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Abstract: Readily available software analysis and analytics tools are often operated within external
services, where the measured software analysis data are kept internally and no external access to
the data is available. We propose an approach to integrate visual software analysis on the GitHub
platform by leveraging GitHub Actions and the GitHub API, covering both analysis and visualization.
The process is to perform software analysis for each commit, e.g., static source code complexity
metrics, and augment the commit using the resulting data, stored as git objects within the same
repository. We show that this approach is feasible by integrating it into 64 open source TypeScript
projects. Furthermore, we analyze the impact on Continuous Integration (CI) run time and repository
storage. The stored software analysis data are externally accessible to allow for visualization tools,
such as software maps. The effort to integrate our approach is limited to enabling the analysis
component within a project’s CI on GitHub and embed an HTML snippet into the project’s website
for visualization. This enables a large amount of projects to have access to software analysis as well
as provide means to communicate the current status of a project.

Keywords: software analytics; software visualization; software maps; continuous integration

1. Introduction

During the software development process, a large amount of data is created and stored
in the various software repositories. For example, changes to the code are managed in a
version control system, tasks are organized in an issue-tracking system, and errors that
occur are documented in a bug-tracking system. Software analytics uses software data
analysis and information visualization techniques “to obtain insightful and actionable
information from software artifacts that help practitioners accomplish tasks related to
software development, systems, and users” [1]. The applications in which software analysis
is used are diverse [2], e.g., effort estimation [3], social network analysis [4], or using
visualization to support program comprehension tasks [5–7]. Of particular relevance is the
analysis of git repositories [8], as widely used type of repositories, and GitHub as popular
social coding platform [9]. Various platforms have been developed to provide software
analytics services to stakeholders [10–12]. These analytics services either integrate directly
into the Continuous Integration (CI) pipeline or they are to be operated externally [13].
In both cases, only a higher-level view of the analysis results is reported back to the
developer by means of a review command, or a dashboard overview or visualization on
the services’ side. On the other hand, there are low-level tools available for direct use
(https://analysis-tools.dev/, accessed on 16 January 2024), but they are usually operated
within those analytics services, or their results are only used at a higher level. While
techniques and tools are available for open source and industry projects, the processing
steps as well as the data storage of software analysis data are usually considered separate
to the source code repository. For example, the source code of an open source project like
Angular can be hosted on GitHub and built using GitHub Actions [14], but software analysis
is performed through external services and external storage—here, GitHub CodeQL (https:
//codeql.github.com/, accessed on 16 January 2024) and OpenSSF Scorecards (https:
//github.com/ossf/scorecard, accessed on 16 January 2024). Using readily available
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external services allows for easy-to-integrate software analysis, but the analysis results are
kept internally by the operators of those services—an association of the source code with
the derived analysis data is not considered. This comes with a number of limitations on
the availability and reusability of those software data. For one, the performed analyses are
I/O-intensive, implementation-specific, and usually time-consuming, as whole software
projects and further software data repositories are parsed and analyzed. Second, the
derived data are not externally available for further processing and visualization. Third,
using external services limits the available analyses by means of mining tools, software
metrics, and higher-level analysis and reports. The latter two impede easy access to
“resources and tools needed for practitioners to experiment and use MSR techniques on
their repositories” [15]. Last, this unavailability of the analysis data for third parties
leads to multiple computations of such analyses, as there is a broad interest in software
measurements, e.g., by the Mining Software Repositories community and for software
quality assurance and modern development processes and practices. To summarize, the
current state of the art has the following limitations:

1. Readily available software analytics tools are often operated as external services;
2. Measured software analysis data are kept internally;
3. No external use of the data is available.

We propose an approach to derive software analysis data during the execution of a
project’s CI pipeline and store the results within its source code repository. This approach
is exemplified using GitHub and GitHub Actions together with an exemplary set of static
source code complexity metrics. For this, we propose a default component to run for
software analysis, such that software metrics are computed and stored on a per-commit
basis. As accessible storage location, we use the git object database and mirror the commit
graph structure to augment existing commits using software analysis data. We use the
GitHub API to store the software analysis data within the git repository. These data can
later be used for further software analyses and software visualization (Figure 1). Although
CI and GitHub Actions are often used to ensure the quality and thus the approachability
of a project, using them to provide a form of public self-representation whose underlying
data are reusable is underrepresented [16,17]. We validate our approach with a case study
on 64 open source GitHub written in TypeScript and show the performance impact on
the CI and memory impact on the git repository. Last, we discuss the approach in the
context of the diverse set of open source projects, different development environments, and
analysis scenarios.

Figure 1. A 2.5D interactive software map visualization of the Microsoft vscode software project. The
number of lines of code (LoC) is mapped to weight, the number of functions (NoF) is mapped to
height, and the density of comments (DoC) is mapped to color, ranging from inconspicuous (blue) to
conspicuous (red).

The remainder of this paper is structured as follows. Section 2 introduces the related
work. In Section 3, we present our approach and prototypical implementation for integrated
software analytics. In Section 4, we describe our case study and evaluation of run-time
performance and memory overhead. We discuss the approach in Section 5, focusing on its
limitations and extensibility. In Section 6, we conclude this work.
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2. Related Work

Software analyses became a standard activity during software development, usually
executed as part of the CI pipeline. Thereby, the activity can be decomposed into several
phases: (1) software repository mining, (2) optional intermediate storage, and (3) com-
munication of the results. Specific to our proposed approach, the corresponding related
work can be categorized into (1) tools for mining software repositories, (2) software metric
storage and storage formats, and (3) software visualization. As the overall process targets
an integration of software analytics into the GitHub platform, general software analytics
systems are related works as well.

2.1. Tools for Mining Software Repositories

Version control systems, such as git, enable collaborative work on software projects.
All activities and the entire history of a project are stored in a repository, which provides
extensive information for further analysis. Example applications for analyzing git repos-
itories include capturing static and dynamic software metrics [18–20], locating expertise
among developers [21], or measuring environmental sustainability [22]. The extraction of
relevant data requires efficient processing tools, e.g., for compiling software metrics [23].
An example of such a tool is PyDriller, which allows the efficient extraction of software
metrics from a git repository [24]. By combining different optimizations, e.g., in-memory
storage and caching, pyrepositoryminer provides an alternative tool that shows better
performance. Other examples with different aspects of variation are (1) ModelMine [25], a
tool focusing on mining model-based artifacts; (2) GitcProc [26], a tool based on regular
expressions for extracting fine-grained source code information; (3) Analizo [27], a tool with
support for object-oriented metrics in multiple languages; (4) LineVul [28], an approach for
predicting vulnerability within source code; and (5) srcML [29], an infrastructure for the
exploration, analysis, and manipulation of source code.

In addition to efficiently processing individual projects, it is often necessary to process
entire collections of projects, for example, to generate data for training ML procedures. One
of the first attempts to make data from GitHub accessible for research is Boa [30]. Besides
the infrastructure, it provides a domain-specific language and web-based interface to
enable researchers to analyze GitHub data. Similarly, GHTorrent provides an infrastructure
for generating datasets from GitHub [31], which can further be made available for local
storage [32]. An infrastructure that also provides a frontend is given by SmartSHARK [33].
A technical hurdle in crawling large datasets from GitHub is the limitation of API requests.
Crossflow addresses this problem through a distributed infrastructure [34]. Besides source
code, other software repositories, e.g., issue-tracking systems or mailing lists, are also
suitable for collecting information for subsequent analyses [35].

2.2. Metric Storage Formats

Source code metrics and similar software analyses are directly derived from recorded
software data that are often cached or stored after computation. This is feasible because
such metrics and analyses are determinate and desirable, as their computation can be time-
and memory-intensive. For such storage, state-of-the-art approaches are applicable and
usually chosen based on structural complexity, amount of data, and a developers’ personal
preference [36]. As a result, there is a broad diversity in the data models, storage systems,
and formats used. With a file focus, the common formats, namely XML [37], ARFF [38],
CSV [39], and JSON—more specifically, JSONL [40]—are used as well. Specific to the Moose
system, there is also the MSE file format used to store static source code metrics [41]. As a
standardized format for static source code analysis results, there is the SARIF file format
(https://sarifweb.azurewebsites.net/, accessed on 16 January 2024) that is also used by
GitHub for their security dashboard. These approaches are not strictly used in isolation,
but can be used in combination as well [11,42]. Although stored as files, for subsequent
analyses in individual MSR use cases, these metrics are further gathered and stored into
their own databases [43]. For example, relational databases such as Postgres are used by

https://sarifweb.azurewebsites.net/
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projects such as source{d} (https://github.com/src-d/sourced-ce, accessed on 16 January
2024) and Sonarqube (https://www.sonarsource.com/products/sonarqube/, accessed on
16 January 2024).

2.3. Software Visualization

For the observation of recorded metrics by a user, such metrics can be depicted using
a table-structured representation. However, this approach does not scale for even mid-
sized projects [44]. As software itself has no intrinsic shape or gestalt, the area of software
visualization provides techniques for representing software projects’ structure, behavior, or
evolution for supporting the stakeholders in different program comprehension tasks. In
many cases, the layout of a visualization is derived from a project’s folder hierarchy [45],
e.g., when using treemaps [46]. Software metrics can be mapped on the visual attributes
of treemaps, e.g., texture, color, and size [47]. Especially, 2.5D treemaps provide further
visual attributes, which motivates their use for exploring large software projects by means
of code cities [48], software cities [49], or software maps [5]. Besides hierarchy-preserving
visualizations, layouts can also be generated based on the semantic composition of software
projects [50,51]. In this case, abstract concepts in the source code are captured by applying
a topic model, which results in a high-dimensional representation of each source code file.
The local and global structures within the high-dimensional representation are captured in a
two-dimensional scatter plot after using dimensionality reduction techniques. By enriching
the visualization with cartographic metaphors or the placement of glyphs, software metrics
can be mapped in the visualization.

2.4. Software Analytics Systems

Various Software as a Service (SaaS) platforms have been developed to gain insights from
the development process and support developers in their work. Thereby, the intended use
case is either (1) software analytics for a single project or (2) software repository mining for
a large set of projects. The former use case is supported by platforms such as Sonarqube and
the source{d} Community Edition. The latter use case is supported by research platforms
such as MetricMiner [52] and GrimoireLab [53]. For metrics already measured by GitHub,
there is also Google BigQuery for Github (https://cloud.google.com/blog/topics/public-
datasets/github-on-bigquery-analyze-all-the-open-source-code, accessed on 16 January
2024),which allows for access to data using an SQL interface. Lastly, there are some
software analytics platforms that are deemed to be used for both use cases—serving
both researchers and software developers—such as Microsoft CODEMINE [11]. Another
example is Nalanda, which comprises a socio-technical graph and index system to support
expert and artifact recommendation tasks [12]. As a main demarcation and apart from
readily available tools, infrastructures, and full-featured external software analytics services,
we propose an extension to visual software analytics by means of an integrated approach
within the GitHub platform.

3. Approach

Our proposed approach consists of two components: software analysis and software
visualization. The software analysis component builds upon GitHub Actions to provide
per-commit software analysis while storing the results as blobs in the git objects database
of a project. The results are available for further processing and visualization for internal
and external use cases, e.g., software visualization (Figure 1). Our software visualization
demonstrator is implemented as a web application that fetches the analyzed data and
renders them in an interactive software map client.

3.1. Process Overview

Both the analysis and the visualization operate in an isolated manner with a shared
point of interaction: the git repository of the software project on GitHub (Figure 2). The
analysis component integrates into the GitHub CI process and the visualization component

https://github.com/src-d/sourced-ce
https://www.sonarsource.com/products/sonarqube/
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
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integrates into web pages, e.g., hosted by GitHub Pages. The overall process is split into
phases matching the two components and is summarized as follows: the analysis phase
including storage of the results ( 1 – 3 ) and the visualization phase ( 4 – 5 ). The analysis
phase is started when a developer creates and pushes a commit to the git repository, starting
its CI 1 . After project-specific analysis 2 , the software analytics data are added to the
repository as git blob objects 3 . This allows each commit of a repository to be annotated
with project-specific software analysis data, such as source code metrics. Later, these
data can be queried and fetched from a client component 4 and used for visualizing the
software project 5 . For example, we use the data to derive a representative visualization of
a software project that can be shown to maintainers, developers, contributors, stakeholder,
and visitors. Such a visualization can be embedded into a project’s landing page and serve
as a self-presentation to potential new collaborators and even long-time collaborators.

1

2

3

4 5

Figure 2. Process overview showing the participation of different actors through our data-processing
pipeline triggered by a new commit. After processing, a visualization component can query the
resulting software analytics data and derive visualization artifacts, such as software maps.

3.2. Analysis

The analysis is designed to be part of a project’s CI process. As such, we designed
an extension to available CI processes on GitHub by means of a GitHub Action. This
action is specifically designed to analyze the source code for a given commit 1 , i.e., the
CI can be configured to execute this action on push to a branch. The general processing
approach for this action is to collect the source code, apply static source code metrics, and
store the results. However, choosing metrics for analysis is highly dependent on the used
programming languages, the quality goals, and the available implementations. As such,
we see this as a major point of variation for future work. The interface for GitHub Actions
for integrating potential metrics implementations is a Docker container, which allows for a
highly flexible use of available tools and individual developments of metrics.

3.3. Storage

The output of the analysis component is then stored within the git repository. Such a
repository could contain different types of objects, but for interoperability and available
APIs, we focused on files to represent software analysis data. Specific to our prototype, we
use a CSV file format, where each line contains the measurements for a source code file, iden-
tified by its file path. Although these metric files are created within a Docker container, this
container has only read-only access to the git repository. Instead, we use the GitHub API to
store these files within blobs (https://git-scm.com/book/en/v2/Git-Internals-Git-Objects,

https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
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accessed on 16 January 2024).The API allows the git trees and refs to be manipulated us-
ing the /repos/{owner}/{repo}/git/trees and /repos/{owner}/{repo}/git/refs endpoints,
respectively. This file is then committed to the git repository using a commit-specific
git refs tree in the location refs/metrics/{sha} (Figure 3). This allows one to query the
software analysis data within the refs/metrics subtree from a given git SHA later on. For
convenience, we create and maintain specific git refs to branches as well. The sequence
of requests is as follows. We first create a tree by sending a POST request to the /re-
pos/{owner}/{repo}/git/trees endpoint. The API’s response will contain a SHA-1 hash
of the newly created tree. We then create a reference under refs/metrics/{sha}, storing
the SHA reference to the tree. This is achieved by a further POST request to the /re-
pos/{owner}/{repo}/git/refs endpoint. This ensures that the blob tree is retrievable for
every analyzed commit. Last, we populate the tree with the CSV file.

3c4c9a

commit blob tree reference

“First commit”

10eda4

refs/metrics/10eda4

metrics.csv

.

refs/heads/mai n

8af cd6

“Add feature”

89b4c6

55dc13

“Remove file”

1f ae43

.

.

42dae1

file;loc;noc;… 
test.ts;10;3;…

0aef da

refs/metrics/89b4c6

refs/metrics/1f ae43

metric blob

9de5da

file;loc;noc;…
test.ts;57;13;…

56bb21

Git Database Our addition

9de5da

file;loc;noc;… 
test.ts;356;17;…

56bb21

Figure 3. Proposed data structure to save commit-based metadata in the git object database. Each
commit with software data references the original commit through name matching.

3.4. Visualization

The per-commit software analysis data are then available for fetching and visualization
by the visualization component. As we chose to measure software metrics per file organized
in a file tree, the visualization is a hierarchy visualization by means of a software map.The
data retrieval consists of multiple requests and uses the GitHub API as follows. The
prototype first requests the metrics reference for a certain commit using a GET request
to the endpoint /repos/{owner}/{repo}/git/refs. The retrieved tree SHA is then used
to request an intermediate blob tree at the /repos/{owner}/{repo}/git/trees endpoint.
This gives us a tree that stores the SHA reference to the blob containing our metrics data.
This hash is then used to request the blob using another GET request, this time to the
/repos/{owner}/{repo}/git/blobs endpoint. Once the blob is retrieved, the last step is to
decode the base64-encoded content of the blob to retrieve the metrics content that is stored
as a CSV string.

Parsing this string as tabular data results in a dataset suitable for software maps.
Thereby, the software map visualization technique is a 3D-extruded information landscape
that is derived from a 2D treemap layout. The tree structure for the treemap layout is
hereby derived from the tree structure of the file path. The available visual variables in the
visualization are the footprint area (weight), the extruded height (height), and te leaf color
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(color). The visualization allows for basic navigation through the 3D scene, allowing users
to make themselves familiar with the project and build up a mental map [54].

3.5. Prototype Implementation Details

We prototypically implemented the proposed approach as an open source project on
GitHub. It is available within the project github-software-analytics-embedding
(https://github.com/hpicgs/github-software-analytics-embedding, accessed on 16 Jan-
uary 2024). Additionally, we provide the GitHub Action on the market place
(https://github.com/marketplace/actions/analytics-treemap-embedding-action, accessed
on 16 January 2024). Adding this action to a repository enables the integration of the proto-
typical TypeScript source code metrics for new commits. An example client
(https://hpicgs.github.io/github-software-analytics-embedding, accessed on 16 January
2024) that is built with React is hosted on GitHub Pages (Figure 4).

Figure 4. A screenshot of the prototypical client, showing the TensorFlow.js project. The number
of lines of code (LoC) is mapped to weight, the number of functions (NoF) is mapped to height,
and the density of comments (DoC) is mapped to color, ranging from inconspicuous (blue) to
conspicuous (red).

However, the client could also be embedded on any self-hosted web page (such as
GitHub pages) using just an HTML script tag (Figure 5). Our prototypical analysis module
is written in TypeScript. We decided to use TypeScript as a programming language because
it provides first-citizen support for TypeScript code analysis using the TypeScript compiler
API. The analysis code first creates an abstract syntax tree (AST) for each TypeScript file

https://github.com/hpicgs/github-software-analytics-embedding
https://github.com/marketplace/actions/analytics-treemap-embedding-action
https://hpicgs.github.io/github-software-analytics-embedding
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in the specified repository path. Then, the AST is used for static source code analysis. We
decided to focus on a few simple software metrics, which include:

• Lines of Code (LoC);
• Number of Comments (NoC);
• Comment Lines of Code (CLoC);
• Density of Comments (DoC);
• Number of Functions (NoF).

The LoC metric returns the total number of source code lines a source file contains.
NoC counts the occurrence of comments, counting both single-line comments and multi-
line comments as one, while CLoC focuses on the code lines comments take up in a file.
A single-line comment would therefore count as one, while multi-line comments would
count as their respective number of lines. The DoC is calculated by dividing the sum of
CLoC and LoC by the CLoC. The number of functions (NoF) counts the number of method
declarations and function declarations within a source code file.

1 <script
2 type="text/javascript"
3 src="https://cdn.jsdelivr.net/gh/hpicgs/github-software-analytics-embedding@0.8.0/frontend/

↪→ embed/embed.umd.min.js"
4 owner="<GitHub owner>"
5 repo="<GitHub repository>"
6 commitSHA="<either SHA>"
7 branch="<or branch name>"
8 ></script>

Figure 5. HTML script tag that loads the client and initializes the visualization with the given GitHub
project and commit.

4. Evaluation

We integrated our approach as GitHub Action into 64 open source TypeScript projects
of various sizes. Then, we benchmarked the performance of this action and resource
consumption within the git repository. Specifically, we compared the transmission size of a
single metric blob, the pure metric calculation time for all TypeScript files in the repository,
the total execution time of our GitHub Action, and an extrapolated metric blob memory
consumption when used for every commit on the “main” branch (the main branch is a
placeholder identifier for the mainly used branch in the project; it may be named differently,
such as master, dev, or develop). Thereby, the integration process consisted of forking and
adding the GitHub workflow file to each of the repositories, which took approximately two
minutes per project.

4.1. Case Study

The projects were chosen by their use of TypeScript as one of their programming
languages and were either known to the authors or are popular within the community
(see details in Tables A1 and A2). These projects differ largely in size, application area,
and development processes. The only common characteristic is the chosen programming
language is TypeScript or the availability of TypeScript typings, i.e., that the project contains
.ts files. The sizes of the projects range from only a couple of files with a few hundred
lines of code to almost 35 k source code files with above 6.5 M lines of code. Four example
projects are highlighted in Table 1 and Figure 6; the remainder are available in the appendix,
supplemental material, and online prototype (Tables A1 and A2, Figures A1 and A2).
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Table 1. Excerpt of the TypeScript repositories used for the evaluation. The number of commits
relates to the observed branch. The number of files represent the number of TypeScript source
code files in the most current commit on this branch. The lines of code (LoCs) are the lines of code
from the TypeScript source code files. The overall share of TypeScript to the other programming
languages (% TS) is the self-declaration of GitHub and is a rough estimate. The full list is provided in
Tables A1 and A2.

Project Location Branch # Commits % TS # Files # LoC

AFFiNE � toeverything/AFFiNE canary 5012 98.1 % 705 58,822

Angular � angular/angular main 28,924 84.5 % 6438 762,820

Angular CLI � angular/angular-cli main 14,499 94.6 % 1074 138,552

Angular Components � angular/components main 11,413 81.0 % 2074 269,875
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4.2. Repository Memory Impact

We measure memory footprint by the size of the base64-encoded metrics file response
of the API, although it may be stored compressed within the git repository. The memory
footprint of our analysis of a single commit scales linearly with the number of files within
a project (Figure 7). This is to be expected, as each file in the repository is represented
through a single line in the metrics file, where each line stores the numerical values of each
metric with a strict upper bound on the character length. The memory footprint seems
rather high for large software projects such as Angular or Visual Studio Code, each having
a couple of hundred kilobytes per commit. However, smaller projects can profit from a
low-consumption software analysis component. Furthermore, the per-commit blob size
is a trade-off between a full CSV file of all files and their metrics and only a file for all
changed files. While the former approach allows all metrics for all files to be fetched at
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software map visualization. The number of lines of code (LoC) is mapped to weight, the number of
functions (NoF) is mapped to height, and the density of comments (DoC) is mapped to color, ranging
from inconspicuous (blue) to conspicuous (red). The full overview is provided in Figures A1 and A2.

4.2. Repository Memory Impact

We measure memory footprint by the size of the base64-encoded metrics file response
of the API, although it may be stored compressed within the git repository. The memory
footprint of our analysis of a single commit scales linearly with the number of files within
a project (Figure 7). This is to be expected, as each file in the repository is represented
through a single line in the metrics file, where each line stores the numerical values of each
metric with a strict upper bound on the character length. The memory footprint seems
rather high for large software projects such as Angular or Visual Studio Code, each having
a couple of hundred kilobytes per commit. However, smaller projects can profit from a
low-consumption software analysis component. Furthermore, the per-commit blob size
is a trade-off between a full CSV file of all files and their metrics and only a file for all
changed files. While the former approach allows all metrics for all files to be fetched at once,
which is especially suitable for visualization, the latter approach allows for a much smaller
memory footprint and is considered a default approach in software analytics [24]. However,
providing a full visualization for the latter approach results in a multitude of requests.
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While extrapolating the per-commit blob size to whole repositories naively, i.e., simu-
lating an integration of our approach from the first commit, the proposed technique shows
strong limitations (Figure 8). The simulated extrapolation assumes that each and every
commit of the main branch would have its files analyzed and stored within the repository
with no data retention policy. As an upper bound, the results indicate a median increase in
the repository by a factor two with an absolute increase of 180 MB. This number will be
considerably smaller when taking into account (1) the compressed, binary representation of
the git blob, (2) a more sensible application of the approach by only major commits instead
of every one on the main branch, and (3) differential metric files containing only changed
files. Reducing this to an empirically validated factor is a direction for future work.
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4.3. CI Execution Time Impact

The time our metrics computation took does not scale linearly with the lines of code
of a project (Figure 9). However, even for large projects such as Visual Studio Code and
Angular, the time to measure all files is limited to a few seconds (up to 8.2 s for Visual
Studio Code). The maximum measured time was approximately 58 s for the Definitely
Typed project. Considering the overall execution time of the GitHub Action (Figure 10),
the process does not seem to scale linearly by neither lines of code nor number of files.
However, for projects below 1,000,000 LoC or below 10,000 files, this process does not run
longer than 10 seconds.

4.4. Practical Considerations and Recommendations

We conclude that the general runtime and repository size overhead is sensible for
small and mid-sized open source projects. The proposed approach in its current state—
prototypical, unoptimized, and limited in features—does scale for open source projects
up to medium size. An example project would be Angular CLI, which comes with 14.5 k
commits, around 1 k files and above 100 k LoCs. The corresponding memory and runtime
impact would be 3 s of GitHub Action time (of which 1.5 s is the metrics computation) and
102 kB of base64-encoded metric blob size, which would result in a doubled repository
size when measured for every tenth commit on the main branch since the very start of the
project. Within our sample of 64 TypeScript projects measured by memory impact when
measured for each commit on the main branch, Angular CLI is larger than 54 projects and
smaller than 9 projects, placing it in the 86th percentile. Thus, the majority of projects are
smaller and thus applicable for our proposed approach.

Figure 8. Extrapolated repository size impact if every commit of the main branch was augmented
with software metrics information, measured by base repository size (log–log axis). Color represents
the per-commit metric blob size as a second visual indicator. A derived linear regression (gray line)
suggests that a repository would increase its size by 1.3-fold, i.e., the final size would have factor
of 2.3. However, the spread is rather high and corresponds to the number of commits on the main
branch of a repository.
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4.3. CI Execution Time Impact

The time our metrics computation took does not scale linearly with the lines of code
of a project (Figure 9). However, even for large projects such as Visual Studio Code and
Angular, the time to measure all files is limited to a few seconds (up to 8.2 s for Visual
Studio Code). The maximum measured time was approximately 58 s for the Definitely
Typed project. Considering the overall execution time of the GitHub Action (Figure 10),
the process does not seem to scale linearly by neither lines of code nor number of files.
However, for projects below 1,000,000 LoC or below 10,000 files, this process does not run
longer than 10 seconds.

4.4. Practical Considerations and Recommendations

We conclude that the general runtime and repository size overhead is sensible for
small and mid-sized open source projects. The proposed approach in its current state—
prototypical, unoptimized, and limited in features—does scale for open source projects
up to medium size. An example project would be Angular CLI, which comes with 14.5 k
commits, around 1 k files and above 100 k LoCs. The corresponding memory and runtime
impact would be 3 s of GitHub Action time (of which 1.5 s is the metrics computation) and
102 kB of base64-encoded metric blob size, which would result in a doubled repository
size when measured for every tenth commit on the main branch since the very start of the
project. Within our sample of 64 TypeScript projects measured by memory impact when
measured for each commit on the main branch, Angular CLI is larger than 54 projects and
smaller than 9 projects, placing it in the 86th percentile. Thus, the majority of projects are
smaller and thus applicable for our proposed approach.
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Figure 9. Run-time performance impact of the proposed software analysis component, measured by
lines of code (log–log axis). Color represents the number of files as a second visual indicator that the
analysis correlates with number of files as well. A derived linear regression (gray line) suggests that
the analysis component does not scale linearly with the project size.
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Figure 10. Run-time performance of the full GitHub Action that includes the proposed software
analysis component and metrics blob storage, measured by lines of code (log–log axis). Color
represents the number of files as a second visual indicator that the analysis correlates with number of
files as well. A derived linear regression (gray line) suggests that the analysis component does not
scale linearly with the project size.

5. Discussion

This analysis, however, comes with multiple assumptions and design alternatives.
As such, the measurements and results are specific to the chosen implementation and
environment, i.e., GitHub and its Actions, such as CI; git; the GitHub API; the TypeScript
language; individual metrics analysis components; and the integration and assumed usage
by open source developers. This comes with a number of threats to the validity to our
results, as well as points for discussion on limitations through the specific environment we
have chosen and a broad set of opportunities for extensions to the proposed approach.

5.1. Threats to Validity

We identified several potential threats to the validity of the results, covering both the
runtime analysis and the storage consumption analysis.

5.1.1. Runtime Analysis

For example, one limitation is our choice of a prototype implementation for the metrics
computation rather than employing existing, established tooling. This approach allowed
for a focused, controlled, and low-profile metrics computation component to be used for
the proposed approach. However, we see our measured timings as some kind of lower
bound for the execution time of a static source code analysis. Furthermore, the analysis
component cannot be considered production-ready by means of stability and available
features.

As the analysis component with the specific metrics does not reflect the usual load an
actual analysis component would bring into a CI pipeline, the execution time is expected to
further increase through computational costs for additional or more complex metrics. We
assume that an alternative use of real-world metrics computation tools would increase the
measured timings, but not by multiple orders of magnitude. Furthermore, the allocated
runners for the CI pose a threat to validity. To properly control for the allocated runners,
a study should be conducted with self-hosted runners. However, these runners are the
default runners that would be used by a majority of open source projects.
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5.1.2. Storage Consumption Analysis

Regarding the storage consumption analysis, one threat is the inaccuracy in measuring
the metrics’ blob size. We measured the base64-encoded API response string, which
represents an upper bound for the required storage within the repository. Furthermore,
the employed extrapolation on the assumed storage is based on unknown actual usage
scenarios. For one, we suggest using a GitHub Action that is triggered on each commit
on a set of target branches. This may or may not be a sensible configuration. However,
this configuration largely influences the overall memory consumption over the history of a
software project. Furthermore, the extrapolation assumes that the metrics’ blob files are
constant in size, which correlates with the number of files in a repository being constant.
This is a factor that will likely change over the history of a software project.

5.2. Limitations

An application of our approach to further open source projects on GitHub may be sub-
ject to technical limitations, for example, overcoming scalability issues, handling advanced
git workflows, and facing security issues.

5.2.1. Scalability

Scalability for the proposed approach is a main topic as GitHub wants to ensure contin-
uous service for all its users, which concerns available space per repository and execution
time for the shared GitHub Action runners. While the default timeout for the shared runners
is at six hours (https://docs.github.com/en/actions/learn-github-actions/usage-limits-
billing-and-administration, accessed on 16 January 2024) and not likely to be a direct limi-
tation based on our tested open source projects, a more comprehensive analysis covering
multiple commits within one GitHub Action may run out of time. For those cases, GitHub
allows one to register and use self-hosted runners (https://docs.github.com/en/actions/
hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners, ac-
cessed on 16 January 2024). Likewise, switching to an external CI service that would also
allow one to run the analysis component—available using Docker—may come with higher
limits on computation. As another alternative, a developer of the project could execute the
Docker image on their local machine.

Furthermore, git repositories on GitHub have a soft limit in size (https://docs.github.
com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github,
accessed on 16 January 2024). Executing the metrics computation process for each and ev-
ery commit and storing the full dataset in an ever-growing software repository is bound
to reach those limits. Mitigations include different directions: (1) switching to an ex-
ternal file storage, such as git LFS, external databases, or foreign git repositories (https:
//github.com/gitrows/gitrows, accessed on 16 January 2024); (2) integrating data-retention
policies and removing metrics data when superseded or obsolete; and (3) thinning out
the measured commits and focusing on more important commits such as pull requests
and releases.

5.2.2. Advanced Git Workflows

As a distributed version control system, git allows for more advanced usage scenarios
to advance and handle the history of a software project. One such feature is the rebase, and
another would be a commit filter, but the overall category is a history rewrite. Such a rewrite
would derive new commits from existing ones while invalidating the latter ones. Currently, our
proposed approach would naively handle such rewrites by recomputing the new commits as if
they were normal commits. Any invalidation of stored metrics data for the obsolete commits
is currently missing. Specific to this issue, but also applicable in a general sense, would be a
handling of obsolete metrics data through the git garbage collector.

https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/learn-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github
https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github
https://github.com/gitrows/gitrows
https://github.com/gitrows/gitrows
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5.2.3. Security Considerations

Furthermore, the proposed public, side-by-side availability of software metrics is
subject to security considerations, as the measured software may contain sensitive infor-
mation. The targeted use cases for our approach are open source repositories that want
to apply lightweight software analysis on their already public source code. This public
availability makes these repositories subject to external source code mining on a regular
basis [55]. Anyone with software mining tools can download the source code, derive
software metrics, host them anywhere, and analyze them at their discretion. We argue that
any security-related attack vector is introduced when publishing the source code and not
when making individual software metrics available. On the contrary, with our approach,
we connect to the original idea of developing source code publicly. A broad community
can participate and ensure a more healthy software development process and thus a more
healthy software project. One adaption to our approach to protect the measured software
data is to use an external database. This adaption, however, would prevent other use cases
such as public availability of visualizations of the software project. Security considerations
in the area of open source development remain their own field of study [56,57].

5.2.4. Extensibility

The current state of the approach and prototype allows for a number of extensions
in various directions, namely other modes of integration into the development process,
other supported languages and supported metrics, available visualization techniques, and
the types of stored artifacts. The current, narrow focus on single implementation paths
limits the applicability of the approach considerably, as it is specifically designed and
implemented to work for the CI process of git repositories of the TypeScript parts of open
source projects hosted on GitHub, where a small set of static source code metrics are derived
and later visualized using the software map visualization technique. Applying further
state-of-the-art approaches in these directions would increase the approach’s fit for more
use cases, application scenarios, and software projects.

5.2.5. Modes of Integration into Development Process

To allow for a low-threshold integration into an open source project’s development
process, we proposed the integration into the GitHub CI processes using GitHub Actions on
a single commit at a time. However, there are further modes through which this software
analysis component can be integrated into the development process. For example, the
trigger can be changed to trigger on pull requests or releases, or even on manual start
through a contributor or even a software component. In the end, this storage can be
considered a caching mechanism where the the cache can be populated by triggering the
execution of the software analysis component and storing the data through the GitHub API.
As an alternative to the GitHub API, it is feasible to use the git API directly and pull and
push the according refs directly. This would also render this approach available to other
software project management platforms and even plain hosting of git archives. Furthermore,
each analysis process is not technically limited to measuring one single commit in isolation.
This allows for (1) an extension to handle multiple individual commits and whole commit
ranges within a single analysis process and (2) the use of more information sources in
addition to the checked out commit, such as issue databases, development logs, CI logs,
or the source code of other commits. An extended analysis, however, would increase the
computation time considerably. Specific to GitHub, there is currently a six-hour-long time
limit for shared runners, which would allow for such an increased amount of analysis.

5.2.6. Supported Programming Languages

In addition to the integration into GitHub and the development process, the approach
and prototype could be adapted to support more languages. As the implementation
details surrounding the analysis component do not rely on any specific language—they
are designed to be language agnostic—supporting further programming languages is
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straight-forward and usually implemented using language-agnostic tools. Allowing for
multiple programming languages is also important, as software projects likely use multiple
languages within one repository [58].

5.2.7. Supported Metrics

For demonstration purposes, we focused on static source code analysis metrics for our
analysis component. However, the design and implementation of the prototype specifically
allows one to use a broad range of software analysis tools and custom implementations, and
thereby languages as well. More importantly, a broad view on the state and evolution of a
software project comes with metrics explicitly covering system dynamics and the evolution
of metrics over time. As such, the current approach to store file-focused software metrics
will become obsolete, and more diverse storage formats need to be used. However, for a
low-threshold access to those metrics and no further dependency to third-party services,
we suggest retaining file-based storage within the git repository.

5.2.8. Visualization Approaches

While our current prototype is built upon static source code analysis metrics and the
software map visualization technique, the underlying idea of fetching the software metrics
directly from the repository does not limit the use of specific software visualization techniques,
e.g., source-code-similarity-based forest metaphors [59,60]. More specifically, the integrated
software analysis data make up a specific kind of database that each technique should be
adoptable to. Potential limitations come from the metrics measured and chosen file formats,
both of which can be chosen as desired by our proposed approach. This flexibility enables
contributors and developers to tailor the representation of their project and researchers to test
novel visualization techniques on already measured software projects.

5.2.9. Stored Artifacts

Similar to the supported programming languages, metrics, and visualization tech-
niques, the files stored as blobs within the git software repository are not limited to the
proposed approach of storing software metrics. Instead, there are only a couple of limiting
factors to the blobs stored within the repository, which are the base blob size, the overall
repository size, the access speed through APIs, and possibly rate limits to ensure fair
use of the APIs. This allows for a more diverse use of the available storage to augment
software repositories. One example is to skip storage of the software metrics and to derive
and store a static image of the software system instead. Although more complex, this
corresponds to the creation and storage of project badges—such as the shields.io service
(https://github.com/badges/shields, accessed on 16 January 2024)—directly within the
software repository.

6. Conclusions

When a software development team wants to integrate software analysis into their
project, selecting tools or services is a trade-off which usually results in (1) no control
over metric computation or (2) no persistent availability of low-level analysis results. We
proposed an approach to augment git commits of GitHub projects with software analysis
data in the example of TypeScript projects and static source code metrics. The analysis
is performed as part of a GitHub Actions CI pipeline, whose results are added to the git
project as individual blobs. These results are thus persistently stored within the project
and accessible through standard git interfaces and the GitHub API. The used analysis tool
and visualization technique are designed to be exchangeable. The requirements to satisfy
are the availability of analysis tools for Docker containers and the storage of software data
within the git repository. To demonstrate this approach, we visualized GitHub projects
using a basic React client and software maps as the visualization technique. We further
performed an evaluation on 64 open source GitHub projects using TypeScript as their main
or auxiliary language. The analysis suggests that small and mid-sized software repositories

https://github.com/badges/shields
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experience little impact to their CI runtime and repository size, even with extensive use of
the proposed approach.

As such, we envision primarily a low-threshold and low-cost adoption of our approach
for small and mid-sized open source projects that are otherwise struggling to set up their
own software analysis pipelines, e.g., using external services. With our approach, we strive
for direct access to abstract software information for a broad range of open source projects
and their public representation to allow for a quick overview and a gestalt-providing
component. Directly concerning open source projects and their development, we hope to
increase a project’s “ability to be appealing” [61] to both existing and new collaborators.
We further argue for versatility and flexibility of the underlying approach to store commit-
related data directly within the git repository. Concerning the MSR community, such a
broad integration of software metrics into the git repository would change the availability
and use of the data for novel analyses and replicability of published results. Extrapolating
from this, large-scale evaluations of source code metrics can profit from already computed
metrics within each repository through our approach [62]. Furthermore, dedicated software
analysis data repositories can be either derived directly from the software repositories or
these repositories can be considered distributed datasets instead [55].

For future work, we envision a replacement of the analysis component for one with
broad support for different programming languages and software metrics. As such, we see
the other areas of software metrics—dynamic metrics, process metrics, developer metrics—
as well as higher-level key performance indicators that should be available as well. Next
to software measurements, the proposed approach can be used to store and provide the
derived visualization artifacts [39]. Further, we consider to also allow developers perform
the analyses on their machines and commit the results alongside their changes into the
repository. This would allow for both CI and developers to perform measurements and
distribute the workload, e.g., when computing measurements for whole branches of a
project. From an MSR researcher’s perspective, augmenting the commits of distributed
software projects, for example, through forks, by means of “rooted” repositories (https:
//github.com/src-d/gitcollector, accessed on 16 January 2024) would provide a greater
impact, even with lower impact on overall repository size through reduced copies. In
conclusion, augmenting software repositories and providing low-threshold and easily
accessible tooling further contributes to visual software analytics as a key component in
software development.
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Appendix A

Table A1. The first half of TypeScript repositories used for evaluation. The number of commits relate
to the observed branch. The number of files represent the number of TypeScript source code files
in the most current commit on the branch. The lines of code (LoCs) are the lines of code from the
TypeScript source code files. The overall share of TypeScript to the other programming languages
(%TS) is the self-declaration of GitHub and is a rough estimate. Continuation in Table A2.

Project Location Branch # Commits % TS # Files # LoC

AFFiNE � toeverything/AFFiNE canary 5012 98.1 % 705 58,822

Angular � angular/angular main 28,924 84.5 % 6438 762,820

Angular CLI � angular/angular-cli main 14,499 94.6 % 1074 138,552

Angular Components � angular/components main 11,413 81.0 % 2074 269,875

Ant Design � ant-design/ant-design master 26,917 99.2 % 822 53,436

Apollo Client � apollo-client main 12,105 98.4 % 313 97,443

Babylon.js � BabylonJS/Babylon.js master 42,282 88.2 % 1829 447,296

Bun � oven-sh/bun main 8399 5.4 % 607 188,673

cheerio � cheeriojs/cheerio main 2905 74.2 % 35 13,074

Definitely Typed � DefinitelyTyped/DefinitelyTyped master 85,867 99.9 % 34,067 6,769,450

Deno � denoland/deno main 10,516 22.2 % 1386 197,437

Electron � electron/electron main 27,898 31.1 % 195 54,764

Electron React Boilerplate � electron-react-boilerplate/electron-
react-boilerplate main 1122 81.3 % 6 520

esbuild � evanw/esbuild main 4026 4.0 % 19 6576

eslint-plugin-import � import-js/eslint-plugin-import main 2203 0.2 % 50 347

Formly � ngx-formly/ngx-formly main 1790 98.8 % 608 31,366

freeCodeCamp.org’s open-source
codebase and curriculum � freeCodeCamp/freeCodeCamp main 34,553 64.1 % 390 33,026

github-software-analytics-
embedding

� hpicgs/github-software-analytics-
embedding dev 164 1.6 % 11 748

GraphQL Code Generator � dotansimha/graphql-code-
generator master 8130 83.4 % 437 83,693

Hoppscotch � hoppscotch/hoppscotch main 5127 61.5 % 587 75,922

Hydrogen � nteract/hydrogen master 2372 68.7 % 36 5685

ice.js � alibaba/ice master 3067 83.4 % 503 33,575

Ionic � ionic-team/ionic-framework main 13,427 56.2 % 1034 89,790

Joplin � laurent22/joplin dev 10,687 66.5 % 1795 190,253

mean stack � linnovate/mean master 2232 51.3 % 33 868

Mermaid � mermaid-js/mermaid develop 9152 30.6 % 175 23,159

Mitosis � BuilderIO/mitosis main 1514 98.3 % 420 45,541

Monaco Editor � microsoft/monaco-editor main 3327 36.4 % 329 123,664

MUI Core � mui/material-ui master 23,644 55.9 % 1646 95,283

Nativefier � nativefier/nativefier master 1288 87.5 % 62 9289

NativeScript � NativeScript/NativeScript main 7345 85.9 % 1200 3,226,971

NativeScript Angular � NativeScript/nativescript-angular master 1867 92.0 % 385 21,038
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Table A2. The second half of TypeScript repositories used for evaluation. The number of commits
relate to the observed branch. The number of files represent the number of TypeScript source code
files in the most current commit on the branch. The lines of code (LoCs) are the lines of code from the
TypeScript source code files. The overall share of TypeScript to the other programming languages
(%TS) is the self-declaration of GitHub and is a rough estimate. Continuation from Table A1.

Project Location Branch # Commits % TS # Files # LoC

NativeScript Command-Line Inter-
face � NativeScript/nativescript-cli main 6470 26.7 % 515 110,724

NativeScript-Vue � nativescript-vue/nativescript-vue main 72 79.2 % 32 2197

NgRx � ngrx/platform main 1906 87.3 % 1230 136,981

ngx-admin � akveo/ngx-admin master 554 67.2 % 242 14,329

Noodle � noodle-run/noodle main 651 55.1 % 34 1494

Nuxt � nuxt/nuxt main 5242 98.4 % 404 30,741

Nx � nrwl/nx master 11,218 96.7 % 2975 406,848

Prettier � prettier/prettier main 9026 5.8 % 557 10,345

Prisma � prisma/prisma main 10,256 98.2 % 1702 147,821

Quasar Framework � quasarframework/quasar dev 13,575 0.3 % 300 66,316

React � facebook/react main 16,135 0.5 % 7 895

RealWorld � gothinkster/realworld main 949 86.8 % 104 6549

Rush Stack � microsoft/rushstack main 19,801 96.0 % 1315 167,304

RxDB � pubkey/rxdb master 10,244 96.0 % 558 79,486

SheetJS � SheetJS/sheetjs github 770 12.3 % 52 12,644

Slidev � slidevjs/slidev main 1560 66.6 % 101 9127

Socket.IO � socketio/socket.io main 2008 66.2 % 55 10,796

Storybook � storybookjs/storybook next 56,100 69.1 % 1496 154,002

Strapi Community Edition � strapi/strapi develop 33,413 73.6 % 1835 174,912

TensorFlow.js � tensorflow/tfjs master 6076 80.3 % 2532 330,668

themer � themerdev/themer main 1732 98.6 % 74 9537

TOAST UI Editor � nhn/tui.editor main 362 85.8 % 315 46,744

Turbo � vercel/turbo main 5842 8.2 % 359 27,344

TypeORM � typeorm/typeorm master 5361 99.8 % 3150 266,117

TypeScript RPC � k8w/tsrpc master 419 99.3 % 74 14,860

uni-app � dcloudio/uni-app dev 10,295 0.7 % 102 11,078

Visual Studio Code � microsoft/vscode main 117,393 93.7 % 4555 1,293,371

Vue � vuejs/vue main 3591 96.7 % 388 72,050

vuejs/core � vuejs/core main 5502 96.5 % 457 121,640

Vuetify � vuetifyjs/vuetify master 15,303 51.4 % 451 40,627

webgl-operate � cginternals/webgl-operate master 1844 70.3 % 181 44,000

webpack � webpack/webpack main 16,408 0.2 % 72 20,931
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Figure A1. Comparison of the first half of TypeScript projects with increasing size and complexity
using a software map visualization. The number of lines of code (LoC) is mapped to weight, the
number of functions (NoF) is mapped to height, and the density of comments (DoC) is mapped to
color, ranging from inconspicuous (blue) to conspicuous (red). Continuation in Figure A2.
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Figure A2. Comparison of the second half of of TypeScript projects with increasing size and complex-
ity using a software map visualization. The number of lines of code (LoC) is mapped to weight, the
number of functions (NoF) is mapped to height, and the density of comments (DoC) is mapped to
color, ranging from inconspicuous (blue) to conspicuous (red). Continuation from Figure A1.



Computers 2024, 13, 33 21 of 23

References
1. Zhang, D.; Han, S.; Dang, Y.; Lou, J.G.; Zhang, H.; Xie, T. Software Analytics in Practice. IEEE Softw. 2013, 30, 30–37. [CrossRef]
2. Menzies, T.; Zimmermann, T. Software Analytics: So What? IEEE Softw. 2013, 30, 31–37. [CrossRef]
3. Pospieszny, P. Software Estimation: Towards Prescriptive Analytics. In Proceedings of the 27th International Workshop on

Software Measurement and 12th International Conference on Software Process and Product Measurement, Gothenburg, Sweden,
25–27 October 2017; ACM: New York, NY, USA, 2017; pp. 221–226. [CrossRef]

4. Zhang, W.; Wang, S.; Yang, Y.; Wang, Q. Heterogeneous Network Analysis of Developer Contribution in Bug Repositories.
In Proceedings of the International Conference on Cloud and Service Computing, Beijing, China, 4–6 November 2013; IEEE:
Piscataway, NJ, USA, 2013; pp. 98–105. [CrossRef]

5. Limberger, D.; Scheibel, W.; Döllner, J.; Trapp, M. Visual Variables and Configuration of Software Maps. Springer J. Vis. 2023,
26, 249–274. [CrossRef]

6. Højelse, K.; Kilbak, T.; Røssum, J.; Jäpelt, E.; Merino, L.; Lungu, M. Git-Truck: Hierarchy-Oriented Visualization of Git Repository
Evolution. In Proceedings of the Working Conference on Software Visualization, Limassol, Cyprus, 2–7 October 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 131–140. [CrossRef]

7. Paredes, J.; Anslow, C.; Maurer, F. Information Visualization for Agile Software Development. In Proceedings of the 2nd Working
Conference on Software Visualization, Victoria, BC, Canada, 29–30 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 157–166.
[CrossRef]

8. Bird, C.; Rigby, P.C.; Barr, E.T.; Hamilton, D.J.; German, D.M.; Devanbu, P. The Promises and Perils of Mining git. In Proceedings
of the 6th International Working Conference on Mining Software Repositories, Vancouver, Canada, 16–17 May 2009; IEEE:
Piscataway, NJ, USA, 2009; pp. 1–10. [CrossRef]

9. Kalliamvakou, E.; Gousios, G.; Blincoe, K.; Singer, L.; German, D.M.; Damian, D. The Promises and Perils of Mining GitHub. In
Proceedings of the 11th Working Conference on Mining Software Repositories, Hyderabad, India, 31 May–1 June 2014; ACM:
New York, NY, USA, 2014; pp. 92–101. [CrossRef]

10. Vargas, E.L.; Hejderup, J.; Kechagia, M.; Bruntink, M.; Gousios, G. Enabling Real-Time Feedback in Software Engineering. In
Proceedings of the 40th International Conference on Software Engineering: New Ideas and Emerging Results, Gothenburg,
Sweden, 27 May–3 June 2018; ACM: New York, NY, USA, 2018; pp. 21–24. [CrossRef]

11. Czerwonka, J.; Nagappan, N.; Schulte, W.; Murphy, B. CODEMINE: Building a Software Development Data Analytics Platform
at Microsoft. IEEE Softw. 2013, 30, 64–71. [CrossRef]

12. Maddila, C.; Shanbhogue, S.; Agrawal, A.; Zimmermann, T.; Bansal, C.; Forsgren, N.; Agrawal, D.; Herzig, K.; van Deursen, A.
Nalanda: A Socio-Technical Graph Platform for Building Software Analytics Tools at Enterprise Scale. In Proceedings of the 30th
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Singapore, 14–18
November 2022; ACM: New York, NY, USA, 2022; pp. 1246–1256. [CrossRef]

13. Shahin, M.; Ali Babar, M.; Zhu, L. Continuous Integration, Delivery and Deployment: A Systematic Review on Approaches,
Tools, Challenges and Practices. IEEE Access 2017, 5, 3909–3943. [CrossRef]

14. Henry, G. Dave Cross on GitHub Actions. IEEE Softw. 2024, 41, 146–148. [CrossRef]
15. Hassan, A.E. The road ahead for Mining Software Repositories. In Proceedings of the Frontiers of Software Maintenance, Beijing,

China, 28 September–4 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 48–57. [CrossRef]
16. Decan, A.; Mens, T.; Mazrae, P.R.; Golzadeh, M. On the Use of GitHub Actions in Software Development Repositories. In

Proceedings of the International Conference on Software Maintenance and Evolution, Limassol, Cyprus, 2–7 October 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 235–245. [CrossRef]

17. Khatami, A.; Zaidman, A. Quality Assurance Awareness in Open Source Software Projects on GitHub. In Proceedings of the
23rd International Working Conference on Source Code Analysis and Manipulation, Bogotá, Colombia, 1–2 October 2023; IEEE:
Piscataway, NJ, USA, 2023; pp. 174–185. [CrossRef]

18. Honglei, T.; Wei, S.; Yanan, Z. The Research on Software Metrics and Software Complexity Metrics. In Proceedings of the
International Forum on Computer Science-Technology and Applications, Chongqing, China, 25–27 December 2009; IEEE:
Piscataway, NJ, USA, 2009; pp. 131–136. [CrossRef]

19. Sui, L.; Dietrich, J.; Tahir, A.; Fourtounis, G. On the Recall of Static Call Graph Construction in Practice. In Proceedings of the
42nd International Conference on Software Engineering, Seoul, Republic of Korea, 7–11 July 2020; ACM: New York, NY, USA,
2020; pp. 1049–1060. [CrossRef]

20. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 1994, 20, 476–493. [CrossRef]
21. Atzberger, D.; Scordialo, N.; Cech, T.; Scheibel, W.; Trapp, M.; Döllner, J. CodeCV: Mining Expertise of GitHub Users from Coding

Activities. In Proceedings of the 22nd International Working Conference on Source Code Analysis and Manipulation, Limassol,
Cyprus, 3–4 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 143–147. [CrossRef]

22. Bozzelli, P.; Gu, Q.; Lago, P. A Systematic Literature Review on Green Software Metrics; Technical Report; VU University: Amsterdam,
The Netherlands, 2013.

23. Ludwig, J.; Xu, S.; Webber, F. Compiling static software metrics for reliability and maintainability from GitHub repositories.
In Proceedings of the International Conference on Systems, Man, and Cybernetics, Banff, Canada, 5–8 October 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 5–9. [CrossRef]

http://doi.org/10.1109/MS.2013.94
http://dx.doi.org/10.1109/MS.2013.86
http://dx.doi.org/10.1145/3143434.3143459
http://dx.doi.org/10.1109/CSC.2013.23
http://dx.doi.org/10.1007/s12650-022-00868-1
http://dx.doi.org/10.1109/VISSOFT55257.2022.00021
http://dx.doi.org/10.1109/VISSOFT.2014.32
http://dx.doi.org/10.1109/MSR.2009.5069475
http://dx.doi.org/10.1145/2597073.2597074
http://dx.doi.org/10.1145/3183399.3183416
http://dx.doi.org/10.1109/MS.2013.68
http://dx.doi.org/10.1145/3540250.3558949
http://dx.doi.org/10.1109/ACCESS.2017.2685629
http://dx.doi.org/10.1109/MS.2023.3322339
http://dx.doi.org/10.1109/FOSM.2008.4659248
http://dx.doi.org/10.1109/ICSME55016.2022.00029
http://dx.doi.org/10.1109/SCAM59687.2023.00027
http://dx.doi.org/10.1109/IFCSTA.2009.39
http://dx.doi.org/10.1145/3377811.3380441
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/SCAM55253.2022.00021
http://dx.doi.org/10.1109/smc.2017.8122569


Computers 2024, 13, 33 22 of 23

24. Spadini, D.; Aniche, M.; Bacchelli, A. Pydriller: Python framework for mining software repositories. In Proceedings of the 26th
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Lake
Buena Vista, FL, USA, 4–9 November 2018; ACM: New York, NY, USA, 2018; pp. 908–911. [CrossRef]

25. Reza, S.M.; Badreddin, O.; Rahad, K. ModelMine: A tool to facilitate mining models from open source repositories. In Proceedings
of the 23rd International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, Virtual
Event, 16–23 October 2020; ACM: New York, NY, USA, 2020; pp. 9:1–9:5. [CrossRef]

26. Casalnuovo, C.; Suchak, Y.; Ray, B.; Rubio-González, C. GitcProc: A tool for processing and classifying GitHub commits. In
Proceedings of the 26th SIGSOFT International Symposium on Software Testing and Analysis, Santa Barbara, CA, USA, 10–14
July 2017; ACM: New York, NY, USA, 2017; pp. 396–399. [CrossRef].

27. Terceiro, A.; Costa, J.; Miranda, J.; Meirelles, P.; Rios, L.R.; Almeida, L.; Chavez, C.; Kon, F. Analizo: An Extensible Multi-
Language Source Code Analysis and Visualization Toolkit. In Proceedings of the Brazilian Conference on Software: Theory and
Practice—Tools, Salvador, Bahia, Brazil, 27 September–1 October 2010.

28. Fu, M.; Tantithamthavorn, C. LineVul: A Transformer-Based Line-Level Vulnerability Prediction. In Proceedings of the 19th
International Conference on Mining Software Repositories, Pittsburgh, PA, USA, 23–24 May 2022; ACM: New York, NY, USA,
2022; pp. 608–620. [CrossRef]

29. Collard, M.L.; Decker, M.J.; Maletic, J.I. srcML: An infrastructure for the exploration, analysis, and manipulation of source code:
A tool demonstration. In Proceedings of the International Conference on Software Maintenance, Eindhoven, The Netherlands,
22–28 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 516–519. [CrossRef]

30. Dyer, R.; Nguyen, H.A.; Rajan, H.; Nguyen, T.N. Boa: A language and infrastructure for analyzing ultra-large-scale software
repositories. In Proceedings of the 35th International Conference on Software Engineering, San Francisco, CA, USA, 18–26 May
2013; IEEE: Piscataway, NJ, USA, 2013; pp. 422–431. [CrossRef]

31. Gousios, G. The GHTorrent dataset and tool suite. In Proceedings of the 10th Working Conference on Mining Software
Repositories, San Francisco, CA, USA, 18–19 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 233–236. [CrossRef]

32. Mattis, T.; Rein, P.; Hirschfeld, R. Three trillion lines: Infrastructure for mining GitHub in the classroom. In Proceedings of the
Conference Companion of the 4th International Conference on Art, Science, and Engineering of Programming, Porto, Portugal,
23–26 March 2020; ACM: New York, NY, USA, 2020; pp. 1–6. [CrossRef]

33. Trautsch, A.; Trautsch, F.; Herbold, S.; Ledel, B.; Grabowski, J. The SmartSHARK ecosystem for software repository mining. In
Proceedings of the 42nd International Conference on Software Engineering: Companion Proceedings, Seoul, South Korea, 7–11
July 2020; ACM: New York, NY, USA, 2020; pp. 25–28. [CrossRef]

34. Kolovos, D.; Neubauer, P.; Barmpis, K.; Matragkas, N.; Paige, R. Crossflow: A framework for distributed mining of software
repositories. In Proceedings of the 16th International Conference on Mining Software Repositories, Montreal, Canada, 26–27 May
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 155–159. [CrossRef]

35. Dueñas, S.; Cosentino, V.; Robles, G.; Gonzalez-Barahona, J.M. Perceval: Software Project Data at Your Will. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings, Melbourne, Australia, 14–20 May 2018; ACM:
New York, NY, USA, 2018; pp. 1–4. [CrossRef]

36. Foltin, E.; Dumke, R.R. Aspects of software metrics database design. Softw. Process. Improv. Pract. 1998, 4, 33–42. [CrossRef]
37. Prause, C.R.; Hönle, A. Emperor’s New Clothes: Transparency Through Metrication in Customer-Supplier Relationships. In

PROFES 2018: Product-Focused Software Process Improvement; Springer: Cham, Switzerland, 2018; pp. 288–296. [CrossRef]
38. Sayyad Shirabad, J.; Menzies, T. The PROMISE Repository of Software Engineering Databases; School of Information Technology and

Engineering, University of Ottawa: Ottawa, Canada, 2005.
39. Scheibel, W.; Hartmann, J.; Limberger, D.; Döllner, J. Visualization of Tree-structured Data using Web Service Composition. In

VISIGRAPP 2019: Computer Vision, Imaging and Computer Graphics Theory and Applications; Springer: Cham, Switzerland, 2020; pp.
227–252. [CrossRef]

40. Heseding, F.; Scheibel, W.; Döllner, J. Tooling for Time- and Space-Efficient Git Repository Mining. In Proceedings of the 19th
International Conference on Mining Software Repositories, Pittsburgh, PA, USA, 23–24 May 2022; ACM: New York, NY, USA,
2022; pp. 413–417. [CrossRef]

41. D’Ambros, M.; Lanza, M.; Robbes, R. An extensive comparison of bug prediction approaches. In Proceedings of the 7th Working
Conference on Mining Software Repositories, Cape Town, South Africa, 2–3 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp.
31–41. [CrossRef]

42. Reniers, D.; Voinea, L.; Ersoy, O.; Telea, A.C. The Solid* toolset for software visual analytics of program structure and metrics
comprehension: From research prototype to product. Elsevier Sci. Comput. Program. 2014, 79, 224–240. [CrossRef]

43. Dick, S.; Meeks, A.; Last, M.; Bunke, H.; Kandel, A. Data mining in software metrics databases. Fuzzy Sets Syst. 2004, 145, 81–110.
[CrossRef]

44. Ball, T.; Eick, S. Software visualization in the large. IEEE Comput. 1996, 29, 33–43. [CrossRef]
45. Scheibel, W.; Trapp, M.; Limberger, D.; Döllner, J. A Taxonomy of Treemap Visualization Techniques. In Proceedings of the 15th

International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Valletta, Malta,
27–29 February 2020; SciTePress: Setúbal, Portugal, 2020; pp. 273–280. [CrossRef]

http://dx.doi.org/10.1145/3236024.3264598
http://dx.doi.org/10.1145/3417990.3422006
https://doi.org/10.1145/3092703.3098230
http://dx.doi.org/10.1145/3524842.3528452
http://dx.doi.org/10.1109/ICSM.2013.85
http://dx.doi.org/10.1109/ICSE.2013.6606588
http://dx.doi.org/10.1109/MSR.2013.6624034
http://dx.doi.org/10.1145/3397537.3397551
http://dx.doi.org/10.1145/3377812.3382139
http://dx.doi.org/10.1109/MSR.2019.00032
http://dx.doi.org/10.1145/3183440.3183475
http://dx.doi.org/10.1002/(SICI)1099-1670(199803)4:1<33::AID-SPIP94>3.0.CO;2-D
http://dx.doi.org/10.1007/978-3-030-03673-7_21
http://dx.doi.org/10.1007/978-3-030-41590-7_10
http://dx.doi.org/10.1145/3524842.3528503
http://dx.doi.org/10.1109/MSR.2010.5463279
http://dx.doi.org/10.1016/j.scico.2012.05.002
http://dx.doi.org/10.1016/j.fss.2003.10.006
http://dx.doi.org/10.1109/2.488299
http://dx.doi.org/10.5220/0009153902730280


Computers 2024, 13, 33 23 of 23

46. Johnson, B.S.; Shneiderman, B. Tree-Maps: A Space-filling Approach to the Visualization of Hierarchical Information Structures.
In Proceedings of the 2nd Conference on Visualization, San Diego, CA, USA, 22–25 October 1991; IEEE: Piscataway, NJ, USA,
1991; pp. 284–291. [CrossRef]

47. Holten, D.; Vliegen, R.; van Wijk, J. Visual Realism for the Visualization of Software Metrics. In Proceedings of the 3rd
International Workshop on Visualizing Software for Understanding and Analysis, Budapest, Hungary, 25 September 2005; IEEE:
Piscataway, NJ, USA, 2005; pp. 1–6. [CrossRef]

48. Wettel, R.; Lanza, M. Visualizing Software Systems as Cities. In Proceedings of the 4th International Workshop on Visualizing
Software for Understanding and Analysis, Banff, Canada, 25–26 June 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 92–99. [CrossRef]

49. Steinbrückner, F.; Lewerentz, C. Understanding Software Evolution with Software Cities. SAGE Inf. Vis. 2013, 12, 200–216.
[CrossRef]

50. Kuhn, A.; Loretan, P.; Nierstrasz, O. Consistent Layout for Thematic Software Maps. In Proceedings of the 15th Working
Conference on Reverse Engineering, Antwerp, Belgium, 15–18 October 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 209–218.
[CrossRef]

51. Atzberger, D.; Cech, T.; Scheibel, W.; Limberger, D.; Döllner, J. Visualization of Source Code Similarity using 2.5D Semantic
Software Maps. In VISIGRAPP 2021: Computer Vision, Imaging and Computer Graphics Theory and Applications; Springer: Cham,
Switzerland, 2023; pp. 162–182. [CrossRef]

52. Sokol, F.Z.; Aniche, M.F.; Gerosa, M.A. MetricMiner: Supporting researchers in mining software repositories. In Proceedings of
the 13th International Working Conference on Source Code Analysis and Manipulation, Eindhoven, The Netherlands, 22–23
September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 142–146. [CrossRef]

53. Dueñas, S.; Cosentino, V.; Gonzalez-Barahona, J.M.; San Felix, A.d.C.; Izquierdo-Cortazar, D.; Cañas-Díaz, L.; García-Plaza, A.P.
GrimoireLab: A toolset for software development analytics. PeerJ Comput. Sci. 2021, 7, e601. [CrossRef] [PubMed]

54. Archambault, D.; Purchase, H.; Pinaud, B. Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic
Graphs. IEEE Trans. Vis. Comput. Graph. 2011, 17, 539–552. [CrossRef] [PubMed]

55. Ma, Y.; Dey, T.; Bogart, C.; Amreen, S.; Valiev, M.; Tutko, A.; Kennard, D.; Zaretzki, R.; Mockus, A. World of code: Enabling a
research workflow for mining and analyzing the universe of open source VCS data. Empir. Softw. Eng. 2021, 26, 1–42. [CrossRef]

56. Hoepman, J.H.; Jacobs, B. Increased Security through Open Source. Commun. ACM 2007, 50, 79–83. [CrossRef]
57. Wermke, D.; Wöhler, N.; Klemmer, J.H.; Fourné, M.; Acar, Y.; Fahl, S. Committed to Trust: A Qualitative Study on Security &

Trust in Open Source Software Projects. In Proceedings of the Symposium on Security and Privacy, San Francisco, CA, USA,
23–26 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1880–1896. [CrossRef]

58. Mayer, P.; Bauer, A. An Empirical Analysis of the Utilization of Multiple Programming Languages in Open Source Projects. In
Proceedings of the 19th International Conference on Evaluation and Assessment in Software Engineering, Nanjing, China, 27–29
April 2015; ACM: New York, NY, USA, 2015; pp. 4:1–4:10. [CrossRef]

59. Li, D.; Wang, W.; Zhao, Y. Intelligent Visual Representation for Java Code Data in the Field of Software Engineering Based on
Remote Sensing Techniques. Electronics 2023, 12, 5009. [CrossRef]

60. Atzberger, D.; Cech, T.; de la Haye, M.; Söchting, M.; Scheibel, W.; Limberger, D.; Döllner, J. Software Forest: A Visualization
of Semantic Similarities in Source Code using a Tree Metaphor. In Proceedings of the 16th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications, Virtual Event, 8–10 February 2021; SciTePress:
Setúbal, Portugal, 2021; pp. 112–122. [CrossRef]

61. Meirelles, P.; Santos , C., Jr.; Miranda, J.; Kon, F.; Terceiro, A.; Chavez, C. A Study of the Relationships between Source Code
Metrics and Attractiveness in Free Software Projects. In Proceedings of the Brazilian Symposium on Software Engineering,
Salvador, Bahia, Brazil, 27 September–1 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 11–20. [CrossRef]

62. Ray, B.; Posnett, D.; Filkov, V.; Devanbu, P. A large scale study of programming languages and code quality in GitHub. In
Proceedings of the 22nd SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong, China, 16–21
November 2014; ACM: New York, NY, USA, 2014; pp. 155–165. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/VISUAL.1991.175815
http://dx.doi.org/10.1109/VISSOF.2005.1684299
http://dx.doi.org/10.1109/VISSOF.2007.4290706
http://dx.doi.org/10.1177/1473871612438785
http://dx.doi.org/10.1109/WCRE.2008.45
http://dx.doi.org/10.1007/978-3-031-25477-2_8
http://dx.doi.org/10.1109/SCAM.2013.6648195
http://dx.doi.org/10.7717/peerj-cs.601
http://www.ncbi.nlm.nih.gov/pubmed/34307858
http://dx.doi.org/10.1109/TVCG.2010.78
http://www.ncbi.nlm.nih.gov/pubmed/20498503
http://dx.doi.org/10.1007/s10664-020-09905-9
http://dx.doi.org/10.1145/1188913.1188921
http://dx.doi.org/10.1109/SP46214.2022.9833686
http://dx.doi.org/10.1145/2745802.2745805
http://dx.doi.org/10.3390/electronics12245009
http://dx.doi.org/10.5220/0010267601120122
http://dx.doi.org/10.1109/SBES.2010.27
http://dx.doi.org/10.1145/2635868.2635922

	Introduction
	Related Work
	Tools for Mining Software Repositories
	Metric Storage Formats
	Software Visualization
	Software Analytics Systems

	Approach
	Process Overview
	Analysis
	Storage
	Visualization
	Prototype Implementation Details

	Evaluation
	Case Study
	Repository Memory Impact
	CI Execution Time Impact
	Practical Considerations and Recommendations

	Discussion
	Threats to Validity
	Runtime Analysis
	Storage Consumption Analysis

	Limitations
	Scalability
	Advanced Git Workflows
	Security Considerations
	Extensibility
	Modes of Integration into Development Process
	Supported Programming Languages
	Supported Metrics
	Visualization Approaches
	Stored Artifacts


	Conclusions
	Appendix A
	References

