
Citation: Buduleci, C.; Gellert, A.;

Florea, A.; Brad, R. Architectural and

Technological Approaches for

Efficient Energy Management in

Multicore Processors. Computers 2024,

13, 84. https://doi.org/10.3390/

computers13040084

Academic Editor: Josip Lorincz

Received: 27 February 2024

Revised: 14 March 2024

Accepted: 20 March 2024

Published: 22 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Architectural and Technological Approaches for Efficient Energy
Management in Multicore Processors
Claudiu Buduleci * , Arpad Gellert , Adrian Florea and Remus Brad *

Computer Science and Electrical Engineering Department, “Lucian Blaga” University of Sibiu, Emil Cioran 4,
550025 Sibiu, Romania; arpad.gellert@ulbsibiu.ro (A.G.); adrian.florea@ulbsibiu.ro (A.F.)
* Correspondence: claudiu.buduleci@ulbsibiu.ro (C.B.); remus.brad@ulbsibiu.ro (R.B.)

Abstract: Benchmarks play an essential role in the performance evaluation of novel research concepts.
Their effectiveness diminishes if they fail to exploit the available hardware of the evaluated micro-
processor or, more broadly, if they are not consistent in comparing various systems. An empirical
analysis of the consecrated Splash-2 benchmarks suite vs. the latest version Splash-4 was performed.
It was shown that on a 64-core configuration, half of the simulated benchmarks reach temperatures
well beyond the critical threshold of 105 ◦C, emphasizing the necessity of a multi-objective evaluation
from at least the following perspectives: energy consumption, performance, chip temperature, and
integration area. During the analysis, it was observed that the cores spend a large amount of time in
the idle state, around 45% on average in some configurations. This can be exploited by implementing
a predictive dynamic voltage and frequency scaling (DVFS) technique called the Simple Core State
Predictor (SCSP) to enhance the Intel Nehalem architecture and to simulate it using Sniper. The
aim was to decrease the overall energy consumption by reducing power consumption at core level
while maintaining the same performance. More than that, the SCSP technique, which operates with
core-level abstract information, was applied in parallel with a Value Predictor (VP) or a Dynamic
Instruction Reuse (DIR) technique, which rely on instruction-level information. Using the SCSP alone,
a 9.95% reduction in power consumption and an energy reduction of 10.54% were achieved, maintain-
ing the performance. By combining the SCSP with the VP technique, a performance increase of 8.87%
was obtained while reducing power and energy consumption by 3.13% and 8.48%, respectively.

Keywords: prediction; multicore processors; dynamic voltage and frequency scaling; instruction
reuse; benchmarks; parallelism; simulation

1. Introduction

Measuring the performance of microprocessors and multicore systems is a challenging
task. The continuous evolution of programming paradigms and hardware improvements
are also ushering in an update for next-generation benchmarking [1]. Performance metrics
are usually quantified using different standard sets of computer programs, named bench-
mark suites. It can be said that the foundation for evaluating the performance of computer
systems is determined by the benchmark suite. If the benchmark suites do not efficiently
use the available hardware resources, one can easily misrepresent the performance of
the evaluated system, which can cause architects to overrate the impact of the proposed
techniques or underrate that of others.

Another important aspect is the multi-objective evaluation approach. Generally, most
of the research in the computer architecture field evaluates proposed systems based on
one or two objectives, mostly performance indicators and power consumption. One
should argue for performing such evaluations from more perspectives, like maximum
chip temperatures, power and energy consumption, computing performance, and the
integration area of the system. Evaluating how the proposed solution impacts the chip
temperature is even more important nowadays since technology has reached nano-scale

Computers 2024, 13, 84. https://doi.org/10.3390/computers13040084 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers13040084
https://doi.org/10.3390/computers13040084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-5471-2180
https://orcid.org/0000-0002-5482-967X
https://orcid.org/0000-0003-0278-4825
https://orcid.org/0000-0001-8100-1379
https://doi.org/10.3390/computers13040084
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers13040084?type=check_update&version=1

Computers 2024, 13, 84 2 of 21

dimensions. The continuous rise of the power density in chips is resulting in higher
temperature generation and the emergence of thermal hotspots [2,3]. More than that,
high temperatures are an important factor for degrading electronic circuits. Therefore,
evaluating multicore chips from a thermal perspective should become mandatory.

DVFS techniques operate by decreasing performance over certain time periods and
reducing the power dissipation of the processor. Such techniques exploit the intervals in
which the processor experiences a low demand for processing tasks, such as when the
system is idle or experiencing minimal activity. While DVFS primarily aims to optimize
power efficiency by adjusting the voltage and frequency of the processing units centered
on workload demands, it can also have a secondary effect of controlling temperatures to
protect the chip from overheating. A reduction in power consumption can contribute to
maintaining the chip’s temperature within safe operating limits. However, it is important
to note that DVFS alone may not always be sufficient for protecting the chip from high
temperatures (hotspots), especially in multicore systems where workload distribution
and thermal interactions between cores can be complex. Additionally, Dynamic Thermal
Management (DTM) techniques such as thermal monitoring, thermal throttling, and cooling
solutions like heatsinks or fans may also be necessary to ensure that the chip operates
within its temperature specifications [4].

In this study, the integration of the latest Splash-4 [1] benchmark suite into the Sniper
simulator environment was carried out, and an empirical analysis comparing this suite
to an older suite, Splash-2 [5], was performed. The applicability of the SCSP to the DVFS
subsystem of the microprocessor was evaluated. The target was to decrease the overall
energy consumption by decreasing the power consumption at core level while keeping
the same performance. The main idea was to exploit the intrinsic idle time that was
identified during simulations, and for each core, based on the predictor outcome, to
dynamically adjust the frequency and voltage. Using the SCSP, it was possible to achieve
a reduction of 9.95% in power consumption and an energy saving of 10.54% without
affecting the performance significantly. More than that, this technique, which uses core-
level information, was applied in tandem with predictive and anticipative techniques,
which operate on instruction-level information. When the SCSP was applied in parallel
with the value prediction technique, the following results were achieved: a performance
increase of 8.87%, a 3.13% decrease in power consumption, and an 8.48% decrease in energy
consumption. A comprehensive analysis of those configurations was conducted in the
proposed simulation environment.

The remainder of the paper is organized as follows: Section 2 presents related work
involving parallel benchmarks, multicore simulators, value prediction and dynamic in-
struction reuse, and DVFS techniques. Section 3 shows the technical modifications that
were made for the implementation of the SCSP and for the evaluation of the area, power
consumption, and chip temperature. In Section 4, the simulation environment is presented
along with the metrics used for the evaluation. The simulation results are presented in
Section 5. First, an evaluation of the Splash-2 and Splash-4 benchmark suites is presented.
Second, the simulation results of the enhanced architecture with the SCSP and with the
combination of the SCSP with DIR and VP are discussed. The paper presents conclusions
in Section 6, along with directions for future research.

2. Related Work
2.1. Benchmarks

Evaluating the performance of microprocessors is performed using well-known com-
puter programs called benchmarks. The measurement of an overall system’s behavior is
carried out by running multiple benchmarks, which form a suite. A suite is composed
of multiple complex computing use cases that exploit the available hardware resources
as much as possible. The identification of such generalized use cases and keeping them
aligned with recent microarchitectural development trends is an open research topic. The
following are the most commonly used benchmark suites in the evaluation of multicore

Computers 2024, 13, 84 3 of 21

processors from a general purpose perspective: Splash-2 [5], Splash-3 [6], Splash-4 [1],
SPEC CPU2006 [7], SPEC CPU2017 [8], and PARSEC [9].

The Splash-2 suite [5] was proposed in 1995 and has achieved over 5424 citations.
It was among the first parallel benchmark suites, with a focus on the shared memory
paradigm. Today, it is broadly used in computer architecture research and industry for
different evaluation purposes (performance, dynamic power consumption, thermal esti-
mation, etc.). During the creation of this suite, the following use cases were considered:
concurrency and load balancing, different working sets, communication to computation
ratio and spatial locality. However, newer versions of this suite evolved over time; they are
briefly mentioned below.

During this time, compilers and programming language standards evolved.
For example, at the time of the creation of Splash-2, there was no standardized C memory
consistency model, but the latter C standard defines a memory model that guarantees
sequential consistency. More than that, when used with newer compilers, due to the lack
of standardization at that time, unexpected behavior was identified on some benchmarks,
which can lead to issues like performance and/or execution correctness. With this in mind,
Splash-3 [6] was released in 2016. Splash-3 represented an important update to the suite,
as the authors corrected many issues, focusing on improper synchronization mechanisms,
data races, and performance bugs. To find those issues, the authors performed code in-
spection and used a self-developed tool that identifies data races. They found and fixed
the data races in the following benchmarks: Barnes, Cholesky, FMM, Radiosity, Raytrace,
Ocean-nc, and Volrend. To solve these issues, they made use of multiple mechanisms,
like locks, conditional variables, and barriers. These mechanisms guarantee the correct
execution by ensuring data consistency. However, they introduce an overhead imposed
by the execution of the synchronization instructions, which results in lower performance,
a necessary tradeoff for correct execution.

Based on the Splash-3 suite, another important update was released, Splash-4 [1].
The authors further extended the suite, implementing modern programming approaches
focusing on the improved scalability of recent systems. Using lock-free constructs or atomic
operations, which are available in modern ISAs, Splash-4 has the advantage of facilitating
the direct use of the available architectural features and introduces fewer overheads due to
their intrinsic simplicity. For example, instead of using a complex mutex with lock/unlock
operations, it can be replaced with only one atomic fetch and add operation, which ensures
the same sequential consistency. Overall, they achieved a significant improvement in
scalability and a reduction in execution time in comparison with Splash-3. In terms of
execution time, they achieved impressive reductions: an average of 52% in an AMD EPYC
system and 34% in an Intel Ice Lake system.

2.2. Multi/Many-Core Simulators

Multicore simulators are invaluable instruments in computer architecture research
and the chip design industry. They allow for fast prototyping and proof of concepts with
minimal costs. Graphite [10] is an open-source simulator for multi/many-core architectures.
It offers the possibility to simulate systems with one core up to thousands of cores while
operating at a high abstraction level and leveraging models to simulate various parts within
the system.

Built upon the Graphite infrastructure, Sniper [11] stands out as an optimal simulation
solution for the Intel Nehalem multicore architecture, offering a satisfying tradeoff between
simulation time and accuracy. It does not rely on the conventional approach of detailed
cycle-by-cycle simulation, which is commonly used in most simulators; instead, Sniper
uses the interval simulation method [12]. Such intervals are given by important events such
as incorrect branch predictions or misses in cache memory. Once the interval is established,
a laborious analytical model is used for estimation. For measuring power consumption
and integration areas, the McPAT framework [13] is used. In a previous work [14], this
simulator was enhanced to support thermal estimation using HotSpot [15].

Computers 2024, 13, 84 4 of 21

Gem5 [16] is another open-source multi/many-core simulator that is well known for
its flexibility and extensibility. It supports a wider range of processor models, memory
configurations, and simulation modes, facilitating both detailed microarchitectural analysis
and large-scale system-level simulations. It has a modular design that allows users to
customize and extend its functionality to fit specific research needs.

2.3. Value Prediction and Dynamic Instruction Reuse

For optimizing the performance of microprocessors, researchers and industry engi-
neers have proposed multiple processing techniques, like pipeline instruction execution,
out-of-order processing, simultaneous multithreading, multi/many-core data and instruc-
tion caching, branch prediction, dynamic instruction reuse, and value prediction. Most of
the techniques are already implemented in modern consumer microprocessors, except for
value prediction and dynamic instruction reuse, with these two also being the focus of the
current work. Those techniques exploit instruction- and data-level parallelism to reduce
execution latency and enhance the overall performance of the architecture.

A. Sodani and G. S. Sohi introduced the DIR concept in [17] based on the empirical
observation that the instructions are executed multiple times with the same input, thus
creating an exploitation door. This technique is an anticipative one (non-predictive), as it
relies on storing information about the dynamically executed instructions, including their
operand values and results, in a memory called reuse buffer (RB). The RB is accessed using
the instruction program counter. If an entry is found and the operands match, then the
results can be taken out of the RB without having to execute the instruction again. The total
number of cycles saved by the execution bypass can lead to an increase in performance and
lower energy consumption overall. In [18], this concept was extended to a multicore system,
and a DIR technique exploiting a selective high-latency arithmetic RB was implemented.
A set-associative RB that targets the high time-consuming arithmetic instructions was
proposed. On the Splash-2 benchmarks, they measured an up to 33.27% average reuse
rate, a 6.56% maximum performance increase, steady energy, and a modest reduction
in temperature.

Value prediction is a speculative microarchitectural technique that aims to increase
the instruction-level parallelism. It achieves this in two steps. In the first step, it provides a
speculated value to the current pipeline, thus unlocking the execution of the dependent
instructions. As for the second step, the speculated instruction is still executed to verify
whether the prediction was correct or not. In the case of a correct prediction, the instructions
are committed to the memory/register. In the event of a wrong prediction, the pipeline
must be flushed, and execution with the correct value is necessary. This is a drawback
because the flushing process will take additional cycles. The technique was proposed
between 1995 and 1997 by four distinct groups [19–23]. In [24], an extensive review of the
existing value predictors was carried out, also covering the security and data consistency
implications of this speculative technique. With the goal of increasing overall performance
by breaking the dataflow bottleneck of each core, the selective high-latency arithmetic VP
technique was proposed. This solution achieved a 5.19% performance increase on a 16-core
configuration without a negative effect on energy consumption. Both techniques target the
same high-latency arithmetical instructions: div, idiv, divsd, vdivsd, mul, imul, and sqrtsd.

2.4. Dynamic Voltage and Frequency Scaling

Research on the DVFS domain in multicore processors is quite intense nowadays.
There are a multitude of proposed solutions that act on reactive, anticipative, or predic-
tive information (e.g., performance, scheduling, hardware resource availability, etc.) to
dynamically adjust the frequency and/or voltage of the whole system or a subsystem
(e.g., core level or group of cores). In general, these solutions aim to optimize energy
consumption by balancing power consumption across multiple cores while meeting the
required performance levels.

Computers 2024, 13, 84 5 of 21

In [25], the authors implemented a periodic power phase predictor, which tackles the
challenge of core-level activity prediction. Using the predictive technique, they showed a
5.4% reduction in power consumption on the SYSMark 2007 processor and an increase in
performance of 3.8% compared to the reactive scheme implemented in the Windows Vista
operating system. Their solution is to store encoded sequences of the cores’ active/idle
phases in a pattern history table. Compared to this solution, the SCSP relies only on the
previous binary states (idle or non-idle) of the cores, with much lower memory footprint,
and, more than that, this solution can be implemented at both the hardware and application
levels. An analysis of the frequency adjustments at chip level vs. core level was carried
out in [26]. The authors showed that the fine-grained approach can lead to higher energy
savings while highlighting various limitations. Such limitations are the lack of hardware
support in commercial processors to measure the power consumption at core level and
the fact that the transition time required for the voltage regulators to apply the requested
voltage is quite high. They implemented, at the application level, a runtime module that
calculates and changes the frequency for each core. The frequency calculation was carried
out based on the dynamically collected statistics about power and performance metrics.
An evaluation of the proposed method was conducted on real Intel Haswell processors,
which support core-level DVFS, achieving an energy reduction ranging from 4% to 35%
compared to the default DVFS while maintaining performance. FoREST [27] is another
DVFS controller that does not use a performance model. Instead, it estimates power gains
by offline profiling and online measurements of the speedups/slowdowns achieved by
the frequency change. It was implemented at the application level and compared with the
default Linux DVFS controller, achieving a 39% energy reduction at the cost of a maximum
performance loss of 5%.

DVFS techniques are also combined with different workload-aware information
(e.g., scheduling, memory traffic, compiler-guided information [28], etc.) algorithms to
further optimize energy efficiency in multicore environments, especially in simultaneous
multithreading (SMT) configurations, where a core can quickly switch through different
contexts. Energy-centric DVFS control (eDVFS) [29] is another solution towards minimizing
total energy consumption. Two policies related to memory traffic monitoring have been
proposed. The first one reacts if it exceeds a certain threshold, and then the CPU frequency
is adapted. The second one reacts under a given threshold and changes the CPU frequency
in the direction in which the energy efficiency is increasing. The results show a reduction
in the processor’s energy consumption. An approach combining DVFS and Dynamic
Concurrency Throttling (DCT) is proposed in [30], and this approach has applicability in
HPC systems. The authors of this study built a predictive model based on a statistical
analysis of the hardware to see how the DVFS and DCT influence the system behavior in
certain configurations. Afterwards, the predictive model was used to dynamically apply
those energy-saving techniques. They achieved a performance increase of 14%, power
savings of 6%, energy savings of 19%, and a 40% decrease in energy–delay product in
comparison with a situation when all the cores were running at highest frequency. The
control is implemented at the application level. Another concept, named thread shuffling,
which combines thread migration and DVFS, is proposed in [31]. On a multicore system
with SMT support, the authors achieved up to 56% energy savings. In essence, threads
with comparable criticality levels are dynamically allocated to the same core, followed
by the activation of DVFS for non-critical cores. One important aspect highlighted by
the authors is the fact that common multicore systems use cores that support SMT, and
most of the DVFS-based methods struggle to achieve optimal energy reduction due to
context switching at the core level. In [32], the authors used machine learning to train
on workload characteristics and use this information to achieve the optimal voltage and
frequency settings. In comparison with state-of-the-art algorithms, they achieved a power
reduction ranging from 25% to 33%. Another solution, proposed in [33], comprises a
performance prediction model, along with a mapping strategy that assigns processing cores

Computers 2024, 13, 84 6 of 21

to applications while keeping performance constraints. The results show energy savings of
up to 28%.

Due to the smaller scale of integration technology, multi/many-core systems are also
characterized by an increase in power density and thermal problems (hotspots). To mitigate
these challenges, researchers, for example, [34] and [3], have proposed multiple thermal-
aware DVFS techniques. Such techniques dynamically adapt the voltage and frequency
settings, considering temperature limitations, with the aim of mitigating the hotspots and
ensuring that the system operates reliably.

3. Methodology and Technical Modifications

In this section, details about the implementation of the SCSP and how it interacts with
the Sniper simulator are presented. An overview of the methodology used to estimate the
power consumption, integration area, and chip temperatures is also shown. It is illustrated
how all the used simulators and frameworks are connected to each other.

3.1. Simple Core State Predictor Implementation

For the implementation of the SCSP, the core functionality of Sniper version 7.2 was
expanded. One of the challenges was to make the state of each core available in the plugin
space of the simulator. In the current implementation, it is available only in the backend,
which is developed in C++, while the plugins are written in Python. Interaction between
the Python space and C++ is possible via the integrated SimAPI, which offers numerous
interfaces that are accessible for the real-time analysis and manipulation of the simulator’s
state. The SimAPI has been extended to include an interface for reading out the core state
from the backend of the simulator.

In Figure 1, the generic SCPS scheme is presented. It consists of a prediction table
where each line is associated with one core. Each line stores up to H previous states (S)
and the confidence counter (CO). A core can have one of the following states: running,
initializing, stalled, sleeping, waking up, idle, or broken. For the predictor, the only
information that is required is to know whether the core is in an idle state or not; therefore,
each state can be stored in a boolean datatype, minimizing the memory footprint. The
frequency selection logic takes into consideration the last prediction, the actual state, the
confidence, and the confidence threshold. Each time the SCPS is called, it performs a
prediction for the next core state based on the previous states, which is checked on the
next call, and the confidence is updated. If the predictor acquires enough confidence
(CO > COthreshold), the core frequency is changed speculatively based on the predictor
outcome. If it predicts the idle state, the fidle frequency is set; otherwise, the configured
frequency fconfigured is applied. The maximum time required for the core frequency to
change effectively is 2 µs.

A simplified pseudocode reflecting the prediction logic is presented in
Algorithm 1. The logic is grouped into four parts: initialization, reaction to the last predic-
tion, confidence update, and performing a new prediction. In the initialization part (lines
2–4), the actual core state is read, the core-specific SCSP line is selected, and the previous
predicted state is constructed using the “get_prediction” function. The reaction to the last
prediction is carried out in lines 7–9. If the previous prediction has enough confidence, then
the predicted state is compared against the actual state. If there is a difference, then the
Corex frequency is adjusted according to the actual core state. After this step, in lines 12–16,
the predictor confidence counter is updated; it is reset to 0 in the case of a wrong prediction
or incremented in the case of a correct prediction. The actual core state is inserted into the
predictor table in line 18, and considering the new state, a new prediction is performed in
line 21. If the predictor acquires enough confidence (line 24), then the Corex frequency is
speculatively changed (line 25) until the next call.

Computers 2024, 13, 84 7 of 21Computers 2024, 13, x FOR PEER REVIEW 7 of 22

Figure 1. An overview of the Simple Core State Predictor (SCPS) scheme.

Algorithm 1. SCSP Prediction Logic
1 for x in [0, num_cores−1]:
2 actual_state = get_core_state(x)
3 scsp = get_scsp(x)
4 predicted_state = scsp.get_prediction()
5
6 # Check and react on last confident prediction
7 if scsp.CO >= COthreshold:
8 if predicted_state != actual_state:
9 adjust_frequency(x, actual_state)
10
11 # Update the confidence counter
12 if predicted_state != actual_state:
13 scsp.CO = 0
14 else:
15 if scsp.CO < COthreshold:
16 scsp.CO += 1
17
18 scsp.add_state(actual_state)
19
20 # Perform a new prediction
21 predicted_state = scsp.get_prediction()
22
23 # If confident enough, adjust core frequency accordingly
24 if scsp.CO >= COthreshold:
25 adjust_frequency(x, predicted_state)

The SCSP is implemented as a Python plugin and can be called during the simulation
by appending the following command when executing Sniper:

Figure 1. An overview of the Simple Core State Predictor (SCPS) scheme.

Algorithm 1. SCSP Prediction Logic

1 for x in [0, num_cores−1]:
2 actual_state = get_core_state(x)
3 scsp = get_scsp(x)
4 predicted_state = scsp.get_prediction()
5
6 # Check and react on last confident prediction
7 if scsp.CO >= COthreshold:
8 if predicted_state != actual_state:
9 adjust_frequency(x, actual_state)
10
11 # Update the confidence counter
12 if predicted_state != actual_state:
13 scsp.CO = 0
14 else:
15 if scsp.CO < COthreshold:
16 scsp.CO += 1
17
18 scsp.add_state(actual_state)
19
20 # Perform a new prediction
21 predicted_state = scsp.get_prediction()
22
23 # If confident enough, adjust core frequency accordingly
24 if scsp.CO >= COthreshold:
25 adjust_frequency(x, predicted_state)

The SCSP is implemented as a Python plugin and can be called during the simulation
by appending the following command when executing Sniper:

−s scps:<calling_interval_ns>:<idle_frequency_mhz>:<confidence>:<history>

Computers 2024, 13, 84 8 of 21

where:

• <calling_interval_ns> specifies the periodicity of script execution.
• <idle_frequency_mhz> the frequency that is set in case the predicted state is idle.
• <confidence> represents the threshold of the confidence counter.
• <history> specifies how many previous states are kept in the table.

Figure 2 shows a use case of frequency adaptation using the SCSP on a timeline. In this
example, the SCSP uses a COthreshold of 2. In the first phase, the SCSP acquires confidence
by making predictions during each calling interval. At this time, the core frequency is not
changed, and it remains as it was initially configured. Once the predictor gains enough
confidence, the speculation interval is started, an event marked by the black thunder in
the figure. In this interval, the core frequency is adapted to the value configured by the
“idle_frequency_mhz” parameter, denoted as fidle. Once the SCSP detects that it predicted
wrong, the confidence counter is reset (the event marked with the gray thunder in the
figure), and the frequency of the corresponding core is set back to the configured value.

Computers 2024, 13, x FOR PEER REVIEW 8 of 22

−s scps:<calling_interval_ns>:<idle_frequency_mhz>:<confidence>:<history>

where:
• <calling_interval_ns> specifies the periodicity of script execution.
• <idle_frequency_mhz> the frequency that is set in case the predicted state is idle.
• <confidence> represents the threshold of the confidence counter.
• <history> specifies how many previous states are kept in the table.

Figure 2 shows a use case of frequency adaptation using the SCSP on a timeline. In
this example, the SCSP uses a COthreshold of 2. In the first phase, the SCSP acquires confi-
dence by making predictions during each calling interval. At this time, the core frequency
is not changed, and it remains as it was initially configured. Once the predictor gains
enough confidence, the speculation interval is started, an event marked by the black thun-
der in the figure. In this interval, the core frequency is adapted to the value configured by
the “idle_frequency_mhz” parameter, denoted as fidle. Once the SCSP detects that it pre-
dicted wrong, the confidence counter is reset (the event marked with the gray thunder in
the figure), and the frequency of the corresponding core is set back to the configured value.

Figure 2. Example of frequency adaptation using SCSP.

3.2. Power, Area, and Thermal Estimations
In Figure 3, a simplified overview of the used complex simulation methodology is

depicted. This methodology emphasized the use of the multi/many-core simulator Sniper,
which was enhanced with the speculative VP unit and the anticipative DIR unit. The DVFS
manager within the simulator is also highlighted because the SCSP interacts with it to
adapt and read the frequency for each core.

Sniper has integrated the McPAT [13] framework to estimate the power, area, and
timing for the components of the microarchitecture. The connection between Sniper and
McPAT is accomplished using a plugin (Python script), which dynamically creates the re-
quired configuration artifacts, runs the McPAT executable, and stores the outcome in
Sniper�s internal database, which can be accessed by other plugins.

Figure 2. Example of frequency adaptation using SCSP.

3.2. Power, Area, and Thermal Estimations

In Figure 3, a simplified overview of the used complex simulation methodology is
depicted. This methodology emphasized the use of the multi/many-core simulator Sniper,
which was enhanced with the speculative VP unit and the anticipative DIR unit. The DVFS
manager within the simulator is also highlighted because the SCSP interacts with it to
adapt and read the frequency for each core.

Sniper has integrated the McPAT [13] framework to estimate the power, area, and
timing for the components of the microarchitecture. The connection between Sniper and
McPAT is accomplished using a plugin (Python script), which dynamically creates the
required configuration artifacts, runs the McPAT executable, and stores the outcome in
Sniper’s internal database, which can be accessed by other plugins.

Computers 2024, 13, 84 9 of 21Computers 2024, 13, x FOR PEER REVIEW 9 of 22

Figure 3. An overview of the simulation methodology.

For the thermal estimation, the HotSpot [15] simulator was used, which is fast and
has an accuracy in the 90–98% range. The simulator estimates the chip temperatures based
on a power trace file and the spatial configuration of the chip (floorplan). The floorplan
describes the position and size of the blocks inside the microprocessor architecture. The
power trace file contains the power consumption of each functional unit from the micro-
processor sampled at a specific time (e.g., every 500 µs). To integrate HotSpot into the
Sniper simulator, a plugin-based solution was developed in [14] and further extended for
this work. The most notable improvement made is the ability to use dynamic frequency
and voltage for power and integration area estimations.

4. Simulation Environment and Metrics
All simulations were performed on a host system comprising an Intel Xenon Gold

6240R CPU (equipped with 48 physical and 96 virtual cores running at 2.4 GHz), 128 GB
DRAM (2.933 GHz), and 2 TB SSD storage. The Sniper simulator was executed on a Linux
virtual machine, which runs the Ubuntu 18.04 64-bit operating system. The Intel Nehalem
microarchitecture in Gainestown configuration was simulated considering a 45 nm inte-
gration technology, as summarized in Table 1. One observation is that the Splash-4 bench-
marks, when running on more than 32 cores, are more demanding in terms of DRAM
requests. The DRAM directory is implemented in Sniper as a set-associative unit, and
many times it has been observed that there are too many outstanding requests for which

Figure 3. An overview of the simulation methodology.

For the thermal estimation, the HotSpot [15] simulator was used, which is fast and has
an accuracy in the 90–98% range. The simulator estimates the chip temperatures based on a
power trace file and the spatial configuration of the chip (floorplan). The floorplan describes
the position and size of the blocks inside the microprocessor architecture. The power
trace file contains the power consumption of each functional unit from the microprocessor
sampled at a specific time (e.g., every 500 µs). To integrate HotSpot into the Sniper simulator,
a plugin-based solution was developed in [14] and further extended for this work. The
most notable improvement made is the ability to use dynamic frequency and voltage for
power and integration area estimations.

4. Simulation Environment and Metrics

All simulations were performed on a host system comprising an Intel Xenon Gold
6240R CPU (equipped with 48 physical and 96 virtual cores running at 2.4 GHz),
128 GB DRAM (2.933 GHz), and 2 TB SSD storage. The Sniper simulator was executed
on a Linux virtual machine, which runs the Ubuntu 18.04 64-bit operating system. The
Intel Nehalem microarchitecture in Gainestown configuration was simulated considering a
45 nm integration technology, as summarized in Table 1. One observation is that the
Splash-4 benchmarks, when running on more than 32 cores, are more demanding in terms
of DRAM requests. The DRAM directory is implemented in Sniper as a set-associative
unit, and many times it has been observed that there are too many outstanding requests

Computers 2024, 13, 84 10 of 21

for which no entry can be associated; this leads to an unrecoverable error and the end of
the simulation. To mitigate this, the associativity of DRAM was increased from 16 to 32.
According to the Sniper developers, increasing the associativity of this structure mitigates
the probability of conflicts but does not impact the performance of the simulation. All
benchmarks were compiled using the “O3” optimization option.

Table 1. Baseline configuration of Intel Nehalem (Gainestown).

Intel Nehalem (Gainestown)

Parameter Name Value

L3 Cache (Shared)
Size 8192 KB
Associativity 16

L2 Cache
Size 256 KB
Associativity 8

L1 Data Cache
Size 32 KB
Associativity 8

L1 Instruction Cache
Size 32 KB
Associativity 4

Frequency 2.66 GHz
Number of cores 4
DRAM associativity 32

The number of instructions per cycles (1) is the most common performance metric for
processors. Formula (2) was used to measure the performance at the core level, whereas
the overall process performance was calculated according to (3). For each metric, the
relative difference was calculated using Equation (4). The metrics used included processor
performance, core performance, energy consumption, dynamic power consumption, pre-
dictor accuracy, idle time, and maximum chip temperature. The energy consumption was
computed using (5) [18]. The calculation for the average CPU frequency was carried out
dynamically using a running average for all cores sampled, as specified by the SCSP-calling
interval parameter (e.g., each 2 µs).

IPC =
I
N

(1)

Core Performance =
N

∑
i=1

IPCi
C

(2)

Processor Performance =
N

∑
i=1

Ii
MAX1≤k≤N{Ek}

(3)

where:

• I = the number of instructions executed.
• N = the number of cycles necessary to execute the instructions.
• C = the number of cores.
• Ek = execution time in cycles for core k.

Relative Difference =
ME − MB

MB
× 100 [%] (4)

where:

• MB = Metric of the baseline configuration.
• ME = Metric of the enhanced architecture (with SCSP, DIR, or VP unit).

Energy =
AVG(P)× MAX(C)

AVG(fCPU)
[J] (5)

Computers 2024, 13, 84 11 of 21

where:

• P = the dynamic power consumption.
• C = the number of cycles.
• fCPU = frequency of the simulated processor [Hz].

5. Experimental Results
5.1. An Empirical Analysis of Splash-2 and Splash-4

This section presents a comparison between the older Splash-2 suite and the latest
enhanced version, Splash-4. The analysis was carried out with variations in the number
of cores to reflect the scalability characteristics of the benchmarks. For each metric, the
average of all benchmarks is shown. The total simulation time to generate these results was
370 h, ~16 days. The SCSP unit was configured as follows:

• calling_interval_ns = 2000
• idle_frequency_mhz = 1000
• confidence = 0
• history = 1

The first metric is represented by the time the cores spend in the idle phase; this
is shown in Figure 4. Along with the increase in the number of cores, the average idle
time linearly increases. From the 8-core configuration up to 64 cores, there is a significant
difference between Splash-2 and Splash-4, with the latter achieving up to a 30% reduction
in idle time. This reduction comes from the modern programming techniques introduced
in the Splash-4 benchmarks to improve their scalability. Also, the idle time seems to
remain quite high, especially on the 64-core configuration, where, on Splash-4, a 45% idle
time was recorded. This represents the motivating factor for exploiting this idle time by
proposing the SCPS with the target of reducing the overall energy consumption by applying
DVFS predictively.

Computers 2024, 13, x FOR PEER REVIEW 11 of 22

AVG() MAX()Energy [J]
AVG()CPU

P C
f

×= (5)

where:
• P = the dynamic power consumption.
• C = the number of cycles.
• fCPU = frequency of the simulated processor [Hz].

5. Experimental Results
5.1. An Empirical Analysis of Splash-2 and Splash-4

This section presents a comparison between the older Splash-2 suite and the latest
enhanced version, Splash-4. The analysis was carried out with variations in the number of
cores to reflect the scalability characteristics of the benchmarks. For each metric, the aver-
age of all benchmarks is shown. The total simulation time to generate these results was
370 h, ~16 days. The SCSP unit was configured as follows:
• calling_interval_ns = 2000
• idle_frequency_mhz = 1000
• confidence = 0
• history = 1

The first metric is represented by the time the cores spend in the idle phase; this is
shown in Figure 4. Along with the increase in the number of cores, the average idle time
linearly increases. From the 8-core configuration up to 64 cores, there is a significant dif-
ference between Splash-2 and Splash-4, with the latter achieving up to a 30% reduction in
idle time. This reduction comes from the modern programming techniques introduced in
the Splash-4 benchmarks to improve their scalability. Also, the idle time seems to remain
quite high, especially on the 64-core configuration, where, on Splash-4, a 45% idle time
was recorded. This represents the motivating factor for exploiting this idle time by pro-
posing the SCPS with the target of reducing the overall energy consumption by applying
DVFS predictively.

Figure 4. Idle time with the variation in the number of cores.

It is commonly known that the overall computing performance can be increased by
parallelizing applications and running them on multiple cores. The overall processor per-
formance with the variations number of cores, summarized in Figure 5, was calculated by
averaging all benchmarks. The results confirm that the performance increases along with
the number of cores, demonstrating the scalability. Starting with the configuration with
16 cores up to the one with 64 cores, Splash-4 performs better than Splash-2. This correlates
well with the scalability results achieved in [1].

0

20

40

60

80

1 2 4 8 16 32 64

Id
le

 T
im

e
[%

]

Number of cores

 Splash-2 Splash-4

Figure 4. Idle time with the variation in the number of cores.

It is commonly known that the overall computing performance can be increased by
parallelizing applications and running them on multiple cores. The overall processor
performance with the variations number of cores, summarized in Figure 5, was calculated
by averaging all benchmarks. The results confirm that the performance increases along
with the number of cores, demonstrating the scalability. Starting with the configuration
with 16 cores up to the one with 64 cores, Splash-4 performs better than Splash-2. This
correlates well with the scalability results achieved in [1].

Computers 2024, 13, 84 12 of 21Computers 2024, 13, x FOR PEER REVIEW 12 of 22

Figure 5. Processor performance with the variation in the number of cores.

In Figure 6, it can be observed that varying the number of cores reduces the average
performance at the core level. It may look strange at first, but this happens because of the
computer program vs. system scalability and the overhead introduced by communication
through shared data (implied by inter/intra-core communication). In other words, it
shows the system�s efficiency, meaning that, on average, the programs� execution is faster
when the system offers more computing resources. The way the programs are written to
exploit all the available resources as efficiently as possible is also important. The core per-
formance of the 16-, 32-, and 64-core configurations is well correlated with the overall pro-
cessor performance and idle time.

Figure 6. Averaged core performance with the variation in the number of cores.

A graph showing the dynamic power consumption of the processor in relation to the
number of cores is visible in Figure 7. It increases along with the number of cores, and
overall, Splash-4 consumes more power than the older suite. This is well correlated with
the scalability increase and with the increase in performance and idle time reduction. A
higher difference was found on the 64-core configuration, where a difference of ~154 W
was measured, making it a good example of the scalability and performance impact on
the chip power consumption. Based on the results, it can be stated that the Splash-4 bench-
marks consumed more power overall than the Splash-2 benchmarks.

Figure 5. Processor performance with the variation in the number of cores.

In Figure 6, it can be observed that varying the number of cores reduces the average
performance at the core level. It may look strange at first, but this happens because of the
computer program vs. system scalability and the overhead introduced by communication
through shared data (implied by inter/intra-core communication). In other words, it shows
the system’s efficiency, meaning that, on average, the programs’ execution is faster when
the system offers more computing resources. The way the programs are written to exploit
all the available resources as efficiently as possible is also important. The core performance
of the 16-, 32-, and 64-core configurations is well correlated with the overall processor
performance and idle time.

Computers 2024, 13, x FOR PEER REVIEW 12 of 22

Figure 5. Processor performance with the variation in the number of cores.

In Figure 6, it can be observed that varying the number of cores reduces the average
performance at the core level. It may look strange at first, but this happens because of the
computer program vs. system scalability and the overhead introduced by communication
through shared data (implied by inter/intra-core communication). In other words, it
shows the system�s efficiency, meaning that, on average, the programs� execution is faster
when the system offers more computing resources. The way the programs are written to
exploit all the available resources as efficiently as possible is also important. The core per-
formance of the 16-, 32-, and 64-core configurations is well correlated with the overall pro-
cessor performance and idle time.

Figure 6. Averaged core performance with the variation in the number of cores.

A graph showing the dynamic power consumption of the processor in relation to the
number of cores is visible in Figure 7. It increases along with the number of cores, and
overall, Splash-4 consumes more power than the older suite. This is well correlated with
the scalability increase and with the increase in performance and idle time reduction. A
higher difference was found on the 64-core configuration, where a difference of ~154 W
was measured, making it a good example of the scalability and performance impact on
the chip power consumption. Based on the results, it can be stated that the Splash-4 bench-
marks consumed more power overall than the Splash-2 benchmarks.

Figure 6. Averaged core performance with the variation in the number of cores.

A graph showing the dynamic power consumption of the processor in relation to the
number of cores is visible in Figure 7. It increases along with the number of cores, and
overall, Splash-4 consumes more power than the older suite. This is well correlated with
the scalability increase and with the increase in performance and idle time reduction. A
higher difference was found on the 64-core configuration, where a difference of ~154 W was
measured, making it a good example of the scalability and performance impact on the chip
power consumption. Based on the results, it can be stated that the Splash-4 benchmarks
consumed more power overall than the Splash-2 benchmarks.

Computers 2024, 13, 84 13 of 21Computers 2024, 13, x FOR PEER REVIEW 13 of 22

Figure 7. Dynamic power consumption of the processor with the variation in the number of cores.

Figure 8 depicts the averaged energy consumption of the processor in relation to the
number of cores. It can be observed that it follows an increasing trend along with the
number of cores in terms of performance and power consumption. One important thing
to remark is that the increase rate is much smaller compared with the other two metrics,
which have an almost exponential increase rate. Hence, since the Splash-2 benchmarks
consume less energy in all configurations, it can be stated that they are more energy-effi-
cient than the newer version. For configurations ranging from 1 to 16 cores, the increase
can be considered neglectable.

Figure 8. Energy consumption of the processor with the variation in the number of cores.

Following the energy consumption increase trend, the average maximum chip tem-
perature measurements are presented in Figure 9. The chip temperatures might not ex-
ceed the critical threshold of 105 °C [2]. On average, most of the temperatures are well
under the commonly critical threshold of 105 °C. The highest recorded value was found
on the 64-core configuration of Splash-4 (104.2 °C). A detailed view for this configuration
is visible in Figure 10, where it can be seen that the “lu.cont”, “ocean.cont”, “ocean.ncont”,
“water.nsq”, and “water.sp” benchmarks have temperatures over the critical threshold,
with the highest value of 167.8 °C being measured on “water.sp”.

0

5

10

15

20

1 2 4 8 16 32 64

En
er

gy
 C

on
su

m
pt

io
n

[J]

Number of cores

 Splash-2 Splash-4

Figure 7. Dynamic power consumption of the processor with the variation in the number of cores.

Figure 8 depicts the averaged energy consumption of the processor in relation to the
number of cores. It can be observed that it follows an increasing trend along with the
number of cores in terms of performance and power consumption. One important thing
to remark is that the increase rate is much smaller compared with the other two metrics,
which have an almost exponential increase rate. Hence, since the Splash-2 benchmarks
consume less energy in all configurations, it can be stated that they are more energy-efficient
than the newer version. For configurations ranging from 1 to 16 cores, the increase can be
considered neglectable.

Computers 2024, 13, x FOR PEER REVIEW 13 of 22

Figure 7. Dynamic power consumption of the processor with the variation in the number of cores.

Figure 8 depicts the averaged energy consumption of the processor in relation to the
number of cores. It can be observed that it follows an increasing trend along with the
number of cores in terms of performance and power consumption. One important thing
to remark is that the increase rate is much smaller compared with the other two metrics,
which have an almost exponential increase rate. Hence, since the Splash-2 benchmarks
consume less energy in all configurations, it can be stated that they are more energy-effi-
cient than the newer version. For configurations ranging from 1 to 16 cores, the increase
can be considered neglectable.

Figure 8. Energy consumption of the processor with the variation in the number of cores.

Following the energy consumption increase trend, the average maximum chip tem-
perature measurements are presented in Figure 9. The chip temperatures might not ex-
ceed the critical threshold of 105 °C [2]. On average, most of the temperatures are well
under the commonly critical threshold of 105 °C. The highest recorded value was found
on the 64-core configuration of Splash-4 (104.2 °C). A detailed view for this configuration
is visible in Figure 10, where it can be seen that the “lu.cont”, “ocean.cont”, “ocean.ncont”,
“water.nsq”, and “water.sp” benchmarks have temperatures over the critical threshold,
with the highest value of 167.8 °C being measured on “water.sp”.

0

5

10

15

20

1 2 4 8 16 32 64

En
er

gy
 C

on
su

m
pt

io
n

[J]

Number of cores

 Splash-2 Splash-4

Figure 8. Energy consumption of the processor with the variation in the number of cores.

Following the energy consumption increase trend, the average maximum chip temper-
ature measurements are presented in Figure 9. The chip temperatures might not exceed the
critical threshold of 105 ◦C [2]. On average, most of the temperatures are well under the
commonly critical threshold of 105 ◦C. The highest recorded value was found on the 64-core
configuration of Splash-4 (104.2 ◦C). A detailed view for this configuration is visible in
Figure 10, where it can be seen that the “lu.cont”, “ocean.cont”, “ocean.ncont”, “water.nsq”,
and “water.sp” benchmarks have temperatures over the critical threshold, with the highest
value of 167.8 ◦C being measured on “water.sp”.

Figure 11 presents the relative difference of all metrics of interest in relation to the
number of cores on Splash-4 compared with Splash-2. It can be observed that the only
metric that shows a decreasing trend is idle time, with an up to 30% reduction for the
64-core configuration. The rest of the metrics follow an increasing trend. Compared with
Splash-2, on Splash-4, higher performance was achieved while consuming more power
and energy and generating higher chip temperatures. On half of the benchmarks, 5 out of
10, the maximum chip temperatures recorded were over the common critical threshold of
105 ◦C. Beyond this threshold, the DTM techniques usually apply different restrictions to
the system, affecting its overall performance and preventing chip degradation. Because

Computers 2024, 13, 84 14 of 21

of the increased number of cores, bearing in mind the scalability aspects of computer
programs, they are executed much faster and generate a much higher power consumption
over a shorter period, thus making the chip generate more heat. This is a strong example of
the necessity of a multi-objective evaluation.

Computers 2024, 13, x FOR PEER REVIEW 14 of 22

Figure 9. Maximum chip temperature of the processor with the variation in the number of cores.

Figure 10. Maximum chip temperature of all benchmarks for 64-core configuration.

Figure 11 presents the relative difference of all metrics of interest in relation to the
number of cores on Splash-4 compared with Splash-2. It can be observed that the only
metric that shows a decreasing trend is idle time, with an up to 30% reduction for the 64-
core configuration. The rest of the metrics follow an increasing trend. Compared with
Splash-2, on Splash-4, higher performance was achieved while consuming more power
and energy and generating higher chip temperatures. On half of the benchmarks, 5 out of
10, the maximum chip temperatures recorded were over the common critical threshold of
105 °C. Beyond this threshold, the DTM techniques usually apply different restrictions to
the system, affecting its overall performance and preventing chip degradation. Because of
the increased number of cores, bearing in mind the scalability aspects of computer pro-
grams, they are executed much faster and generate a much higher power consumption
over a shorter period, thus making the chip generate more heat. This is a strong example
of the necessity of a multi-objective evaluation.

Figure 9. Maximum chip temperature of the processor with the variation in the number of cores.

Computers 2024, 13, x FOR PEER REVIEW 14 of 22

Figure 9. Maximum chip temperature of the processor with the variation in the number of cores.

Figure 10. Maximum chip temperature of all benchmarks for 64-core configuration.

Figure 11 presents the relative difference of all metrics of interest in relation to the
number of cores on Splash-4 compared with Splash-2. It can be observed that the only
metric that shows a decreasing trend is idle time, with an up to 30% reduction for the 64-
core configuration. The rest of the metrics follow an increasing trend. Compared with
Splash-2, on Splash-4, higher performance was achieved while consuming more power
and energy and generating higher chip temperatures. On half of the benchmarks, 5 out of
10, the maximum chip temperatures recorded were over the common critical threshold of
105 °C. Beyond this threshold, the DTM techniques usually apply different restrictions to
the system, affecting its overall performance and preventing chip degradation. Because of
the increased number of cores, bearing in mind the scalability aspects of computer pro-
grams, they are executed much faster and generate a much higher power consumption
over a shorter period, thus making the chip generate more heat. This is a strong example
of the necessity of a multi-objective evaluation.

Figure 10. Maximum chip temperature of all benchmarks for 64-core configuration.
Computers 2024, 13, x FOR PEER REVIEW 15 of 22

Figure 11. Relative difference of Splash-4 for each metric in relation to the number of cores.

5.2. An Analysis of an Enhanced Architecture with the SCSP
In this section, the simulation results regarding the use of the enhanced architecture,

which contained the proposed SCSP, are presented. The analysis was carried out by run-
ning the Splash-4 suite on a 16-core system. More than that, the SCSP was applied in tan-
dem with the DIR anticipative technique and with the VP speculative one. The goal of
combining these methods was to further reduce energy consumption, keep the maximum
chip temperatures stable, and increase performance. The total simulation time for this set
of results was 136 h, ~6 days. The configuration of the VP and DIR is shown in Table 2 and
Table 3 respectively.

Table 2. Configuration of the VP unit.

 Parameter Name Value

V
P

Associativity 4
Num. entries 512

History 1
Penalty latency 17 cycles
Access latency 1 cycle

Block size 16 B
Size 8 KB

Table 3. Configuration of the DIR unit.

 Parameter Name Value

D
IR

Associativity 4
Num. entries 512

Access latency 1 cycle
Block size 64 B

Size 32 KB

The first metric of interest is the SCSP prediction accuracy, which is plotted in Figure
12, calculated as the number of correct predictions divided by the total number of predic-
tions. On average, an accuracy of 98.8% was achieved. The SCSP unit was configured to
behave as a last state predictor (keeping only one state in history), with the confidence
threshold being set to 0. As can be observed, in this context, the core state can be easily
predicted using a minimalistic configuration.

−40

−20

0

20

40

60

80

1 2 4 8 16 32 64

Re
la

tiv
e

Di
ffe

re
nc

e
[%

]

Number of cores

Dynamic Power

Energy

Idle Time

Max. Temperature

Processor Performance

Figure 11. Relative difference of Splash-4 for each metric in relation to the number of cores.

Computers 2024, 13, 84 15 of 21

5.2. An Analysis of an Enhanced Architecture with the SCSP

In this section, the simulation results regarding the use of the enhanced architecture,
which contained the proposed SCSP, are presented. The analysis was carried out by
running the Splash-4 suite on a 16-core system. More than that, the SCSP was applied
in tandem with the DIR anticipative technique and with the VP speculative one. The
goal of combining these methods was to further reduce energy consumption, keep the
maximum chip temperatures stable, and increase performance. The total simulation time
for this set of results was 136 h, ~6 days. The configuration of the VP and DIR is shown in
Tables 2 and 3 respectively.

Table 2. Configuration of the VP unit.

Parameter Name Value

V
P

Associativity 4
Num. entries 512

History 1
Penalty latency 17 cycles
Access latency 1 cycle

Block size 16 B
Size 8 KB

Table 3. Configuration of the DIR unit.

Parameter Name Value

D
IR

Associativity 4
Num. entries 512

Access latency 1 cycle
Block size 64 B

Size 32 KB

The first metric of interest is the SCSP prediction accuracy, which is plotted in Figure 12,
calculated as the number of correct predictions divided by the total number of predictions.
On average, an accuracy of 98.8% was achieved. The SCSP unit was configured to behave
as a last state predictor (keeping only one state in history), with the confidence threshold
being set to 0. As can be observed, in this context, the core state can be easily predicted
using a minimalistic configuration.

Computers 2024, 13, x FOR PEER REVIEW 16 of 22

Figure 12. SCSP predictor accuracy for each benchmark (16 cores).

The impact of the considered microarchitectural techniques on the processor idle
time is visible in Figure 13. On average, compared to the baseline configuration, when
applying only the SCSP, the idle time slightly increased from 30.4% to 30.8%. The highest
reduction was achieved by combining the SCSP with the VP, reaching a reduction of 2.7%,
from 30.4% to 27.7%.

Figure 13. Idle time for each benchmark using multiple microarchitectural configurations (16 cores).

The processor performance for each benchmark is shown in Figure 14. On average,
the configuration that contained the SCSP and VP performed the best, ranging from 16.4
IPC to 17.9 IPC. The highest contributor was the “lu.cont” benchmark, on which an im-
pressive performance increase from 9.3 IPC to 25.46 IPC was measured. It can be seen that,
using the VP speculative technique, a higher IPC was achieved compared with the non-
speculative RB technique. The main reason for this difference between the two techniques
is due to the intrinsic differences between them, meaning that the DIR technique requires
the values of the operands to be fetched for checking if the result can be reused (non-
speculative). On the other hand, the VP technique can provide a speculated value much
earlier, as it does not need to wait until the value of the operands is available. The time
required to fetch the operand values is highly valuable in this scenario, especially when
reading any of them causes a miss in the cache hierarchy or is simply read from a slower
memory. Unlocking the execution of dependent instructions in a speculative way is a ma-
jor advantage of the VP compared with the DIR. Using only the SCSP technique, on aver-
age, the performance slightly decreased, having a difference of 0.1 IPC. The benchmark
“barnes” was the biggest contributor to this decrease, which can be easily correlated with
the fact that it had the lowest prediction accuracy of 88.4%, negatively affecting the overall
performance.

Figure 12. SCSP predictor accuracy for each benchmark (16 cores).

The impact of the considered microarchitectural techniques on the processor idle time
is visible in Figure 13. On average, compared to the baseline configuration, when applying
only the SCSP, the idle time slightly increased from 30.4% to 30.8%. The highest reduction

Computers 2024, 13, 84 16 of 21

was achieved by combining the SCSP with the VP, reaching a reduction of 2.7%, from 30.4%
to 27.7%.

Computers 2024, 13, x FOR PEER REVIEW 16 of 22

Figure 12. SCSP predictor accuracy for each benchmark (16 cores).

The impact of the considered microarchitectural techniques on the processor idle
time is visible in Figure 13. On average, compared to the baseline configuration, when
applying only the SCSP, the idle time slightly increased from 30.4% to 30.8%. The highest
reduction was achieved by combining the SCSP with the VP, reaching a reduction of 2.7%,
from 30.4% to 27.7%.

Figure 13. Idle time for each benchmark using multiple microarchitectural configurations (16 cores).

The processor performance for each benchmark is shown in Figure 14. On average,
the configuration that contained the SCSP and VP performed the best, ranging from 16.4
IPC to 17.9 IPC. The highest contributor was the “lu.cont” benchmark, on which an im-
pressive performance increase from 9.3 IPC to 25.46 IPC was measured. It can be seen that,
using the VP speculative technique, a higher IPC was achieved compared with the non-
speculative RB technique. The main reason for this difference between the two techniques
is due to the intrinsic differences between them, meaning that the DIR technique requires
the values of the operands to be fetched for checking if the result can be reused (non-
speculative). On the other hand, the VP technique can provide a speculated value much
earlier, as it does not need to wait until the value of the operands is available. The time
required to fetch the operand values is highly valuable in this scenario, especially when
reading any of them causes a miss in the cache hierarchy or is simply read from a slower
memory. Unlocking the execution of dependent instructions in a speculative way is a ma-
jor advantage of the VP compared with the DIR. Using only the SCSP technique, on aver-
age, the performance slightly decreased, having a difference of 0.1 IPC. The benchmark
“barnes” was the biggest contributor to this decrease, which can be easily correlated with
the fact that it had the lowest prediction accuracy of 88.4%, negatively affecting the overall
performance.

Figure 13. Idle time for each benchmark using multiple microarchitectural configurations (16 cores).

The processor performance for each benchmark is shown in Figure 14. On average, the
configuration that contained the SCSP and VP performed the best, ranging from 16.4 IPC
to 17.9 IPC. The highest contributor was the “lu.cont” benchmark, on which an impressive
performance increase from 9.3 IPC to 25.46 IPC was measured. It can be seen that, using the
VP speculative technique, a higher IPC was achieved compared with the non-speculative
RB technique. The main reason for this difference between the two techniques is due to the
intrinsic differences between them, meaning that the DIR technique requires the values of
the operands to be fetched for checking if the result can be reused (non-speculative). On
the other hand, the VP technique can provide a speculated value much earlier, as it does
not need to wait until the value of the operands is available. The time required to fetch the
operand values is highly valuable in this scenario, especially when reading any of them
causes a miss in the cache hierarchy or is simply read from a slower memory. Unlocking
the execution of dependent instructions in a speculative way is a major advantage of the
VP compared with the DIR. Using only the SCSP technique, on average, the performance
slightly decreased, having a difference of 0.1 IPC. The benchmark “barnes” was the biggest
contributor to this decrease, which can be easily correlated with the fact that it had the
lowest prediction accuracy of 88.4%, negatively affecting the overall performance.

Computers 2024, 13, x FOR PEER REVIEW 17 of 22

Figure 14. Processor performance for each benchmark using multiple microarchitectural configura-
tions (16 cores).

Regarding the dynamic power consumption, it can be seen in Figure 15 that, on av-
erage, all the applied techniques reduced it with respect to the baseline architecture. The
highest reduction of 12.3 W was achieved by applying the SCSP technique individually.
The configurations combining DIR and VP slightly increased the dynamic power con-
sumption, a fact that is strongly related to the increase in processor performance. Even
with the best-performing configuration with the SCSP and VP, a reduction of 3.9 W was
still achieved. It can be concluded that all the applied techniques reduce the overall power
consumption.

Figure 15. Dynamic power consumption for each benchmark using multiple microarchitectural con-
figurations (16 cores).

The next metric of interest is the energy consumption of the processor in relation to
the microarchitectural configurations, as plotted in Figure 16. On all configurations, a
modest reduction of ~1 J was recorded. This is an impressive achievement considering the
increase in processor performance when DIR and VP were applied in tandem with the
SCSP.

Figure 14. Processor performance for each benchmark using multiple microarchitectural configura-
tions (16 cores).

Regarding the dynamic power consumption, it can be seen in Figure 15 that, on
average, all the applied techniques reduced it with respect to the baseline architecture. The
highest reduction of 12.3 W was achieved by applying the SCSP technique individually. The
configurations combining DIR and VP slightly increased the dynamic power consumption,

Computers 2024, 13, 84 17 of 21

a fact that is strongly related to the increase in processor performance. Even with the best-
performing configuration with the SCSP and VP, a reduction of 3.9 W was still achieved. It
can be concluded that all the applied techniques reduce the overall power consumption.

Computers 2024, 13, x FOR PEER REVIEW 17 of 22

Figure 14. Processor performance for each benchmark using multiple microarchitectural configura-
tions (16 cores).

Regarding the dynamic power consumption, it can be seen in Figure 15 that, on av-
erage, all the applied techniques reduced it with respect to the baseline architecture. The
highest reduction of 12.3 W was achieved by applying the SCSP technique individually.
The configurations combining DIR and VP slightly increased the dynamic power con-
sumption, a fact that is strongly related to the increase in processor performance. Even
with the best-performing configuration with the SCSP and VP, a reduction of 3.9 W was
still achieved. It can be concluded that all the applied techniques reduce the overall power
consumption.

Figure 15. Dynamic power consumption for each benchmark using multiple microarchitectural con-
figurations (16 cores).

The next metric of interest is the energy consumption of the processor in relation to
the microarchitectural configurations, as plotted in Figure 16. On all configurations, a
modest reduction of ~1 J was recorded. This is an impressive achievement considering the
increase in processor performance when DIR and VP were applied in tandem with the
SCSP.

Figure 15. Dynamic power consumption for each benchmark using multiple microarchitectural
configurations (16 cores).

The next metric of interest is the energy consumption of the processor in relation to the
microarchitectural configurations, as plotted in Figure 16. On all configurations, a modest
reduction of ~1 J was recorded. This is an impressive achievement considering the increase
in processor performance when DIR and VP were applied in tandem with the SCSP.

Computers 2024, 13, x FOR PEER REVIEW 18 of 22

Figure 16. Energy consumption for each benchmark using multiple microarchitectural configura-
tions (16 cores).

The maximum chip temperatures that were recorded for all the simulated bench-
marks are summarized in Figure 17. On the “lu.cont” benchmark, the highest increase of
11.9 °C was measured when the SCSP and VP techniques were applied simultaneously.
In this case, the increase is correlated with the high power consumption and performance
increase recorded on this benchmark. It generates more power over a shorter period of
time, making the chip generate more heat faster. On average, it can be concluded that no
significant temperature change is visible regarding the applied configuration. Also, all
temperatures are well below the common critical threshold.

Figure 17. Maximum chip temperature for each benchmark using multiple microarchitectural con-
figurations (16 cores).

Another important metric is the integration area of the chip. The proposed techniques
also have an impact on the overall chip area. In Figure 18, the chip area for each microar-
chitectural configuration is plotted. It can be seen that the SCSP did not cause an increase
in the integration area because it was implemented at the application level, requiring no
hardware change. Another observation is that the configurations that include DIR have a
bigger footprint per core (2.98 mm2) than the ones that include VP (0.42 mm2). This is
normal because DIR needs to keep, for each dynamic instruction, the results of the opera-
tion and all the operand values inside the buffer. On the other hand, the VP has a much
smaller footprint because it requires the keeping of only the results of the instruction.

Figure 16. Energy consumption for each benchmark using multiple microarchitectural configurations
(16 cores).

The maximum chip temperatures that were recorded for all the simulated benchmarks
are summarized in Figure 17. On the “lu.cont” benchmark, the highest increase of 11.9 ◦C
was measured when the SCSP and VP techniques were applied simultaneously. In this
case, the increase is correlated with the high power consumption and performance increase
recorded on this benchmark. It generates more power over a shorter period of time, making
the chip generate more heat faster. On average, it can be concluded that no significant
temperature change is visible regarding the applied configuration. Also, all temperatures
are well below the common critical threshold.

Computers 2024, 13, 84 18 of 21

Computers 2024, 13, x FOR PEER REVIEW 18 of 22

Figure 16. Energy consumption for each benchmark using multiple microarchitectural configura-
tions (16 cores).

The maximum chip temperatures that were recorded for all the simulated bench-
marks are summarized in Figure 17. On the “lu.cont” benchmark, the highest increase of
11.9 °C was measured when the SCSP and VP techniques were applied simultaneously.
In this case, the increase is correlated with the high power consumption and performance
increase recorded on this benchmark. It generates more power over a shorter period of
time, making the chip generate more heat faster. On average, it can be concluded that no
significant temperature change is visible regarding the applied configuration. Also, all
temperatures are well below the common critical threshold.

Figure 17. Maximum chip temperature for each benchmark using multiple microarchitectural con-
figurations (16 cores).

Another important metric is the integration area of the chip. The proposed techniques
also have an impact on the overall chip area. In Figure 18, the chip area for each microar-
chitectural configuration is plotted. It can be seen that the SCSP did not cause an increase
in the integration area because it was implemented at the application level, requiring no
hardware change. Another observation is that the configurations that include DIR have a
bigger footprint per core (2.98 mm2) than the ones that include VP (0.42 mm2). This is
normal because DIR needs to keep, for each dynamic instruction, the results of the opera-
tion and all the operand values inside the buffer. On the other hand, the VP has a much
smaller footprint because it requires the keeping of only the results of the instruction.

Figure 17. Maximum chip temperature for each benchmark using multiple microarchitectural
configurations (16 cores).

Another important metric is the integration area of the chip. The proposed techniques
also have an impact on the overall chip area. In Figure 18, the chip area for each microarchi-
tectural configuration is plotted. It can be seen that the SCSP did not cause an increase in the
integration area because it was implemented at the application level, requiring no hardware
change. Another observation is that the configurations that include DIR have a bigger
footprint per core (2.98 mm2) than the ones that include VP (0.42 mm2). This is normal
because DIR needs to keep, for each dynamic instruction, the results of the operation and
all the operand values inside the buffer. On the other hand, the VP has a much smaller
footprint because it requires the keeping of only the results of the instruction.

Computers 2024, 13, x FOR PEER REVIEW 19 of 22

Figure 18. Chip area for each microarchitectural configuration (16 cores).

Figure 19 provides a good overview of the impact of all the simulated configurations
on the metrics of interest. Here, the tradeoffs between each technique can be seen. For
example, the highest power (−9.95%) and energy (−10.54%) reductions were achieved us-
ing only the SCSP technique, which did not affect the integration area or maximum tem-
peratures but resulted in a minor increase in idle time (1.18%) and a neglectable reduction
in performance (−0.77%). On the other hand, using the combined approach consisting of
the SCSP and VP offers the highest performance increase (8.87%) and idle time reduction
(8.76%) while reducing power (−3.13%) and energy consumption (−8.48%) at the cost of a
small increase in temperature (0.83%) and chip area (0.85%). The configuration with the
SCSP and DIR is a quasi-optimal solution that lies in between those two.

Figure 19. Relative difference for each microarchitectural configuration in relation to each metric (16
cores).

6. Conclusions and Future Work
In this work, the importance of multi-objective analysis during the development of

multicore processors was shown. Through analyzing Splash-2 vs. Splash-4 benchmarks,
the impact of modern programming techniques on idle time, processing performance,
power consumption, energy consumption, and thermal behavior was shown. It was iden-
tified that on the 64-core configuration, the chip temperatures exceed the critical threshold
of 105 °C on half of the simulated benchmarks, emphasizing the need for multi-perspec-
tive evaluation in today�s processors. Based on the achieved results, it was noticed that the
processing cores spend a lot of time in the idle state, waiting for work or synchronization
barriers. This was exploited by implementing an SCSP that dynamically adapts the fre-
quency and voltage at the core level by predicting the core state. Using this technique, an
average power consumption reduction of 9.95% and an energy saving of −10.54% were

−12
−9
−6
−3

0
3
6
9

12

Dynamic
Power

Energy Idle Time Max.
Temperature

Processor
Performance

Chip Area

Re
la

tiv
e

Di
ffe

re
nc

e
[%

]

SCSP SCSP + SHLA-RB SCSP + SHLA-VP

Figure 18. Chip area for each microarchitectural configuration (16 cores).

Figure 19 provides a good overview of the impact of all the simulated configurations on
the metrics of interest. Here, the tradeoffs between each technique can be seen. For example,
the highest power (−9.95%) and energy (−10.54%) reductions were achieved using only the
SCSP technique, which did not affect the integration area or maximum temperatures but
resulted in a minor increase in idle time (1.18%) and a neglectable reduction in performance
(−0.77%). On the other hand, using the combined approach consisting of the SCSP and
VP offers the highest performance increase (8.87%) and idle time reduction (8.76%) while
reducing power (−3.13%) and energy consumption (−8.48%) at the cost of a small increase
in temperature (0.83%) and chip area (0.85%). The configuration with the SCSP and DIR is
a quasi-optimal solution that lies in between those two.

Computers 2024, 13, 84 19 of 21

Computers 2024, 13, x FOR PEER REVIEW 19 of 22

Figure 18. Chip area for each microarchitectural configuration (16 cores).

Figure 19 provides a good overview of the impact of all the simulated configurations
on the metrics of interest. Here, the tradeoffs between each technique can be seen. For
example, the highest power (−9.95%) and energy (−10.54%) reductions were achieved us-
ing only the SCSP technique, which did not affect the integration area or maximum tem-
peratures but resulted in a minor increase in idle time (1.18%) and a neglectable reduction
in performance (−0.77%). On the other hand, using the combined approach consisting of
the SCSP and VP offers the highest performance increase (8.87%) and idle time reduction
(8.76%) while reducing power (−3.13%) and energy consumption (−8.48%) at the cost of a
small increase in temperature (0.83%) and chip area (0.85%). The configuration with the
SCSP and DIR is a quasi-optimal solution that lies in between those two.

Figure 19. Relative difference for each microarchitectural configuration in relation to each metric (16
cores).

6. Conclusions and Future Work
In this work, the importance of multi-objective analysis during the development of

multicore processors was shown. Through analyzing Splash-2 vs. Splash-4 benchmarks,
the impact of modern programming techniques on idle time, processing performance,
power consumption, energy consumption, and thermal behavior was shown. It was iden-
tified that on the 64-core configuration, the chip temperatures exceed the critical threshold
of 105 °C on half of the simulated benchmarks, emphasizing the need for multi-perspec-
tive evaluation in today�s processors. Based on the achieved results, it was noticed that the
processing cores spend a lot of time in the idle state, waiting for work or synchronization
barriers. This was exploited by implementing an SCSP that dynamically adapts the fre-
quency and voltage at the core level by predicting the core state. Using this technique, an
average power consumption reduction of 9.95% and an energy saving of −10.54% were

−12
−9
−6
−3

0
3
6
9

12

Dynamic
Power

Energy Idle Time Max.
Temperature

Processor
Performance

Chip Area

Re
la

tiv
e

Di
ffe

re
nc

e
[%

]

SCSP SCSP + SHLA-RB SCSP + SHLA-VP

Figure 19. Relative difference for each microarchitectural configuration in relation to each metric
(16 cores).

6. Conclusions and Future Work

In this work, the importance of multi-objective analysis during the development of
multicore processors was shown. Through analyzing Splash-2 vs. Splash-4 benchmarks, the
impact of modern programming techniques on idle time, processing performance, power
consumption, energy consumption, and thermal behavior was shown. It was identified that
on the 64-core configuration, the chip temperatures exceed the critical threshold of 105 ◦C on
half of the simulated benchmarks, emphasizing the need for multi-perspective evaluation
in today’s processors. Based on the achieved results, it was noticed that the processing
cores spend a lot of time in the idle state, waiting for work or synchronization barriers.
This was exploited by implementing an SCSP that dynamically adapts the frequency and
voltage at the core level by predicting the core state. Using this technique, an average
power consumption reduction of 9.95% and an energy saving of −10.54% were achieved
without affecting the performance significantly. More than that, the selective DIR and
VP techniques were used in parallel with the SCSP to further improve the proposed
architecture. Using the SCSP in combination with the VP, a performance improvement of
8.87%, an 8.76% reduction in idle time, a 3.13% decrease in power consumption, and an
8.48% reduction in energy consumption were achieved at a small footprint increase in chip
area while maintaining stable temperature. For energy-efficient architectural requirements,
the SCSP can be easily implemented at the application level. However, it is also possible to
implement it at the hardware level, considering its intrinsic simplicity and minimal memory
footprint requirements due to the binary codification of the core state. It has a wide range
of applications, from embedded devices and general purpose systems to high-performance
computing systems.

Our plans for future work are focused on automatic multi-objective design space
exploration. We plan to develop new state-of-the-art tools and methodologies by enhancing
the Framework for Automatic Design Space Exploration (FADSE) [35] with the newer
algorithms [36–38] and novel concepts within the Pareto–Fuzzy paradigm, applying the
superposition concept [39]. The target will be to find the quasi-optimal microarchitectural
configurations that simultaneously optimize the following parameters: processing perfor-
mance, integration area, energy consumption, die temperature, and security. A challenge
is given by the fact that the mentioned parameters are contradictory, e.g., having more
features implies a bigger chip area, and a higher performance comes at the cost of energy
consumption and hotspots. More than that, it is also planned to accelerate the automatic
search by using Genetic Programming (GP) and Response Surface Models (RSMs). Yet
another further work direction consists of extending the application of the SCSP from the
actual last state predictor exploited in this study to multiple-state predictors (using more
than one previous core state to estimate the next core state).

Computers 2024, 13, 84 20 of 21

Author Contributions: Conceptualization, A.G., A.F. and R.B.; methodology, A.G., A.F. and C.B.;
software, C.B.; validation, A.G., A.F. and C.B.; formal analysis, C.B.; investigation, C.B.; resources,
A.G., A.F. and C.B.; data curation, C.B.; writing—original draft preparation, C.B.; writing—review
and editing, C.B., A.G., A.F. and R.B.; visualization, C.B.; supervision, A.G., A.F. and R.B.; project
administration, A.G. and A.F.; funding acquisition, A.F. and R.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was partially developed in the project EoFSSS (Engineers of the Future—Smart,
Skilled, Secure), grant number 2022-1-PL01-KA220-VET-000086326, financed by the Erasmus+ and
European Solidarity Corps Programme, KA2 PARTNERSHIP IN VET.

Data Availability Statement: The original contributions presented in the study are included in the
article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gomez-Hernandez, E.J.; Cebrian, J.M.; Kaxiras, S.; Ros, A. Splash-4: A Modern Benchmark Suite with Lock-Free Constructs. In

Proceedings of the 2022 IEEE International Symposium on Workload Characterization (IISWC), Austin, TX, USA, 6–8 November
2022; pp. 51–64. [CrossRef]

2. Sankaranarayanan, K.; Velusamy, S.; Stan, M.; Skadron, K. A Case for Thermal-Aware Floorplanning at the Microarchitectural
Level. J. Instr.-Level Parallelism 2005, 7, 8–16.

3. Kim, Y.G.; Kim, M.; Kong, J.; Chung, S.W. An Adaptive Thermal Management Framework for Heterogeneous Multi-Core
Processors. IEEE Trans. Comput. 2020, 69, 894–906. [CrossRef]

4. Kong, J.; Chung, S.W.; Skadron, K. Recent Thermal Management Techniques for Microprocessors. ACM Comput. Surv. 2012, 44,
1–42. [CrossRef]

5. Woo, S.C.; Ohara, M.; Torrie, E.; Singh, J.P.; Gupta, A. The SPLASH-2 Programs: Characterization and Methodological Considera-
tions. In Proceedings of the 22nd Annual International Symposium on Computer Architecture, Santa Margherita Ligure, Italy,
22–24 June 1995; pp. 24–36. [CrossRef]

6. Sakalis, C.; Leonardsson, C.; Kaxiras, S.; Ros, A. Splash-3: A Properly Synchronized Benchmark Suite for Contemporary Research.
In Proceedings of the 2016 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Uppsala,
Sweden, 17–19 April 2016; pp. 101–111. [CrossRef]

7. Henning, J.L. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Archit. News 2006, 34, 1–17. [CrossRef]
8. Bucek, J.; Lange, K.-D.; Kistowski, J.V. SPEC CPU2017: Next-Generation Compute Benchmark. In Proceedings of the Companion

of the 2018 ACM/SPEC International Conference on Performance Engineering—ICPE ’18, Berlin, Germany, 9–13 April 2018;
pp. 41–42. [CrossRef]

9. Bienia, C. Benchmarking Modern Multiprocessors; Princeton University: Princeton, NJ, USA, 2011.
10. Miller, J.E.; Kasture, H.; Kurian, G.; Gruenwald, C.; Beckmann, N.; Celio, C.; Eastep, J.; Agarwal, A. Graphite: A Distributed

Parallel Simulator for Multicores. In Proceedings of the HPCA-16 2010 The Sixteenth International Symposium on High-
Performance Computer Architecture, Bangalore, India, 9–14 January 2010; pp. 1–12. [CrossRef]

11. Carlson, T.E.; Heirman, W.; Eeckhout, L. Sniper: Exploring the Level of Abstraction for Scalable and Accurate Parallel Multi-Core
Simulation. In Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, Seattle, WA, USA, 12 November 2011; pp. 1–12. [CrossRef]

12. Genbrugge, D.; Eyerman, S.; Eeckhout, L. Interval Simulation: Raising the Level of Abstraction in Architectural Simulation.
In Proceedings of the HPCA-16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture,
Bangalore, India, 9–14 January 2010; pp. 1–12. [CrossRef]

13. Li, S.; Ahn, J.H.; Strong, R.D.; Brockman, J.B.; Tullsen, D.M.; Jouppi, N.P. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture-Micro-42, New York, NY, USA, 12–16 December 2009; p. 469. [CrossRef]

14. Florea, A.; Buduleci, C.; Chis, R.; Gellert, A.; Vintan, L. Enhancing the Sniper Simulator with Thermal Measurement. In
Proceedings of the 2014 18th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania,
17–19 October 2014; pp. 31–36. [CrossRef]

15. Huang, W.; Ghosh, S.; Velusamy, S.; Sankaranarayanan, K.; Skadron, K.; Stan, M.R. HotSpot: A Compact Thermal Modeling
Methodology for Early-Stage VLSI Design. IEEE Trans. VLSI Syst. 2006, 14, 501–513. [CrossRef]

16. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.; Sardashti, S.; et al.
The Gem5 Simulator. SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

17. Sodani, A.; Sohi, G.S. Dynamic Instruction Reuse. In Proceedings of the 24th Annual International Symposium on Computer
Architecture, Denver, CO, USA, 1–4 June 1997; pp. 194–205. [CrossRef]

https://doi.org/10.1109/IISWC55918.2022.00015
https://doi.org/10.1109/TC.2020.2970062
https://doi.org/10.1145/2187671.2187675
https://doi.org/10.1109/ISCA.1995.524546
https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1109/HPCA.2010.5416635
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/HPCA.2010.5416636
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/ICSTCC.2014.6982386
https://doi.org/10.1109/TVLSI.2006.876103
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/264107.264200

Computers 2024, 13, 84 21 of 21

18. Buduleci, C.; Gellert, A.; Florea, A. Selective High-Latency Arithmetic Instruction Reuse in Multicore Processors. In Proceedings
of the 2023 27th International Conference on System Theory, Control and Computing (ICSTCC), Timisoara, Romania, 11 October
2023; pp. 410–415. [CrossRef]

19. Widgen, L.; Sowadsky, E. Operand cache addressed by the instruction address for reducing latency of read instruction. U.S.
Patent US5919256A, 6 July 1999.

20. Gabbay, F.; Mendelson, A. System and method for concurrent processing. U.S. Patent US5996060A, 30 November 1999.
21. Lipasti, M.H.; Shen, J.P. Exceeding the Dataflow Limit via Value Prediction. In Proceedings of the 29th Annual IEEE/ACM

International Symposium on Microarchitecture. MICRO 29, Paris, France, 2–4 December 1996; pp. 226–237. [CrossRef]
22. Lipasti, M.H.; Wilkerson, C.B.; Shen, J.P. Value Locality and Load Value Prediction. SIGPLAN Not. 1996, 31, 138–147. [CrossRef]
23. Sazeides, Y.; Smith, J.E. The Predictability of Data Values. In Proceedings of the 30th Annual International Symposium on

Microarchitecture, Research Triangle Park, NC, USA, 3–3 December 1997; pp. 248–258. [CrossRef]
24. Buduleci, C.; Gellert, A.; Florea, A.; Brad, R. Improving Multicore Architectures by Selective Value Prediction of High-Latency

Arithmetic Instructions. Adv. Electr. Comput. Eng. 2024, submitted.
25. Bircher, W.L.; John, L.K. Core-Level Activity Prediction for Multicore Power Management. IEEE J. Emerg. Sel. Top. Circuits Syst.

2011, 1, 218–227. [CrossRef]
26. Acun, B.; Chandrasekar, K.; Kale, L.V. Fine-Grained Energy Efficiency Using Per-Core DVFS with an Adaptive Runtime System.

In Proceedings of the 2019 Tenth International Green and Sustainable Computing Conference (IGSC), Alexandria, VA, USA,
21–24 October 2019; pp. 1–8. [CrossRef]

27. Halimi, J.-P.; Pradelle, B.; Guermouche, A.; Triquenaux, N.; Laurent, A.; Beyler, J.C.; Jalby, W. Reactive DVFS Control for Multicore
Processors. In Proceedings of the 2013 IEEE International Conference on Green Computing and Communications and IEEE
Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 102–109. [CrossRef]

28. Lu, T.; Pande, P.P.; Shirazi, B. A Dynamic, Compiler Guided DVFS Mechanism to Achieve Energy-Efficiency in Multi-Core
Processors. Sustain. Comput. Inform. Syst. 2016, 12, 1–9. [CrossRef]

29. Kim, S.; Eom, H.; Yeom, H.Y.; Min, S.L. Energy-Centric DVFS Controlling Method for Multi-Core Platforms. Computing 2014, 96,
1163–1177. [CrossRef]

30. Curtis-Maury, M.; Shah, A.; Blagojevic, F.; Nikolopoulos, D.S.; De Supinski, B.R.; Schulz, M. Prediction Models for Multi-
Dimensional Power-Performance Optimization on Many Cores. In Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, Toronto, ON, Canada, 25 October 2008; pp. 250–259. [CrossRef]

31. Cai, Q.; Gonzalez, J.; Magklis, G.; Chaparro, P.; Gonzalez, A. Thread Shuffling: Combining DVFS and Thread Migration to Reduce
Energy Consumptions for Multi-Core Systems. In Proceedings of the IEEE/ACM International Symposium on Low Power
Electronics and Design, Fukuoka, Japan, 1–3 August 2011; pp. 379–384. [CrossRef]

32. Gupta, M.; Bhargava, L.; Indu, S. Dynamic Workload-Aware DVFS for Multicore Systems Using Machine Learning. Computing
2021, 103, 1747–1769. [CrossRef]

33. Basireddy, K.R.; Singh, A.K.; Al-Hashimi, B.M.; Merrett, G.V. AdaMD: Adaptive Mapping and DVFS for Energy-Efficient
Heterogeneous Multicores. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 2206–2217. [CrossRef]

34. Hanumaiah, V.; Vrudhula, S. Temperature-Aware DVFS for Hard Real-Time Applications on Multicore Processors. IEEE Trans.
Comput. 2012, 61, 1484–1494. [CrossRef]

35. Calborean, H. Multi-Objective Optimization of Advanced Computer Architectures Using Domain-Knowledge. Ph.D. Thesis,
“Lucian Blaga” University of Sibiu, Sibiu, Romania, 2011.

36. Mkaouer, W.; Kessentini, M.; Shaout, A.; Koligheu, P.; Bechikh, S.; Deb, K.; Ouni, A. Many-Objective Software Remodularization
Using NSGA-III. ACM Trans. Softw. Eng. Methodol. 2015, 24, 1–45. [CrossRef]

37. Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M.; Tavakkoli-Moghaddam, R. Red Deer Algorithm (RDA): A New Nature-Inspired
Meta-Heuristic. Soft Comput. 2020, 24, 14637–14665. [CrossRef]

38. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
39. Florea, A.; Cofaru, I.; Patrausanu, A.; Cofaru, N.; Fiore, U. Superposition of Populations in Multi-Objective Evolutionary

Optimization of Car Suspensions. Eng. Appl. Artif. Intell. 2023, 126, 107026. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ICSTCC59206.2023.10308483
https://doi.org/10.1109/MICRO.1996.566464
https://doi.org/10.1145/248209.237173
https://doi.org/10.1109/MICRO.1997.645815
https://doi.org/10.1109/JETCAS.2011.2164973
https://doi.org/10.1109/IGSC48788.2019.8957174
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.41
https://doi.org/10.1016/j.suscom.2016.04.003
https://doi.org/10.1007/s00607-013-0369-2
https://doi.org/10.1145/1454115.1454151
https://doi.org/10.1109/ISLPED.2011.5993670
https://doi.org/10.1007/s00607-020-00845-2
https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/TC.2011.156
https://doi.org/10.1145/2729974
https://doi.org/10.1007/s00500-020-04812-z
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.engappai.2023.107026

	Introduction
	Related Work
	Benchmarks
	Multi/Many-Core Simulators
	Value Prediction and Dynamic Instruction Reuse
	Dynamic Voltage and Frequency Scaling

	Methodology and Technical Modifications
	Simple Core State Predictor Implementation
	Power, Area, and Thermal Estimations

	Simulation Environment and Metrics
	Experimental Results
	An Empirical Analysis of Splash-2 and Splash-4
	An Analysis of an Enhanced Architecture with the SCSP

	Conclusions and Future Work
	References

