOST R 34.10-2012) [1,2].

When parameters for cryptographic schemes are correctly chosen, their compromise
is considered infeasible for the foreseeable future. Quantum computers use fundamentally
different techniques that can significantly speed up the solution to certain computational
problems with specialized quantum algorithms. However, a breakthrough in the field
of symmetric cryptography is not expected, as currently known quantum algorithms for
analyzing hash functions and block ciphers (e.g., the Ambainis method for collision search
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and Grover’s algorithm for preimage search) still have exponential complexity, although it
is smaller than that of classical algorithms.

Post-quantum algorithms currently work successfully on classical computers. Thus, it
is possible to implement quantum-resistant algorithms now and thereby protect critical data
for decades to come. It is understood that transitioning to quantum-resistant cryptography
is reasonable in cases where the value of the protected information exceeds the cost of its
protection [3,4].

In 2016, the National Institute of Standards and Technology (NIST) in the United
States initiated a project to evaluate and standardize one or more post-quantum public
key algorithms. The call for submissions continued until 2018. After the first round of
evaluation, 69 candidates continued to participate in the competition, and after the second
round, 26 candidates remained. It is planned that NIST will present the first post-quantum
secure standard project by 2025.

It is important to understand that transitioning to post-quantum algorithms immedi-
ately after the adoption of standards will not be possible. Significant preparatory work will
be required. New keys may be somewhat larger, and the infrastructure must be designed
to transfer them without sacrificing the accustomed communication speed.

Several primary cryptographic systems are considered quantum-resistant: hash-based
cryptography, code-based cryptography, matrix-based cryptography, cryptography based
on multidimensional quadratic systems, and secret key cryptography. It is believed that all
these schemes can withstand classical and quantum attacks when sufficiently long keys are
used [5,6].

Among these systems, electronic signature schemes based on cryptographic hash
functions are considered. In such schemes, the following approach is used: the foundation
is a one-time signature scheme (where only one message can be signed), which is then
combined with a Merkle tree to obtain a multi-time signature. Various patterns of this
approach are possible to achieve greater efficiency. Algorithms in this direction are applied
to generate and verify digital signatures and use only a cryptographically strong hash
function [7,8].

2. Related Works

Cryptosystems based on hash functions offer a promising direction for post-quantum
cryptography. These cryptosystems have the unique characteristic of a limited number
of signatures that can be generated using a single key. The initial algorithms in this
class allowed only one message to be signed, which led to their limited popularity. To
overcome this limitation, hash trees based on one-time signatures were proposed, followed
by hypertrees composed of hash trees.

The article [9] extensively discusses global efforts in the design, development, and
standardization of various quantum-secure cryptographic algorithms as well as the per-
formance analysis of some potential quantum-secure algorithms. Most quantum-secure
algorithms require more processor cycles, increased memory usage, and larger key sizes.
The feasibility of various quantum-secure cryptographic algorithms is also analyzed.

NIST has selected the first group of encryption tools designed to withstand attacks
from future quantum computers. In the work [10], it is demonstrated that three of the
chosen NIST algorithms, namely CRYSTALS-Khyber, CRYSTALS-Dilithium, and FALCON,
utilize lattice-based cryptography, while SPHINCS+ employs hash functions. NIST advises
security professionals to study the new algorithms and consider their application in their
systems, but refrain from integrating them, as the standard is still in the development stage.

Considering the relevance of public key cryptography and the increasing threat it
faces from quantum computers, it is essential to develop practical and secure post-quantum
cryptography. The article [11] aims to study the impact of quantum computing on modern
cryptography, provide a brief overview of key post-quantum algorithms, describe the dif-
ferences between quantum and classical computing, and explore key quantum algorithms,
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such as Shor’s and Grover’s algorithms. The section on “Post-Quantum Cryptography” is
dedicated to various methods of quantum key distribution and mathematical solutions.

In the work [12], information about the current state and significant challenges in
post-quantum cryptography is presented, along with discussions on transitioning real
systems to new technologies. Examples of one-time signatures include the Lamport and
Winternitz signatures. It is worth noting that when using the Winternitz signature, the
public key is significantly shorter. In the article [13], a new post-quantum digital signature
scheme designed for cryptocurrencies is proposed. This scheme is based on a hash-based
signature scheme that is a variant of the Winternitz one-time signature. The distinctive
feature of this approach is that, unlike previously proposed variants, it avoids the need for
computationally expensive operations.

The work [14] presents a highly secure post-quantum hash-based signature scheme
without state retention, capable of signing hundreds of messages per second on a modern
4-core Intel processor with a frequency of 3.5 GHz. The signatures are 41 KB in size, public
keys are 1 KB, and private keys are 1 KB. This signature scheme is designed to provide
long-term security, even against adversaries equipped with quantum computers. Unlike
most hash-based projects, this signature scheme does not maintain state, which allows it to
replace current signature schemes.

In the article [15], it is demonstrated that the Winternitz one-time signature scheme
is resistant to forgery under attacks with adaptive message selection when implemented
using a family of pseudorandom functions. It also discusses security in a strict sense.
Several security concepts based on keys for function families are formally defined in the
work, and their relationship with pseudorandomness is investigated. In the article [16],
it is proposed to replace the hash function in the standard Merkle scheme with a lattice-
based hash function and use a lattice-based one-way function as a replacement for the
one-way function.

In [17], several stateless optimizations for SPHINCS proposed by Bernstein et al.
are presented. Based on a detailed analysis of the subset-resilience problem, the au-
thors demonstrate that algorithm parameters can be adjusted to reduce the signature
size while maintaining a similar level of security and computation time. SPHINCS is a state-
less hash-based signature scheme that represents the HORST one-time signature scheme,
which is an improvement over HORS. The article [18] proposes an algorithm called HOR-
SIC+, which is an improvement over HORSIC. HORSIC+ uses a chain function similar to
W-OTS+ [19]. This provides strict security without the need for the function family used to
resist permutations or collisions. The authors claim that HORSIC+ cannot be forged under
chosen message attacks, assuming a second preimage-resistant family of indistinguishable
one-way functions and cryptographic hash functions in a random oracle model.

3. Materials and Methods

3.1. Cryptographic Hash Functions

To construct a secure one-time signature scheme, only a one-way function is required.
As Rompel demonstrated, the existence of a one-way function is a necessary and sufficient
condition for ensuring the security of digital signatures. Thus, one-time signature schemes
can be considered the foundation of digital signature schemes.

One of the primary directions in the synthesis of quantum-resistant, or post-quantum,
cryptographic schemes is the use of cryptographic hash functions. These functions are
employed in all digital signature schemes. Therefore, the security of such schemes directly
depends on the collision resistance of the hash function.

A hash function is a deterministic function that takes a binary string of arbitrary length
as input and produces a fixed-length binary string of length n as output. Hash functions
are used as building blocks in many applications.



Computers 2024, 13, 26 4 of 14

Let us provide a formal definition of a hash function. Let {0, 1}m be the set of all
binary strings of length m, and {0, 1}∗ be the set of all finite-length binary strings. Then, a
hash function h is a transformation of the form

h : {0, 1}∗ → {0, 1}m,

where m is the length of the hash output.
There are various approaches to constructing cryptographic hash functions today.

Among them, the “sponge construction” stands out, meeting a broad spectrum of
security requirements.

This construction was developed by a group of cryptographers led by John Daemen
to replace the outdated Merkle–Damgård construction. It was first introduced in 2007 at
the ECRYPT symposium and represents a mapping of variable-length input data to output
data of variable length as well. The transformation f operates with a fixed number of bits
b = r + c, where r is called the bitrate and c is the capacity. At the initial stage, similar to
the Merkle–Damgård construction, the input data is extended according to a specified
algorithm, after which it is divided into blocks of r bits. Next, b bits of state are initialized
to zeros.

The construction includes two phases. In the first phase (“absorption”), r-bit blocks of
the message are summed (XOR operation) with the first r bits of the internal
state—the result of transformation f. When this operation is done for all message blocks, the
phase concludes.

Next, in the “squeezing” phase, the first r bits of the internal state are returned
as output blocks of f. This action is repeated until the desired length of the hash sum
is obtained.

3.2. Primary Methods of Cryptanalysis of One-Way Hash Functions

Brute force attack. Having the hash value H(m1) of a message m1, the cryptanalyst
must, through trial and error, find a message m2 ( m1 ̸= m2) for which H(m1) = H(m2)
(then the analyst can claim that the presented hash corresponds to the message m2, not m1).
If the hash function produces an n-bit output, the complexity of this method is O(2n).

The attack, based on a known statistical problem—the “birthday paradox”—is a
universal method for finding collisions in hash functions.

We reduce the task of cryptanalysis of hash functions to the problem of finding
collisions: how many messages need to be inspected to find messages with the same
hashes? The probability of encountering identical hashes for messages from two different

sets containing n1 and n2 texts is approximately P ≈ 1− e−
n1n2

2l . If n1= n2 = 2
l
2 , then the

success probability of the attack is P ≈ 1− e−1 ≈ 0.631, and the complexity of the attack is
2

l
2+1 operations.

The avalanche effect is a property of block ciphers and cryptographic hash function
algorithms, where even a slight change in input data should result in a significant change in
most output data. This property is often a requirement in cryptography. For the avalanche
criterion, the avalanche parameter value is determined by the formula

ε = |2ki − 1|,

where i is the number of the changed bit in the input sequence and ki is the probability of
changing half of the bits in the output when the ith bit is changed in the input.

3.3. The Main Properties of the Post-Quantum Signature Scheme

A distinctive characteristic of hash-function-based algorithms is the high confidence
that developers place in their security. When constructing electronic signature schemes,
proofs of security reduction to specific properties of cryptographic hash functions are
employed. This implies that if the scheme were to be compromised, one of these properties
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would be violated. It is crucial to note that the properties of cryptographic hash functions
have been studied for many years. However, if the hash function used in a specific protocol
is found to be insecure, it would suffice to replace it with another, while the overall structure
remains unchanged [20].

As of now, no information is available regarding quantum algorithms that could
effectively be employed to generate collisions or find preimages for first and second
preimage attacks.

The best results in the analysis of hash functions are as follows: Grover’s algorithm
reduces the complexity of the preimage search procedure from O(2n) to O

(
2n/2

)
. Brassard’s

algorithm decreases the complexity of the collision search procedure from O(2n) to O
(

2n/3
)

.
The signature size in post-quantum algorithms refers to the number of bits or bytes

required to represent the digital signature generated by a specific algorithm. Various
mathematical methods and data structures, such as hash functions, cryptographic lattices,
and others, are used in the creation of signatures. The signature size in such schemes may be
comparable to or exceed the sizes of signatures in classical cryptographic schemes. Factors
influencing signature size in post-quantum schemes include the type and characteristics of
the algorithm, the required level of security and performance, and the chosen parameters,
among others.

Post-quantum signature schemes have unique security parameters associated with
protection against quantum attacks. The security level “b” for specific post-quantum
schemes depends on various factors, including the choice of scheme parameters, vulner-
ability analysis, theoretical attacks on the scheme, research in quantum algorithms, and
more. The security level “b” is typically expressed in bits (b-bit), and one standard for its
assessment in post-quantum cryptography is the approximate equivalence with classical
algorithms in terms of the bit security level. For instance, if a post-quantum signature
scheme has a 128-bit security level, breaking this scheme would require computational
resources equivalent to breaking a classical cryptography algorithm providing a 128-bit
security level.

4. Results

The scientific novelty of the developed algorithm lies in its ability to sequentially
hash the original set of secret keys, leading to the generation of an intermediate set of
secret keys. This intermediate set enables the one-time signing of multiple messages.
Another distinctive feature of the algorithm is its relatively small signature size and low
implementation time, which are attributed to the absence of an authentication path, a
characteristic present in some algorithms utilizing Merkle trees.

In more formal terminology, an intermediate set of one-time keys is created through
the sequential hashing of the original set of secret keys. This set is considered as the ith set
of secret keys, where i = 1, . . . , r, and the final result of the sequential hashing, i.e., the rth
result, is accepted as the public key. Consequently, the pair comprising the ith set of secret
keys and the set of public keys is used to authenticate the ith message.

4.1. Development of a New Post-Quantum Multi-Signature Algorithm Syrga-1

In this section, we provide a detailed description of the new post-quantum signature
algorithm, Syrga-1, which is based on hash functions. This algorithm is designed for
signing r messages using a single secret key. To overcome the limitation of having one
secret key for one signed message, r-fold hashing of the original secret key is used. In
other words, each subsequent hashing of the secret key results in new one-time secret keys.
One crucial property of a hash function is its one-wayness or irreversibility—the practical
impossibility of finding the hash preimage. This property of the hash function plays a
vital role in structuring the multi-use of the same secret key SK = (sk0, sk1, sk2, . . . , skt−1).
Here, it is evident that the secret key SK consists of t component subkeys ski, where
i = 0, . . . , t− 1. The algorithm uses G—a pseudorandom number generator (PRG)—which
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is employed to generate a set of secret signing subkeys ski as needed. The parameter r
determines the number of hash operations on the secret key SK using the hash function
H0 : {0, 1}256 → {0, 1}256 , i.e., r-fold hashing of SK. For clarity, q-fold hashing of the
secret key SK using the function H0 will be denoted as H(q)

0 (SK), where 0≤ q ≤ r− 1. The
results of the qth intermediate hashing of the secret key SK are taken individually as one-
time secret signing keys SKq = H(q)

0 (SK) and will be further used for signing subsequent
messages. It is important to note that the result of the final hashing of SK is taken as the
public signing key and is denoted as PK =

(
pk0, pk1, pk2, . . . , pkt−1

)
, where pki=H(r)

0 (ski),
i = 0, . . . , t − 1. Thus, in the key generation section, using the results of intermediate
hashing SKq and PK, a key pair KG:

(
SKq; PK

)
is formed for signing r− 1 messages, where

0 ≤ q ≤ r− 1.
An essential condition for using intermediate secret keys SKq is their reverse or-

der of usage. In other words, for signing and verifying the first message, the key pair
(SKr−1; PK) is used, for the second message—(SKr−2; PK), and so on. For the (r − 1)th
message—(SK1; PK). The signing process involves a counter q, where q, 0 ≤ q ≤ t− 1,
which determines the sequential number of the message being signed. This formulation is
illustrated in Figure 1.
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their use.

Additionally, the algorithm can make use of another property of the hash
function—transforming messages of arbitrary length into a predefined fixed length, which
is the length of the hash code. This property can be applied when generating the original
secret key SK to optimize or minimize the size of the secret key. However, in the pro-
posed algorithm, the length of the secret subkey ski is fixed and equal to 256 bits, where
i = 0, . . . , t− 1.

In the algorithm, the message to be signed, Mq, is processed by the hash function
H0 : {0, 1}256 → {0, 1}256 . H0 is considered to be the HAS01 hashing algorithm developed
by the Information Security Laboratory of the Institute of Information and Computational



Computers 2024, 13, 26 7 of 14

Technologies. The scheme and key characteristics of the algorithm are briefly described in
the following sections.

In Table 1, data on the key characteristics of the developed post-quantum signature
algorithm based on hash functions are presented.

Table 1. Parameters of the Syrga-1 signature algorithm.

Algorithm Post-Quantum
Approach

Private Key
Length, KB

Public Key
Length, KB

Signature
Length, KB

r—Total Number of
Messages Signed with

One Secret Key

Syrga-1 Hash-based
signatures 8 8 1.033 1024

In brief, the Syrga-1 algorithm can be summarized with respect to the technological
stages of signing a message as follows:

I. Key Generation (action by the sender):

(1) Generate a set of secret subkeys using PRG—G:

SK = (sk0, sk1, sk2, . . . , skt−1),L(ski)= 256 бит. i = 0, . . . , t− 1, t = 256.

(2) Compute a set of public keys:

PK =
(

pk0, pk1, pk2, . . . , pkt−1
)
,pki= H(r)

0 (ski), i = 0, . . . , t− 1.

In this way, a pair of public and private keys KG (SK; PK) is created. The public key
PK is then distributed to the recipients.

II. Message Signing Algorithm (action by the sender):

Given the hashable message Mq, where q = 1, 2, . . . , r− 1 :

(1) Calculate the hash value h = H0
(

Mq
)
.

(2) Divide h into 32 parts h1, h2, . . . , h32, each of length log2 256 = 8 bits.
(3) Interpret each hj as an integer ij ∈ [0, 255], j = 1, . . . , 32.

(4) Calculate σj = H(r−q)
0

(
skij

)
, j = 1, . . . , 32, and determine σ = (σ1, σ2, . . . , σ32).

(5) Form the signature sign: Σ =
{

Mq, q, σ
}

. The sender sends Σ to the recipient.

III. Message Signature Verification Algorithm (action by the recipient):

The recipient has a set of public keys PK and the hash algorithm
H0 : {0, 1}256 → {0, 1}256 .
The verification algorithm is carried out as follows:

(1) The recipient receives Σ =
(

Mq, q, σ
)
.

(2) Calculate the hash value h = H0
(

Mq
)
.

(3) Divide h into 32 parts h1, h2, . . . , h32, each of length log2 256 = 8 bits.
(4) Interpret each hj as an integer ij ∈ [0, 255], j = 1, . . . , 32.

(5) Calculate σ′j = H(q)
0

(
σj
)
, j = 1, . . . , 32.

(6) Check the following condition: If for all σ′j = pkij
, where j = 1, . . . , 32, is true,

then it is asserted that the signature of the message Mq is valid; otherwise, it
is not.

4.2. Hashing Algorithm HAS01

The algorithm HAS01 is based on the “sponge” construction. A sponge function
is a simple iterative construction with variable-length input and arbitrary-length output
based on a transformation function denoted as f, which operates on a fixed number of bits,
referred to as b, where b is called the width. The sponge construction operates on a state
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consisting of b = r + c bits, where r is the bitrate and c is the capacity of the sponge. The
sponge function has two phases—absorbing and squeezing [21,22].

HAS01 transforms input plaintext of arbitrary length, consisting of 192-bit blocks, into
a hash value of 256 or 512 bits. The hash value h(M) is represented as a byte sequence
z0, z1, . . . , zl . For the Syrga-1 algorithm, we consider the variant where l = 4, making the
hash value size 256 bits. A full mathematical description of the HAS01 hashing algorithm,
as well as its security and efficiency analysis, can be found in references [23,24], where it
is demonstrated to meet all the properties and requirements expected of hash functions,
showing excellent performance in all aspects.

The structure of the input and output data for the HAS01 hashing algorithm is
as follows:

- Input data block Mi has a size of 24 bytes and can be represented as a 24-byte sequence
m1, m2, . . . , m24 or as a matrix of size [3 × 8].

- The external hash state ri has the same size as the input data block (24 bytes) and can
be represented as a matrix of size [3 × 8].

- The internal hash state ci has a size of 40 bytes and can be represented as a matrix of
size [5 × 8].

- Thus, the complete hash state yi is the combination of the external and internal states,
i.e., yi = ri||ci , and can be represented as a matrix of size [8 × 8].

The main difference between HAS01 and the classical “sponge” structure is that during
the absorbing phase, the function f, which is part of the F function, is called more than once
(Figure 2). Additionally, when forming the hash value h(M) = z0, z1, . . . , zl , each element
of the zi sequence is obtained by copying a specific column from the current hash state
matrix that has been formed up to that point.
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The function f : [8 × 8] → [8 × 8] transforms a 64-byte matrix A of size [8 × 8],
containing the current hash state, into a 64-byte matrix A′ of size [8 × 8], which contains
the new hash state. The function f is a composition of functions f1, f2, and f3: f (A) = f1 ◦
f3 ◦ f2◦ f 1◦ f 3◦ f 1 ◦ f2 ◦ f1(A), where the function f1 performs a non-linear transformation
of the matrix, the function f2 transposes the matrix, and the function f3 transforms the
matrix by rows.

During the squeezing phase, the elements zi of the hash value are generated for i = 1, l.
When l = 4, the size of the hash value is 256 bits. In each iteration of the squeezing phase,
the zi elements are obtained by copying the sixth column of the current hash state matrix
if the hash size is 256 bits, and by copying the fourth column if the hash size is 512 bits.
Therefore, when the hash value length is 256 bits, the squeezing phase will consist of
four iterations.
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5. Discussion

5.1. Statistical Properties of HAS01 Hash Function

Digital signatures based on hash functions are a promising direction in post-quantum
cryptography. The security of quantum-resistant cryptographic algorithms in this category
is based on the properties of cryptographic hash functions. Among these properties, we can
highlight resistance to preimage attacks, collisions, and second preimage attacks. Research
has been conducted to study the resistance of the HAS01 hash functions.

The avalanche effect of the HAS01 hash algorithm for the F-function is shown in
Figure 3. 512-bit blocks are chosen as inputs to the F-function, each of which differs from
the first one in only one bit (with all bits being different). The probability of matching
corresponding bits of the encrypted text when transforming (encrypting) these blocks using
the F-function falls between 0.4277 and 0.5722. Therefore, the bit spread of the F-function
indicates that this function satisfies the avalanche effect criterion.
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Figure 3. Avalanche effect diagram of the F-Function.

Using the birthday paradox, the method of brute force estimates the occurrence of at
least one collision in an attack as having a probability of 0.5, with a search space of 3.4·1038

for 256-bit hash values and 1.15·1077 for 512-bit hash values.
When searching for collisions, it is necessary to identify weak points in the algorithm

and thus help avoid brute force. One such weak point in the algorithm under consideration
is the function f1. The functions f2 and f3 perform permutations of bytes and bits, so
attacking them with collision search methods does not pose a threat. The only weak point
in the F-function is the nonlinear function f1 because the input to the S-box is the sum of
values modulo 2. If different values result in the same sum, the S-box will produce the
same output. Therefore, one needs to check all inputs to the F-function that yield the same
sum in the f1 function. This means that it is necessary to check only those elements that are
located at a distance from each other equal to the length of a matrix row. Let us check the
hash values of two texts in hexadecimal format.

First text:

80 00 00 . . . 00 00︸ ︷︷ ︸
63 times

40 00 00 . . . 00 00︸ ︷︷ ︸
63 times

c0 00 00 . . . 00 00︸ ︷︷ ︸
63 times

40 00 . . . 00︸ ︷︷ ︸
5 times

01 00 00 . . . 00 00︸ ︷︷ ︸
56 times

20

Second text:

00 00 . . . 00 00︸ ︷︷ ︸
8 times

80 00 00 . . . 00 00︸ ︷︷ ︸
63 times

40 00 00 . . . 00 00︸ ︷︷ ︸
63 times

c0 00 . . . 00︸ ︷︷ ︸
61 times

01 00 40 00 00 . . . 00 00︸ ︷︷ ︸
54 times

20

The hash values for the two texts are as follows:
256-bit hash value for the first text: 4b d2 de fd 01 1f 52 a9 8e 46 16 83 4c 07 2b 4c 28 43

f5 27 df 34 bc a9 da 58 45 0b 63 88 eb ad
256-bit hash value for the second text: 46 df 0f 4d a0 3d cf c4 ea d2 59 d9 46 ae 7b bc 77

3e 8e 67 f6 5a d4 d5 f1 60 f9 4a f0 c1 00 65
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512-bit hash value for the first text: 3f e0 ef 8a a9 6f 80 bf d0 49 3f 7a 7d f1 84 fb 98 b4
87 42 e4 65 7b a6 2e 7c 71 7 19 78 fc 6 25 bf 5c ae 8c 63 49 b2 82 7f 1c 38 b9 e6 80 38 6e 59 6d
7a f3 44 68 d6 e0 23 99 ce 42 e3 df 74

512-bit hash value for the second text: f6 a8 51 d9 80 be 62 66 3c 0a ae 10 b8 c3 7e 3e 42
35 ae 66 2f 26 16 81 90 10 4a fd 38 66 a9 3c 31 c6 7c d4 4b be 88 eb bf c0 61 cf 89 67 80 83 c0 49
e7 e7 e5 ef db e8 00 cd 05 13 1b 63 d7 55

It is necessary to check all such cases for the occurrence of collisions. If this check does
not yield a result, then the probability of collisions occurring corresponds to the probability
of an exhaustive search, the value of which was provided above.

First of all, we examined all 512 positions with a one-bit shift at the input of the
function f1 based on bitwise diffusion (avalanche effect). As a result, we found that they
produce different values, so the input to function f1 does not lead to collisions.

5.2. Security Level of Syrga-1

Table 2 presents comparative data on classical and quantum security levels regard-
ing the length of hash values and types of attacks. The HAS01 algorithm is designed
for computing hash values with lengths of 256 and 512 bits. From the table, it can be
observed that the hash value computed by HAS01 currently provides the required level of
data security.

Table 2. Hash function security levels [13,25].

Length Hash Value

Classical Security Level,
(bit)

Quantum Security Level,
(bit)

Preimage Collision Preimage Collision

160-bit 160 80 80 53
256-bit 256 128 128 85
384-bit 384 192 192 128
512-bit 512 256 256 171

Table 3 provides comparative data on the types of keys and signatures for well-known
post-quantum digital signature schemes and the proposed Syrga-1 scheme.

Table 3. A comparative summary of the hash-based signature scheme.

Scheme Key Size (KB) Signature
Size (KB) Key Usage

WOTS [7] 4.8 4.8 One time
WOTS+ [7] 3.7 3.2 One time
WOTSPRF [7] 3.2 3.2 One time
HORS [7] 3.1MB 1.2 Few time
Syrga-1 8 1.033 Few time

From Table 3, it is evident that the developed Syrga-1 scheme requires the use of a
long key but generates a minimal signature size compared to similar schemes. Since the
designed scheme allows for the use of the public key r times, this can be considered one of
the advantages of this scheme.

Table 4 presents a comparative analysis of the security level of the developed Syrga-1
signature algorithm with other post-quantum signature schemes, indicating the calculation
formula and parameters.

Table 4 displays the security levels of the Syrga-1 signature scheme compared to other
commonly used signature schemes. From the table, it can be observed that the security
level for Syrga-1 is practically indistinguishable from the security levels in other schemes.
The formulas for calculating the security level for Syrga-1 and HORS are similar. However,
in HORS, there is a parameter “r” that determines how many times the same key is used,
gradually reducing the security level. For example, with r = 2, it decreases to 80 bits.
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Table 4. The security level of some post-quantum signature schemes.

Scheme Formulas Parameters Security Level, b

Syrga-1 b = k(log(t/k)) k = 32, t = 256 96
HORS [26] b = k(log(t/kr)) k = 16, t = 210, r = 1 96

W-OTS+ [19]
b = n− log

(
w2l + w

)
, here

l = l1 + l2, l1 =
⌈

m
logw

⌉
, l2 =

⌊
log(l1(w−1))

logw

⌋
+ 1

n = 128, w = 21, m = 256 113

W-OTSPRF [19]
b = n− w− 1− log(lw), here

l = l1 + l2, l1 =
⌈

m
logw

⌉
, l2 =

⌊
log(l1(w−1))

logw

⌋
+ 1

n = 128, w = 8, m = 256 100

5.3. Software Implementation and Performance Evaluation of the Scheme

The primary goal of creating post-quantum signature schemes is to ensure the security
of signatures in practical quantum computer deployment scenarios. However, the perfor-
mance of post-quantum signature schemes is also a crucial factor in their development.

The development of the post-quantum Syrga-1 scheme aims to strike a balance between
security, practical applicability, and performance.

Based on the key generation, signing, and verification algorithms presented below
(Algorithms 1–3), software has been implemented to assess performance.

Algorithm 1. Key generation of Syrga-1(KgSyrga(PRG(initial parameters)))

System parameters: Parameters t, r
Output: SK = (sk0, sk1, sk2, . . . , skt−1) and PK =

(
pk0, pk1, pk2, . . . , pkt−1

)
1: for i = 0 to t− 1 do

2: Compute ski
PRG(ipi)← {0, 1}256

3: for j = 1 to 1024 do
4: Compute pki ← HAS01256(ski)
5: return SK, PK

Algorithm 2. Message Signing Algorithm of Syrga-1(SignSyrga(SK, Mq, q))

System parameters: Parameters t, r
Input: Secret key SK, q and message Mq
Output: Signature Σ =

{
Mq, q, σ

}
1: Compute h← HAS01256

(
Mq

)
2: Split h: h1, h2, . . . , h32

{0, 1}8

← h
3: for j = 1 to 32 do

4: interpret hj: ij ← Convert.ToByte(h j

)
5: for j = 1 to 32 do
6: for s = 1 to r− q do

7: σj ← HAS01256

(
skij

)
8: σ← (σ1, σ2, . . . , σ32)
9: return Signature Σ

Algorithm 3. Verification of Syrga-1(VfSyrga(PK, Σ))

System parameters: Parameters t, r
Input: Public key PK and signature Σ =

{
Mq, q, σ

}
Output: “accept” or “reject”
1: Compute h← HAS01256

(
Mq

)
2: Split h: h1, h2, . . . , h32

{0, 1}8

← h
3: for j = 1 to 32 do

4: interpret hj: ij ← Convert.ToByte(h j

)
5: for j = 1 to 32 do
6: for l = 1 to q do
7: σ′j ← HAS01256

(
σj
)

8: σ′ ← (σ′1, σ′2, . . . , σ′32) .
9: for j = 1 to 32 do
10: if σ′j ̸= pkij

then
11: return “reject”
12: return “accept”
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Table 5 provides a comparative analysis of the performance of the Syrga-1 scheme and
other algorithms. Computational performance experiments were conducted on a personal
computer with the specifications of an Intel(R) Core(TM) i5-7500T CPU 2.70 GHz and
8.00 GB RAM, running a 64-bit Windows 10 Pro 21H2 operating system.

Table 5. Average running time (ms).

Scheme Key Generation Signing Verification

Syrga-1 4982 632 1296
HORS 17 100 1449

SPHINCS-256 12.6 236 2730
XMSS(SHA2-256) 4540 4480 2690

When evaluating the execution time of all three Syrga-1 algorithms, we did not account
for standard minor computational overheads and presented the average values. From
Table 5, it can be observed that the numerical values obtained for Syrga-1 significantly
exceed the corresponding values for the HORS scheme. This is explained by the generation
of public keys (PKs) in the Syrga-1 scheme intended for multi-use, whereas in HORS, public
keys are used only once. Specifically, in Table 5, the numerical values for Syrga-1 result
from calculations performed for the formation of a public key (PK) used 1024 times.

Based on the above, it is recommended that research and development efforts be
continued to enhance the performance of the Syrga-1 signature scheme and make it more
competitive among other algorithms.

6. Conclusions

We have developed the HAS01 hashing algorithm based on the cryptographic sponge
construction. The reliability of this algorithm has been studied through an analysis of the
avalanche effect, and the F-function of the HAS01 algorithm has been investigated using
methods such as exhaustive search and collision search through chain and differential
cryptanalysis [22].

In algorithms such as WOTS and HORS, part of the secret key becomes known
when the key is used more than once. This reduces the security of such algorithms. The
main difference between the post-quantum algorithm presented in the article and other
algorithms is that, depending on the choice of the parameter r, it allows for signing a
message r times with just one secret key without compromising security. This is because it
is impossible to recover an intermediate secret key (r− 2) from the hashed intermediate
secret keys (r− 1). This is related to one of the fundamental requirements of a hash
function, which is providing irreversibility. Currently, further research on the algorithm’s
reliability is underway.
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