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Abstract: As the demand for efficient and lightweight models in image classification grows, knowl-
edge distillation has emerged as a promising technique to transfer expertise from complex teacher
models to simpler student models. However, the efficacy of knowledge distillation is intricately
linked to the choice of datasets used during training. Datasets are pivotal in shaping a model’s learn-
ing process, influencing its ability to generalize and discriminate between diverse patterns. While
considerable research has independently explored knowledge distillation and image classification,
a comprehensive understanding of how different datasets impact knowledge distillation remains
a critical gap. This study systematically investigates the impact of diverse datasets on knowledge
distillation in image classification. By varying dataset characteristics such as size, domain specificity,
and inherent biases, we aim to unravel the nuanced relationship between datasets and the efficacy of
knowledge transfer. Our experiments employ a range of datasets to comprehensively explore their
impact on the performance gains achieved through knowledge distillation. This study contributes
valuable guidance for researchers and practitioners seeking to optimize image classification models
through kno-featured applications. By elucidating the intricate interplay between dataset characteris-
tics and knowledge distillation outcomes, our findings empower the community to make informed
decisions when selecting datasets, ultimately advancing the field toward more robust and efficient
model development.

Keywords: knowledge distillation; dataset selection; transfer learning; knowledge transfer

1. Introduction

In the ever-evolving landscape of computer vision, image classification is a fundamen-
tal and challenging task with many applications [1-4]. In the recent literature, machine
learning (ML) models based on deep neural networks (DNNs) have proven to be the most
effective for computer vision, particularly image analysis [5-7]. To achieve this efficiency,
several DNN architectures have been proposed in the literature, with different processes
including knowledge distillation [8-10]. Knowledge distillation in deep neural networks is
a crucial process in the ML field [11]. As the demand for more efficient and lightweight
models grows, the concept of knowledge distillation (KD) has emerged as a promising
avenue to transfer knowledge from complex, high-capacity models (teachers) to simpler,
more deployable counterparts (students) [8,12]. This transfer of knowledge from the teacher
to the student through a training paradigm typically involves the following steps.
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1.  Teacher model training: The first step is to train a large and complex model (the
teacher) on a given dataset to achieve high accuracy.

2. Generation of soft targets: The trained teacher model is then used to make pre-
dictions on the training data, producing probability distributions (soft targets) over
possible classes. These soft targets contain more information than the hard targets
(i.e., the actual labels), as they reflect the relative confidence of the teacher model in
its predictions. The soft targets can be obtained using a sofmax function

exp(zi/T)

' ew(/T) v

where ¢; is the output probability for class i, z; is the logit for class i, and T is the
temperature parameter.

3. Student model training: The smaller student model is trained using a combination of
the original true labels and the soft targets generated by the teacher model. The loss
function typically includes a component for standard classification loss and another
component for distillation loss, which measures the difference between the student
and teacher probability distributions. The Kullback-Leibler (KL) function is usually
used for distillation loss. The KL formula is defined as

Du(P | Q) = T P(x)log(5s

) ()

where P and Q are probability distributions defined on the same sample space X.
The final loss formula is defined as

Ltotar = D‘Lclussificution + (1 - D‘)Ldistillution ©)

where Lclussificution =) yilog(Pi) and Ly;stitiation = KL(qteacherT H qstudentT)'

Indeed, this approach makes it possible to compress and generalize the information
learned by complex deep neural networks, facilitating their deployment on resource-limited
devices [8,13]. This process of KD not only facilitates model compression but also enhances
the generalization capabilities of the student model [10]. The success of KD is inherently
tied to the quality and diversity of the datasets used during the training step, as well as the
large applications of the KD learning-based processes [1,12,14-19].

The effectiveness of KD in DNN could depend largely on the complexity (quality
and quantity, etc.) of the data used. Thus, datasets play a pivotal role in shaping the
learning process, influencing the model’s ability to discern patterns and generalize to
unseen features [15-17]. While extensive research has been conducted on KD and image
classification independently, a comprehensive understanding of how various datasets
impact the effectiveness of KD remains an open and critical area of investigation. However,
although many studies have been published on this method, few have explored in depth
how the characteristics and properties of the data would influence this knowledge transfer
process. This research gap raises a crucial question: How do data characteristics, such
as complexity, diversity, and distribution, impact the efficiency of KD in a deep neural
network? Answering this question will enable us to better understand the challenges and
opportunities for KD applications related to the use of different data sources, paving the
way for more efficient and robust techniques for transfer learning in deep neural networks.

This study seeks to address this gap by systematically examining the impact of dif-
ferent datasets on KD in image classification. As datasets vary in terms of size, domain
specificity, and inherent biases, their influence on the transfer of knowledge from teacher to
student models warrants meticulous exploration. Through a series of experiments, we aim
to unravel the intricate relationship between dataset characteristics and the performance
gains achieved through knowledge distillation. In the subsequent sections, we delve into
the relevant literature, providing insights into the existing landscape of KD and its appli-
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cation in image classification. Following this, we elucidate our methodology, detailing
the datasets chosen for experimentation, model architectures, and the KD process. The
results and their implications are then discussed, shedding light on the nuanced impact
of datasets. Ultimately, this study aims to contribute valuable insights for researchers and
practitioners navigating the intersection of knowledge distillation and image classification,
offering guidance on optimizing model performance through judicious dataset selection.

Following on from the remainder of this work, Section 2 will discuss previous work
on knowledge distillation in deep neural networks. Then, Sections 3 and 4 will describe
the proposed research approach and analyze the obtained results, respectively. Finally,
Sections 5 and 6 will discuss the results obtained and conclude this work.

2. Related Work

Knowledge distillation (KD) has been widely studied in the literature, and several
notable works have contributed to the understanding and development of this technique
[20-25]. Since its introduction by Hinton et al. [8], this approach has attracted growing inter-
est in the machine learning research community. Table 1 presents some recents knowledge
distillation work in the field of image classification. This table mainly presents the different
databases, the architecture of the teacher and student models and the main evaluation
metric used to perform KD in image classification task.

2.1. Knowledge Distillation in the Literature

Several works have explored various aspects of knowledge distillation in deep neural
networks [26], including teacher and student model architectures, regularization techniques,
and optimization methods.

For example, Li et al. proposed a transferred attention method to improve the per-
formance of convolutional neural networks [27], while Yazdanbakhsh et al. studied the
application of knowledge distillation in specific domains such as healthcare [19]. However,
despite these significant advances, little attention has been paid to the impact of data on
this knowledge transfer process.

Table 1.
EM = evaluation metric.

Summary of recent literature on knowledge distillation in image classification.

- About Data Methods EM

Ref Year Type Dataset Type Teacher Student Acc
Li*‘[;;tcya“ 2015 article JFT.MNIST Images DNN DNN v
[28] 2019 article PPMI, Willow, UIUC-Sport Images AlexNet AlexNet 4
Lifgzgtlcyan 2021 article Images DNN DNN v
[30] 2017 Conf CIFAR100 Images  VGGI13, ResNet32x4 ~ VGG13, ResNet32x4 v
Ligit]cya“ 2018  Conf CIFAR100 Images ResNet34 VGG9 v
[32] 2020 Conf CIFAR10, CIFAR100 Images ResNet26 ResNet8&14 v
Li[%}(l)t]cyan 2014  article  CIFAR10, CIFAR100, SVHN, MNIST, AFLW  Images FiNet v
[33] 2021 article CIFAR100 Images ResNet20 ResNet8 v
Li%ﬁtlcyan 2024 article CIFAR100, ImageNet Images ResNet152 ResNet18 v
[35] 2023 article CIFAR100 Images  ResNet50& ResNet34 ResNet18 v
Li[g;gt]cya“ 2023 article CIFAR100 Images ResNet18 ResNet18 v

The authors demonstrated the effectiveness of the distillation on various tasks and
highlighted its potential for model compression. The FitNets paper [20] proposed a specific
form of knowledge distillation called FitNets, where a student network is guided not only
by the output probabilities of a teacher network but also by intermediate representations
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(or hints). This work aimed to improve the transfer of information in the training process.
Ref. [27] introduces attention transfer as a form of knowledge distillation. It focuses on
transferring attention maps from a teacher to a student network to improve the student’s
performance. Attention transfer has proven effective in enhancing the generalization
capabilities of the student model. To address the limitations of traditional knowledge
distillation, ref. [31] introduces Jacobian matching, a novel method that aims to transfer not
only the output probabilities but also the derivatives of the teacher model’s predictions. This
approach provides a more comprehensive form of knowledge transfer. Ref. [30] explores
the benefits of knowledge distillation beyond model compression. The authors show that
the knowledge distillation process not only compresses models but also accelerates the
optimization process, enabling faster convergence during training. Ref. [32] introduces
the concept of a “teacher assistant” by proposing an extension to traditional knowledge
distillation. The teacher assistant helps bridge the performance gap between the teacher
and the student, leading to enhanced knowledge transfer.

2.2. Role of Datasets for Model Training by KD

The impact of datasets on model training has been a longstanding focus in machine
learning research. Datasets serve as the foundation upon which models learn to recognize
and classify patterns, making their composition and characteristics crucial determinants of
model performance. Studies by refs. [37,38] emphasize the importance of diverse datasets
in fostering robust image recognition systems, highlighting how exposure to a wide range
of scenarios aids in generalization. In the context of image classification, biases present
in datasets have been identified as potential challenges, leading to models that may not
generalize well across different domains [37]. Addressing these biases and ensuring dataset
diversity are pivotal considerations in the pursuit of building models that can perform
reliably across various real-world scenarios.

2.3. Research Gap and Motivation

While the individual importance of KD and dataset characteristics in image classifica-
tion has been adequately explored, a comprehensive examination of how different datasets
impact the success of KD remains a notable gap in the literature. Synthesizing the exist-
ing literature, we recognize the intertwined nature of knowledge distillation and dataset
influence on image classification models. Furthermore, the literature review confirms the
preliminary observation that several works have studied knowledge distillation in neural
networks [8,28,29,31,32,36]. However, the majority of these studies have used not only a
single dataset (CIFAR10, CIFAR100, MNIST, ImageNet, etc.) [20,30-32,34] but also, more
often than not, residual network architectures (ResNet) [30,32-35]. Moreover, knowledge
acquisition is relative to the context, which is nothing other than the data, whereas the
existing studies often focus on benchmark datasets without thoroughly investigating the
nuances introduced by varying dataset characteristics.

This study aims to bridge this gap by systematically exploring the relationship between
dataset properties and the efficacy of knowledge distillation. Successful knowledge transfer
relies not only on the distillation techniques but also on the inherent properties of the
datasets used during training. In the subsequent sections, we detail our methodology,
experimentally addressing this critical gap and shedding light on how different datasets
impact the performance of knowledge-distilled models.

3. Research Method

The research approach adopted in this paper aims to highlight the impact of data
complexity on knowledge distillation in deep convolutional neural networks. To better
illustrate this approach, we have represented its operating process on the diagram in
Figure 1, which gives a better overview of the different steps of the followed method.

From this illustration, the first step in our approach is to select the databases most
commonly used in the literature (see analysis in Section 2.2), which will enable us to carry
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out our study, as detailed in the following Section 3.1. Once the databases have been
selected, the next step is to choose the architectures of the teaching and learning neural
networks with which to test our approach. Once the architectures have been chosen, this
stage, which we detail in Section 3.2, ends with training the parent model and an instance
of the student model from scratch on all the experiments’ datasets. Then, the third stage
of our experiment consists of simulating the trained student models through knowledge
distillation according to two configurations, namely response-based distillation (RKD)
and intermediate-based distillation (IKD), which we explain in Section 3.3. Finally, the
fourth and last stage of our study consists of comparing the results and seeing the effect of
different databases on knowledge distillation.

: G
z o
=

@

Response
Based
FashionMNIST
¢ 5
USPS ‘
% - —l ntermediate
= Student Distillation
CIFAR10 == ResNet1B
CIFAR100
Ls [
)

Figure 1. Flowchart of the proposed approach to highlight the impact of the dataset on knowledge
distillation in DNN.

3.1. Datasets Selection

To comprehensively investigate the impact of datasets on knowledge distillation in
image classification, a diverse set of datasets is curated. The selection criteria include
considerations of size, domain specificity, and potential biases. Well-established benchmark
datasets, such as CIFAR-10, CIFAR-100, and MNIST as shown in Table 1, form the core of
our study, providing a foundation for cross-dataset comparisons.

Dataset Description and Complexity Classification

To highlight the impact of datasets on the distillation of knowledge learned by deep
neural networks, we tested teacher and student network architectures on the most popular
datasets in the scientific machine learning literature. For this purpose, we used 5 different
data sets, including MNIST [6], FashionMNIST [7], UPS [11], CIFAR10 and CIFAR100 [5],
which are summarized in Table 2 and described in turn in the rest of this section.

Each dataset was selected to represent different characteristics and complexities, en-
suring a comprehensive evaluation of the distillation process. The classification of the level
of data complexity in this article is based on a combined analysis of the dataset’s character-
istics (dimensionality, class diversity, data volume, variability and domain specificity) and
the performances obtained in the literature [39,40]. Below are descriptions of the datasets
mentioned in the literature review for knowledge distillation in image classification:
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Table 2. The key statistics for each dataset.

Dataset Image Sizes Nb Classes Nb-Images Complexity Level
CIFAR-10 32 x 32 10 60,000 Moderate to high
CIFAR-100 32 x 32 100 60,000 High

uUSsPSs 16 x 16 10 9298 Moderate
MNIST 28 x 28 10 60,000 Low
Fashion MNIST 28 x 28 10 60,000 Low to moderate

CIFAR-10 [5]: This dataset consists of 60,000 32 x 32 color images across ten different
classes, each containing 6000 images. The classes include common objects like cars,
dogs, and cats. The addition of color and more diverse objects increases the complexity
compared to MNIST and USPS. Criteria: larger image size (32 x 32 pixels), three-
channel color images, more diverse classes, and significant background variations.
CIFAR-100 [5]: Similar to CIFAR-10, CIFAR-100 has 100 classes, with 600 images per
class. It covers a broader range of object categories, making it more challenging. The
increased number of classes and the finer distinctions between categories make it a
more complex classification task compared to the previous datasets. Criteria: same
image size (32 x 32 pixels) and color channels as CIFAR10, but a much larger number
of classes (100), increasing variability and the challenge of classification.

USPS [11] is a digit dataset automatically scanned from envelopes by the U.S. Postal
Service containing a total of 9298 16 x 16 pixel grayscale samples; the images are cen-
tered and normalized and show a broad range of font styles. Similar to MNIST, USPS
contains images of handwritten digits. It is slightly more challenging than MNIST
but still relatively simple. Criteria: small image size (16 x 16 pixels), same number of
classes (10 digits), and slight variations in style and noise compared to MNIST.
MNIST [41] is a dataset with 28 x 28 grayscale images of handwritten digits. It consists
of ten different classes and is often used for image classification tasks. The dataset is
relatively simple and is often used as a beginner’s dataset for image classification tasks.
Criteria: small image size (28 x 28 pixels), a limited number of classes (10 digits),
simple and uniform structure with minimal noise.

Fashion MNIST [7] is a dataset with 28 x 28 grayscale images of fashion items, such
as clothing and accessories. It consists of ten different classes and is often used as
a replacement for the traditional MNIST dataset for image classification tasks. The
dataset is more complex than MNIST as it requires the model to recognize various
types of clothing items, adding a bit more complexity to the classification task. Criteria:
same image size (28 x 28 pixels) as MNIST, but with 10 different classes of clothing,
introducing more variability in shapes, and textures.

The levels of complexity of the datasets were determined according to several key

criteria, which include the following:

Dimensionality: the resolution and color channels of the images. higher resolution
and multiple colour channels generally increase the complexity of the dataset, as they
require more sophisticated models to capture detail.

Class diversity: the number and variability of classes within the dataset. A larger
number of classes with significant differences between them increases complexity
because the model has to distinguish between a larger set of categories.

Data volume: the size of the dataset in terms of the number of samples. Larger
datasets can be more complex to manage and require more computing resources, but
they also provide more information for robust model formation.

Variability: the level of noise, background variation, and object diversity within the
dataset. Datasets with high variability in object appearance, backgrounds, and noise
levels are more difficult for models to learn and generalize.
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*  Domain specificity: the within-domain specificity and variability of the dataset (e.g.,
handwritten figures versus real-world objects). Datasets from domains with high
intra-class variability and inter-class similarity are considered more complex due to
the more subtle distinctions that need to be learned.

The complexity increases from MNIST and USPS to FashionMNIST, CIFAR-10, and
finally CIFAR-100, with the latter being the most challenging among the mentioned datasets
for an image classification task using the ResNet architecture.

3.2. Model Architecture Details

Our experimental setup involves employing state-of-the-art model architectures as
both teacher and student networks. Convolutional neural networks (CNNs) [42,43] have
demonstrated exceptional performance in image classification tasks [44,45], and we lever-
age ResNet [46] architectures for our experiments. Table 1 shows the frequency of use of
ResNet in the literature. The teacher model, being more complex, serves as the knowledge
source, while the student model is designed with fewer parameters to facilitate efficient
deployment.

ResNet, introduced by ref. [46], has become a pivotal architecture in deep learning
due to its ability to tackle the vanishing gradient problem through the innovative use of
residual connections [14].

The key innovation of ResNet lies in the use of residual blocks (Figure 2), where
each block contains a shortcut connection that bypasses one or more convolutional layers.
This shortcut connection enables the network to learn residual mappings, making it easier
to optimize deeper architectures. ResNet architectures come in various depths, such as
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152 [46], each with a different
number of layers. The following Table 3 shows the characteristics of the models used in
our experiment.

Weight layer
F(X) l relu

X
identity

Weight layer

FX) + X

relu

Figure 2. Residual blocks of ResNet architecture [46].

This table shows the key details of the ResNet-50 and ResNet-18 architectures [46] used in
our experiments. The Bottleneck layers (ResNet-50) consist of three layers (1 x 1 convolution
for channel reduction, 3 x 3 convolution, and 1 x 1 convolution for channel restoration),
optimizing network efficiency and depth, and the Basic Unit layers (ResNet-18) consist of two
3 x 3 convolution layers, maintaining simplicity and reducing computational load.
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Table 3. Details of the ResNet architectures used for the teacher and student models

Feature ResNet50 (Teacher Model) ResNet18 (Student Model)
Total layers 50 18

Initial Conv Layer 7 X 7,64, stride 2 3 x 3 Max Pool, stride 2
Initial Pooling Layer 7 X 7,64, stride 2 3 x 3 Max Pool, stride 2
Residual Block 1/Channels 3 Bottleneck Units /246 2 Basic Units/64

Residual Block 2/Channels 4 Bottleneck Units/512 2 Basic Units/128

Residual Block 3/Channels 6 Bottleneck Units/1024 2 Basic Units/256

Residual Block 4/Channels 3 Bottleneck Units /2048 2 Basic Units/512

Pooling Layer Global Avg Pool Global Avg Pool

Fully Connected Layer 1000-d FC Layer 1000-d FC Layer

3.3. Knowledge Distillation Processes

The knowledge distillation process involves transferring the knowledge from the
teacher to the student model. We employ a combination of soft targets and intermediate
representations during training. The soft targets, representing the teacher model’s softened
predictions, are integrated with traditional cross-entropy loss using the following formula.

Lkp = (1—a)Lcg(y, P®)) + at® Dy (PY /7, PO /1) (4)

where a € (0,1) is the balance factor between the two loss terms; L is the cross-entropy
loss; y is the one-hot label; P(®) is the teacher output; P() is the student output; Dgy, is the
KL divergence [47]; and 7 is a temperature [8].

Additionally, we incorporate feature-matching techniques to ensure the student model
captures intermediate representations from the teacher [20].

3.3.1. Response-Based Knowledge Distillation (RKD)

Response-based knowledge distillation (RKD) is a variant of knowledge distillation that
refers to the neural response of the last output layer of the teacher model [48]. The operating
principle of the RKD is illustrated in Figure 3. According to Figure 3, response-based knowledge
focuses on the final output layer of the teacher model. This is accomplished by the assumption
that the student model will learn to mimic the predictions of the teacher model.

Logits

h

Distillation

Data foes

A

l Lugits

Figure 3. Response-based knowledge distillation [48].

The illustration in Figure 3 shows that this can be achieved by using a loss function,
called the distillation loss, which captures the difference between the respective logits of
the student model and the teacher model. As this loss would be minimized during the
learning process, the student model would become increasingly capable of making the
same predictions as the teacher model. By considering the decision-making process of the
teacher model, response-based methods can potentially improve the generalization ability
and robustness of the student model.
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3.3.2. Intermediate Knowledge Distillation

Intermediate-based knowledge distillation (IKD), or feature-based knowledge distilla-
tion, is a variant of knowledge distillation in DNN that highlights knowledge learned from
hidden layers. The operating principle of IKD is illustrated in Figure 4.

[,

L _

v

Teacher model

Layer2 —» - —>»| Layern } »| Logits

h

Data Distillation Loss

F Y

Logits

Student model

Figure 4. Intermediate knowledge distillation [48].

According to Figure 4, IKD extends traditional knowledge distillation by transfer-
ring knowledge not just from the final output layer of the teacher model but also from
intermediate layers. Indeed, a trained teacher model also captures knowledge of the data
in its intermediate layers, which is particularly relevant for deep neural networks. Thus,
the intermediate layers learn to discriminate specific features, and this knowledge can
be used to train a student model. As depicted in Figure 4, the aim is to train the student
model to learn the same feature activations as the teacher model. The distillation loss
function achieves this goal by minimizing the difference between the feature activations
of the teacher model and the student model. IKD requires careful design to balance the
complexity of transferring knowledge from multiple layers while ensuring computational
efficiency and avoiding issues such as vanishing gradients.

4. Experimental Setup and Results Analysis

To investigate the impact of datasets, we conduct experiments with varying configurations,
including knowledge distillation with and without dataset-specific adaptations. The success of
these manipulations depends on the optimal configuration of experimental parameters and a
logical, transparent experimental protocol, which we present in Section 4.1 below.

4.1. Experimental Setup

As shown in Figure 1 and further motivated by the literature review in Section 2, we
use teacher-student architecture to distill the knowledge in DNN. So ResNet50 was used as
the teacher model and ResNet18 as the student model.

The teacher model is first trained on the original dataset, producing accurate predic-
tions. We also trained the students from scratch to later compare the results after training
the students via distillation. Figure 5 shows the validation accuracy over epochs during the
training of the teacher and the student from scratch.

During the knowledge distillation process, the student model is trained on the same
dataset using a combination of ground truth labels and soft targets generated by the teacher.
This dual learning approach helps the student model generalize better and capture intricate
patterns. The loss function used in knowledge distillation incorporates both the traditional
cross-entropy loss, comparing the student’s predictions with the ground truth labels, and a
distillation loss, quantifying the similarity between the student’s predictions and the soft
targets provided by the teacher. The distillation loss encourages the student to mimic the
teacher’s decision-making process.
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FashionMNIST usPs CIFAR1Q s CIFAR100

Figure 5. Variation in the validation accuracy by epochs for (a) the teacher model (ResNet50) and
(b) the student model (ResNet18).

As ref. [15] confirms that good data augmentation can be used to obtain considerable
knowledge distillation. For data augmentation, we use RandomRotation with the value of
15 to randomly rotate the image by up to 15 degrees, RandomHorizontalFlip to randomly
flip the image horizontally, and RandomVerticalFlip to randomly flip the image vertically.
We transform the images to a PyTorch (version 2.1.2) tensor, and finally, we normalize the
data. The cross-entropy loss was used to train all models with the ground truth label, and
the distillation loss used was Kullback-Leibler divergence. The hyperparameter controlling
the balance between the two losses was & = 0.7. The temperature was ¢t = 4 [8]. We trained
the teacher model within 20 epochs and the students within 10 epochs. We use SGD as an
optimizer, and the value of the learning rate was Ir = 0.001. The Kaggle environment (GPU
P100) was used as the hardware and PyTorch as the software to conduct experiments. Each
dataset was split into three different subdatasets for training, validation, and testing. The
following Table 4 shows the different sizes of each sub-dataset.

Table 4. Distribution of different data sizes for training (83.33%), validation (11.66%), and testing
(5%). These data sizes were chosen based on experimental results from the literature review.

Dataset Training Validation Test
CIFAR-10 50,000 7000 3000
CIFAR-100 50,000 7000 3000
usPs 7291 1404 603

MNIST 60,000 7000 3000
Fashion MNIST 60,000 7000 3000

Evaluation metrics encompass traditional classification metrics such as accuracy as
shown in Table 1. We conducted multiple runs for each experiment to account for variability
and report averaged results for robust conclusions.

Our methodology combines a diverse set of datasets, state-of-the-art model architec-
tures, and a nuanced knowledge distillation process. This comprehensive approach aims
to elucidate the impact of datasets on the effectiveness of knowledge distillation in image
classification, providing valuable insights for researchers and practitioners in the field.

4.2. Results Analysis

After simulations, the analysis of the results obtained consists in turn of analyzing and
comparing the performances of the teacher (ResNet50) and student (Resnet18 from scratch)
models on all the data sets (Section 4.2.1). Then, the analysis and comparison of knowledge
distilled between the teacher (ResNet50) and the pupil (ResNet18) models in RKD and IKD
in Sections 4.2.2 and 4.2.3, respectively.
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4.2.1. Analysis of the Results of the Teacher and Student Models from Scratch

Let us remember once again that the first step in knowledge transfer is to train the
teacher model since its results will guide the learning of the student model. Figure 6 shows
the results of the teacher model after training on the different databases. It also shows the
results of the student model from scratch, which will serve as a basis for comparison after
knowledge distillation.

Test accuracy

100
80
60
40
20
0 FashionMNIS
MNIST USPS T CIFAR10 CIFAR100
B ResNet50 98.33 90.22 89.9 75.23 48.7
M ResNet18 97.9 86.07 88.47 63.47 34.6

Figure 6. Test accuracy for the teacher and instance student model from scratch.

Looking at Figure 6, we can easily notice that the teacher model performs better than
the student model. Indeed, as the student model is shallower than the teacher model, it
will also be less accurate. Table 5 completes this figure by presenting the performance
differences between the two models on the involved databases. From these representations,
we can also see that the performance of both models decreases with database complexity.
Further analysis after distillation will enable us to determine whether the same behavior
will be observed.

Table 5. Difference between teacher and student accuracy.

Dataset ResNet50 ResNet18 Difference
MNIST 98.33 97.9 —0.43
FashionMNIST 89.9 88.47 —1.43
USPS 90.22 86.07 —4.15
CIFAR10 75.23 63.47 —11.76
CIFAR100 48.7 34.6 —14.1

Once the teacher model has been trained, the training of the student model can be
followed by knowledge distillation. We carried out two different types of distillation
experiments, namely RKD [8] for response-based KD and IKD [20] for intermediate-based
KD. Sections 4.2.2 and 4.2.3 present the results of these distillations, respectively.

4.2.2. RKD Performance Results Analysis

In the RKD architecture, the student model is trained and guided by the results of the
last layer of the teacher model [8]. Figure 7 shows the results of the student model after
training by RKD on the different databases.
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RKD Accuracy
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MNIST UsPs ashion CIFARI0  CIFAR100
M ResNet18 scratch 97.9 86.07 88.47 63.47 346
m ResNet18 RKD 98 88.72 87.6 64.13 35.03

Figure 7. Test accuracy for the teacher and instance student models RKD.

In Figure 7, we can generally see a slight performance gain for the student model. This
gain increases as the complexity of the database increases. To complement Figure 7, Table 6
shows the performance gap between the student instance trained from scratch and that
trained by response-based knowledge distillation.

Table 6. Difference between the student model from scratch and the student RKD accuracy.

Dataset ResNet18 Scratch ResNet18 RKD Difference
MNIST 97.9 98 +0.1
FashionMNIST 88.47 87.6 —0.87
uUSPSs 86.07 88.72 +2.65
CIFAR10 63.47 64.13 +0.66
CIFAR100 34.6 35.03 +0.43

Part (b) of Figures Al, A3, A5, A7 and A9 shows the precision and loss curves re-
spectively during the epochs of RKD training of the student model on the MNIST, USPS,
FashionMNIST, CIFAR10 and CIFAR100 databases.

4.2.3. IKD Performance Results Analysis

In the IKD architecture, the student model is trained and guided by the results of the
teacher model’s intermediate layer [20]. Figure 8 shows the results of the student model
after training by IKD on the different databases.

According to the illustration in Figure 8, we observe a considerable overall perfor-
mance gain for the student model. This gain is even greater as the complexity of the
database increases and is much better than that of RKD. Once again, Table 7 completes
Figure 8 by presenting the numerical differences in performance between the student in-
stance trained from scratch and that trained by intermediate-based knowledge distillation
(IKD).

Part (c) of Figures A1, A3, A5, A7 and A9 shows the precision and loss curves during
the epochs of IKD training of the student model on the MNIST, USPS, FashionMNIST,
CIFAR10 and CIFAR100 databases, respectively.
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IKD Accuracy

100

80

60

40

20

0 FashionMNI
MNIST USPS as ';’T” CIFAR10  CIFAR100

M ResNet18 scratch 97.9 86.07 88.47 63.47 346
m ResNet18 IKD 98.43 88.72 89.97 74.7 49.83

Figure 8. Difference between the student model from scratch and the student IKD accuracy.

Table 7. Table of difference between the student model from scratch and student IKD accuracy.

Dataset ResNet18 Scratch ResNet18 IKD Difference (KD)
MNIST 97.9 98.43 +0.53
FashionMNIST 88.47 89.97 +1.5

USPS 86.07 88.72 +2.65

CIFAR10 63.47 74.7 +10.6

CIFAR100 34.6 49.83 +15.23

4.2.4. Analysis of the Impact of the Database on Knowledge Distillation

After analysing and comparing the results of the teacher model with those of the different
instances of the student model, in this section we will analyse the effect of the databases on
the distillation itself. To do this, we will first look at Figure 9 which shows the results of
the different distillations compared with those of the teacher model; then we will look at
Figures 10 and 11 which present the effect of distillation on the different databases and finally
we will observe Figure 12 which presents the impact of datasets on knowledge distillation.

100 100

o IS @ ®
o S S 3 3

n » @ ®

S 3 3 3

0
MNIST usps FashionMNIST CIFAR10 CIFAR100 MNIST UsPs FashionMNIST CIFAR10 CIFAR100

W ResNet50 mResNet18 RKD M ResNet50 mResNet18IKD

(a) (b)

Figure 9. Difference between the teacher and instance student model distilled from RKD (a) and
instance student model distilled from IKD (b).

We can draw two major observations from Figure 9 by comparing it with Figure 6.
The first observation concerns the RKD: although the student model gains in performance
from the RKD, this gain is nevertheless slight, and the observation that the performance
of the two models decreases as the complexity of the database increases is confirmed. On
the other hand, when we look at the IKD, the gain for the student model is much more
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significant. Here, we see that, unlike the others, the student model gains much more in
performance as the complexity of the database increases.

Figure 10 shows the gains in student performance after distillation. We first note that
IKD [20] performs significantly better than RKD [8]. We note that the more complex the
database, the greater the gain in terms of performance. Part (c) IKD of
Figures A2, A4, A6, A8 and A10 confirms this last observation. Indeed, we observe a sig-
nificant increase in the f1-score compared to part (a), from scratch, and part (b), RKD. This
increase is proportional to the complexity of the database. We can conclude from this that
the more complex the database, the greater the effect of distillation.

16 15.23
14
12 10.6
10
8
6
4 265
5 15
g 0.66
33 — 0 N 0 [ 063
MNIST USPS FashioAMNIST CIFAR10 CIFAR100
«=@==Scratch @ RKD IKD

Figure 10. Student performance gain after distillation.

Figure 11 shows us the differences in performance between the different instances of
the student model (from scratch, RKD, and IKD) compared to that of the teacher model.
Knowledge distillation is indeed effective, and we even note that in the case of IKD, the
student performs better than the teacher. On the other hand, we observe that in the least
complex databases (MNIST, USPS and FashionMNIST), the performances between the
teacher and the different instances of the student are approximately the same. We observe
a notable difference in the IKD framework on the CIFAR10 and CIFAR100 databases. This
leads us to draw two conclusions:

1.  Knowledge distillation has a considerable effect on problems with complex databases.
The more complex the database, the deeper and more powerful the model used for
training. With a powerful teacher model capable of characterizing knowledge, the
transfer to the student model will be assured.

2. By observing the performance provided by RKD and that provided by IKD on different
databases, we conclude that the choice of the IKD method will be preferable to that of
RKD when dealing with complex databases.

CIFAR100
]

—
MNISTN, USPS. FashiogMNIST CIFARTO CIFAR100

FashiomNpISI

2
0
CIFAR10 2
4
— 6

8

USPS 10

MNIST
|

IKD mRKD mScratch =@ ResNet50 @—Scratch RKD IKD

Figure 11. All instances of student performance compared to teacher performance. bar visualisation
(a) and curve visualisation (b).
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Accuracy trends
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Figure 12. Impact of dataset.

According to Figure 12, we see a slight variation in the curve for the LOW and LOW
TO MODERATE databases, namely MNIST and FashionMNIST. The MODERATE (USPS)
database curve shows a slightly more marked variation. Finally, the most complex CIFAR10
and CIFAR100 databases (MODERATE TO HIGH and HIGH) show a significant variation.

5. Discussion

The analysis of the results sheds valuable light on the effect of databases on knowledge
distillation. By highlighting the importance of choosing the appropriate distillation method
according to the complexity of the data and the learning objectives, these results could have
important implications for the development of more robust and generalizable learning
models. We highlight these insights in Sections 5.1 and 5.2.

5.1. Impact of Database Complexity on Distillation

By examining the performance curves for different databases, we observed signifi-
cant variations according to the complexity of the data. This observation highlights the
importance of considering the diversity of the data and its specific characteristics when
designing learning models. The results show a significant difference between RKD and
IKD. While RKD shows modest performance gains, IKD shows much more significant
improvements, especially with complex databases. This raises questions about the mecha-
nisms underlying these two approaches and their effectiveness in different contexts. More
specifically, IKD outperforms RKD, mainly because of the nature of the information that
each method transfers from the teacher’s model to the student’s model. IKD focuses on
aligning the student’s internal representations or feature maps with those of the teacher at
different levels [20,49]. This method ensures that the student model not only learns the final
results but also mimics the teacher’s hierarchical feature extraction process, capturing richer
and more nuanced information throughout its architecture [20]. Indeed, the theoretical
underpinnings support this advantage. Intermediate representations contain fine-grained
information and hierarchical abstractions that are crucial for complex tasks. By transferring
these representations, the student model is better equipped to understand and generalize
from the data. This approach exploits the concept of learning intermediate features, which
are often more informative than final logs alone, particularly in deep networks where
each layer captures progressively higher-level abstractions. In contrast, RKD relies solely
on the teacher’s final logits [8,9]. Although this method helps the student to know the
ultimate limits of the decision, it does not provide the intermediate knowledge essential for
a comprehensive understanding of the input [48]. This can lead to less effective transfer, as
the student does not benefit from the multi-level learning process followed by the teacher.
Interestingly, IKD seems to be more resilient to increasing data complexity; the results show
that in some cases, the distilled student (especially with IKD) can even outperform the
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teacher in terms of performance. This suggests that the transmission of knowledge through
abstract features may be more robust in varied or complex data environments.

That said, knowledge distillation may lead to better generalization or adaptation to
specific test data.

5.2. Optimisation of Distillation Strategies

The results indicate the need to develop more sophisticated distillation strategies that
take into account the specific nature of the data and the characteristics of the models. In
fact, the more complex the database, the greater the effect of distillation on improving the
performance of the student model. This observation highlights the importance of taking
into account the specific nature of the data when choosing the distillation method and
designing the model. According to the results obtained, the IKD method is preferable to
RKD due to its greater performance gains.

5.3. Limitation of the Study

Although the results obtained in our work are very interesting, we are aware that our
study may have certain limitations. The limited choice of model architecture (ResNet50,
ResNet18) used, the fact that the scope was limited to image classification tasks, the nature
of the data used, and the choice of distillation methods (RKD, IKD) were deliberate choices
to maintain a controlled and detailed analysis in a well-defined context. The performance
measures and evaluation methods used in this study could also be a limitation. The scope
of the literature search was limited due to access restrictions on some articles, leading
to our potentially overlooking important findings that could influence our results. The
limitation in isolating the variable impact on knowledge distillation performance; indeed,
we compared KD performance on very different datasets rather than systematically varying
individual parameters while holding other factors constant. The interpretation of the results
is also open to discussion.

6. Conclusions

We conducted a thorough examination of the impact of databases on knowledge distil-
lation in the context of image classification. We have used a diverse array of databases with
different levels of complexity. We were able to derive several important and meaningful
conclusions by meticulously analyzing the performance of both teacher and student models
across various distillation methods.

Firstly, our results clearly demonstrated that knowledge distillation can be pivotal in
enhancing the performance of student models, particularly in scenarios where the data
are intricate and heterogeneous. Specifically, the IKD method exhibited more substantial
performance improvements compared to the RKD method, underscoring the significance of
transferring knowledge through abstract and generalizable representations. Furthermore,
we observed that the complexity of the database plays a critical role in determining the
effectiveness of knowledge distillation. Our findings indicated that as the complexity of
the database increases, so do the performance gains of the student model, emphasizing the
necessity of considering the unique characteristics of the data during the distillation process.

Additionally, our comprehensive analyses allowed us to compare the performance of
the teacher and student models in detail, revealing instances where the distilled student
models actually outperformed their teacher counterparts. This observation highlights
the remarkable potential of knowledge distillation to foster improved generalization and
adaptation to specific test data. Moreover, our results provided guidance on selecting the
most appropriate distillation method based on the complexity of the database. Specifically,
they suggest that the IKD method is particularly advantageous in scenarios involving
complex and varied data.
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Overall, our study offers valuable insights into the influence of databases on knowl-
edge distillation, contributing important perspectives for the development of more robust,
generalizable, and efficient machine learning models applicable to a wide range of domains.
By delving into the nuances of how different distillation methods perform across diverse
datasets, we provide a deeper understanding that can inform future research and practical
applications in the field of machine learning and image analysis in particular.
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Figure Al. Accuracy and loss over epochs during the training phase of the student model in the MNIST
dataset. (a) Training student from scratch, (b) RKD student training, and (c) IKD student training.
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Figure A2. Student metrics after the training phase of the student model in MNIST dataset.
(a) Training student from scratch, (b) RKD student training, and (c) IKD student training.
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Figure A3. Accuracy and loss over epochs during the training phase of student model in USPS
dataset. (a) Training student from scratch, (b) RKD student training, and (c) IKD student training.
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Figure A4. Student metrics after the training phase of the student model in the USPS dataset.
(a) Training student from scratch, (b) RKD student training, and (c) IKD student training.
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Figure A5. Accuracy and loss over epochs during the training phase of the student model in
FashionMNIST dataset. (a) Training student from scratch, (b) RKD student training, and (c) IKD
student training.
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Figure A6. Student metrics after the training phase of the student model in the FashionMNIST
dataset. (a) Training student from scratch, (b) RKD student training, and (c) IKD student training.
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Figure A7. Accuracy and loss over epochs during the training phase of the student model in the CIFAR10
dataset. (a) Training student from scratch, (b) RKD student training, and (c) IKD student training,.
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Figure A8. Student metrics after the training phase of the student model in the CIFAR10 dataset.
(a) Training student from scratch, (b) RKD student training, and (c) IKD student training.

ResNet 18 Loss / Accuracy Over Epochs

[ 2 2 3

— Training
030{ — Validation

Accuracy

010

]
Epoch

(@)

ResNet18 RBKD Loss / Accuracy Over Epochs

0 2 3 3 ]

035

— Training
0301 — validation
025

020

Accuracy

015
010

@
Epoch

(b)

ResNet18 IKD Loss / Accuracy Over Epochs

o

04| — Tai

— Validation

ning

a
Epoch

(c)

Figure A9. Accuracy and loss over epochs during the training phase of the student model in the CIFAR100
dataset. (a) Training student from scratch, (b) RKD student training, and (c) IKD student training.



Computers 2024, 13, 184 20 of 21

.35 3600
e.3 2.34 3000
.35 2.34 3000

8.50 3000
8.58 @.48 3000
8.5¢ @.49 3e00

cee row
5o soo

(@) (b)

Figure A10. Student metrics after the training phase of the student model in the CIFAR100 dataset.
(a) Training student from scratch, (b) RKD student training, and (c) IKD student training.
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