
Academic Editor: Ananda Maiti

Received: 20 March 2025

Revised: 15 April 2025

Accepted: 20 April 2025

Published: 23 April 2025

Citation: Alanazi, M.; Soh, B.; Samra,

H.; Li, A. PyChatAI: Enhancing

Python Programming Skills—An

Empirical Study of a Smart Learning

System. Computers 2025, 14, 158.

https://doi.org/10.3390/

computers14050158

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

PyChatAI: Enhancing Python Programming Skills—An Empirical
Study of a Smart Learning System
Manal Alanazi 1, Ben Soh 1,* , Halima Samra 2 and Alice Li 3

1 Department of Computer Science and Information Technology, La Trobe University, Melbourne 3086, Australia;
manalmohammedg.alanazi@latrobe.edu.au

2 Computer Science & Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
hsamra@kau.edu.sa

3 La Trobe Business School, La Trobe University, Melbourne 3086, Australia; a.li@latrobe.edu.au
* Correspondence: b.soh@latrobe.edu.au

Abstract: This paper presents strategies for effectively integrating AI tools into program-
ming education and provides recommendations for enhancing student learning outcomes
through intelligent educational systems. Learning computer programming is a cognitively
demanding task that requires dedication, logical reasoning, and persistence. Many be-
ginners struggle with debugging and often lack effective problem-solving strategies. To
address these issues, this study investigates PyChatAI—a bilingual, AI-powered chatbot
designed to support novice Python programmers by providing real-time feedback, answer-
ing coding-related questions, and fostering independent problem-solving skills. PyChatAI
offers continuous, personalised assistance and is particularly beneficial for students who
prefer remote or low-pressure learning environments. An empirical evaluation employing
a Solomon Four-Group design revealed significant improvements across all programming
skill areas, with especially strong gains in theoretical understanding, code writing, and
debugging proficiency.

Keywords: artificial intelligence; ChatGPT; natural language processing (NLP); OpenAI API;
Python programming; computer programming; smart learning systems; Saudi Arabia

1. Introduction
With the rapid advancement of artificial intelligence (AI) and the ongoing digital

transformation across industries, the demand for individuals with specialised expertise in
computer science and programming has become increasingly urgent. Programming skills
are now recognised as essential competencies for navigating the future workforce, driving
innovation, and contributing to sustained economic growth. In Saudi Arabia, this shift is
evident in the substantial rise in enrolment in computer science programs, in alignment
with national strategic goals, such as Saudi Vision 2030.

The country has made significant progress in AI education, with 86% of universi-
ties offering undergraduate programs, 56% offering master’s programs, and 9% offering
PhD programs in the field. Between 2019 and 2023, more than 38,000 students graduated
with specialisations in AI, including 6500 who completed their studies abroad. Remarkably,
the number of AI graduates increased by 42% from 2022 to 2023 [1].

Despite these encouraging developments, challenges in computer programming ed-
ucation remain. A smart learning system—capable of providing real-time, AI-driven,
and individualised support—holds great potential to address these gaps and enhance the
effectiveness of programming instruction.

Computers 2025, 14, 158 https://doi.org/10.3390/computers14050158

https://doi.org/10.3390/computers14050158
https://doi.org/10.3390/computers14050158
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-9519-886X
https://orcid.org/0000-0002-5199-3677
https://doi.org/10.3390/computers14050158
https://www.mdpi.com/article/10.3390/computers14050158?type=check_update&version=1

Computers 2025, 14, 158 2 of 21

These challenges include regional disparities in educational quality, traditional and
often passive teaching methods, language barriers, and limited access to instructional
resources. Such obstacles significantly hinder student engagement, contributing to high
dropout rates and inconsistent learning outcomes. Addressing these issues requires more
than curriculum reform; it necessitates the development of intelligent, responsive, and
student-centred learning environments [2].

Recent research indicates that while Saudi students generally possess strong digital literacy
and positive attitudes toward technology, their use of digital tools for academic purposes remains
limited. Factors such as geographic location, family support, and English language proficiency
significantly influence their adoption of educational technologies [3]. Notably, many female
computer science students in Saudi Arabia still rely on traditional study methods—such as
handwritten notes, which often lack interactivity and real-time feedback mechanisms [4].

In response to these persistent challenges, this study introduces PyChatAI—a bilin-
gual, AI-powered smart learning system designed specifically to support novice Python
programmers. Unlike general-purpose AI tools, PyChatAI delivers culturally relevant,
curriculum-aligned assistance tailored to the unique needs of Saudi learners. With features
such as real-time feedback, adaptive guidance, and proactive error detection, it offers a
novel and timely solution within the expanding landscape of AI-enhanced education.

2. Motivation and Research Objectives
Learning computer programming is a complex and demanding process that requires

persistence, logical reasoning, and strong problem-solving skills. One of the most common
challenges faced by beginners is debugging—an often frustrating task that can lead to the
development of ineffective coding habits and reduced learner confidence [5].

To address these difficulties, AI-powered educational technologies—particularly smart
learning systems, such as intelligent tutoring systems and chatbots—have emerged as
promising solutions. These tools enhance student engagement by delivering personalised,
real-time feedback, clarifying complex programming concepts, and fostering independent
learning [6]. Tools such as ChatGPT, for example, have been well-received for their ability
to simplify programming tasks and offer adaptive, context-sensitive responses [7,8].

However, many existing AI tools remain limited by their reactive design; they only
provide assistance when explicitly prompted by the user. This restricts their capacity
to proactively identify when students are struggling and intervene accordingly [9]. In
addition, most tools are not curriculum-aligned, lack bilingual support, and are not tailored
to specific educational contexts—making them less effective for non-English-speaking
learners, particularly in Saudi Arabia.

To overcome these limitations, this study introduces PyChatAI—a smart learning system
specifically designed to support beginner Python programmers. PyChatAI offers bilingual
support (Arabic and English), integrates proactive error detection, and incorporates culturally
relevant scaffolding based on Vygotsky’s Zone of Proximal Development (ZPD) [10]. The
tool aims to deliver context-aware, responsive assistance that promotes both technical skill
development and learner motivation, in alignment with Saudi Arabia’s national education
and digital transformation goals.

2.1. Research Objectives

This study aims to achieve the following:

• Evaluate the effectiveness of PyChatAI in improving programming skills among
novice learners.

• Identify factors influencing students’ acceptance of smart learning systems using the
Technology Acceptance Model (TAM3).

Computers 2025, 14, 158 3 of 21

• Explore the role of AI-driven feedback and real-time support in facilitating person-
alised learning.

• Assess the potential of culturally adapted AI tools in supporting digital education
goals, particularly in Saudi Arabia.

2.2. Research Questions

1. Does PyChatAI significantly improve students’ programming skills across key dimen-
sions (e.g., code writing and problem-solving)?

2. How do students perceive the usefulness and ease of use of PyChatAI?
3. What is the impact of the bilingual and proactive features of PyChatAI on user

engagement and learning outcomes?
4. Can PyChatAI be effectively integrated into existing programming courses in a way

that aligns with educational objectives in Saudi Arabia?

3. Literature Review
3.1. Existing Research and Tools

The integration of AI tools into computer programming education has rapidly ad-
vanced with the emergence of technologies such as ChatGPT, Pyo, Python-Bot, and
Revision-Bot. These tools offer a range of functionalities designed to improve coding
proficiency, provide real-time feedback, and enhance student engagement.

ChatGPT, a generative pre-trained transformer (GPT-4), represents a significant in-
novation in AI technology. Integrated into computer programming education, it assists
students by generating code snippets, offering debugging support, and suggesting coding
strategies. These features promote sustainable coding practices and enrich the learning
experience [11–13]. ChatGPT also facilitates multiple concurrent interactions, creating a
supportive, non-judgmental environment that encourages students to seek help comfort-
ably. Additionally, its capabilities—such as error detection, automated code generation,
and real-time assistance—enhance coding efficiency by reducing the time and effort needed
for assignments [11].

However, ChatGPT is not specialised for programming education. It provides static
responses that do not adapt to individual learners’ levels and lacks capabilities for direct
code execution or real-time code evaluation [11]. Despite these limitations, its educational
impact is broad. It has gained considerable academic attention for its potential to transform
teaching and learning through interactive, AI-driven approaches [14–16]. Many students
perceive ChatGPT as a human-like assistant, appreciating its ability to simplify complex
concepts and improve their learning experience [17].

Empirical studies underscore the effectiveness of ChatGPT in programming education.
For example, one study found that students using ChatGPT-enhanced learning meth-
ods improved their exam scores from 48.33 to 74.47 [18]. Engaging with ChatGPT has
also been linked to higher motivation and the development of cleaner, more structured
code, with fewer rule violations, reduced complexity, and improved adherence to coding
conventions [19,20].

Beyond individual assistance, AI-powered systems such as ChatGPT-based virtual
agents are being developed to simulate programmer-like problem-solving techniques.
These agents provide interactive and adaptive learning scenarios that enhance students’
technical skills, critical thinking, and collaborative learning.

Building on the foundation established by ChatGPT, several specialised tools have
been introduced:

Computers 2025, 14, 158 4 of 21

• Pyo focuses on introductory Python programming. It offers real-time chatbot support
to explain syntax, concepts, and debugging strategies [21]. While useful, it lacks deep
personalisation and automated code assessment.

• Python-Bot and Revision-Bot support programming practice, revision, and exam
preparation. These tools provide interactive feedback and automatic assessments
of code quality, syntax, and logic. They also integrate with Learning Management
Systems (LMSs) to track student progress [7,22]. However, their reliance on predefined
question banks limits their adaptability to individual learning trajectories.

• KIAAA serves as an AI-driven intelligent tutoring system (ITS) with a focus on
automation-related programming tasks. It offers customised learning paths and
supports 3D simulation-based interactive execution [23].

• VoiceBots employ voice-based technology to support multimedia programming educa-
tion, particularly in HTML and CSS. While they enhance accessibility and interactivity,
they lack deep integration with core programming instruction.

While these tools have contributed significantly to the advancement of computer pro-
gramming education, many still lack key features, such as proactive engagement, adaptive
learning, and real-time code execution. Among these, adaptive learning is especially critical,
as it allows AI systems to personalise instruction based on a student’s existing knowledge,
learning pace, and areas of difficulty. By dynamically tailoring feedback and content
delivery, adaptive AI tools can offer more effective support than static, one-size-fits-all ap-
proaches. This adaptability enhances learning efficiency, increases student motivation, and
helps reduce cognitive overload—particularly in complex domains, such as programming.

To better understand the current landscape, Table 1 presents a comparative overview
of these AI-based educational tools, outlining their respective strengths and limitations in
supporting computer programming education.

Table 1. Comparison of tools for learning computer programming.

Feature ChatGPT KIAAA Pyo VoiceBots Xatkit

Year 2023-2024-2025 2023 2022 2024 2020-2021-2024

Primary Purpose

General AI
assistant for

various tasks,
including

programming.

AI-driven
Intelligent Tutoring

System (ITS) for
automation

programming
education.

AI-based assistant
for Python

programming
support.

Enhances
multimedia

programming
education through

VoiceBot
technology.

AI-powered
programming

learning
environment.

AI Model Used
GPT-4 (Natural

Language
Processing, NLP).

Help-DKT (AI
cognitive model for

student progress
tracking).

Built on Rasa
(Conversational AI

framework).

IBM Watson AI
Services.

NLP-based machine
learning models.

Specialisation in
Programming

Not specific to
programming

education.

Focused on
automation-related

programming.

Specialises in
introductory

Python
programming.

Emphasises HTML
and CSS in
multimedia

programming.

Supports multiple
languages, including

Python, Java, and
C++.

Response to
Coding Queries

Provides general
programming

explanations and
debugging
assistance.

Generates custom
programming tasks

and dynamically
adapts to student

responses.

Explains Python
syntax, concepts,
and debugging

strategies.

Responds to
multimedia

programming
inquiries in real

time.

Provides immediate
feedback, debugging

support, and
adaptive learning.

Real-Time
Interaction

No direct code
execution.

Supports interactive
execution in a 3D

simulation
environment.

Offers real-time
programming
assistance via

chatbot.

Provides instant
feedback through

WhatsApp
integration.

Delivers live chatbot
responses with

adaptive learning.

Computers 2025, 14, 158 5 of 21

Table 1. Cont.

Feature ChatGPT KIAAA Pyo VoiceBots Xatkit

Adaptability to
Student Level

Static responses,
no adaptation to
user expertise.

Monitors and
adjusts difficulty

dynamically based
on student
progress.

Provides guidance
based on errors but

lacks deep
personalisation.

Customisable
responses based on

student
engagement and

feedback.

Adapts difficulty
based on learning

patterns.

Automated Code
Evaluation

No real-time
assessment.

AI-powered
evaluation with

automated
feedback.

Identifies syntax
errors and offers

hints via
multiple-choice

prompts.

Offers automated
responses but lacks

code execution
analysis.

Performs syntax
validation, logic

analysis, and
efficiency checks.

Simulation &
Hands-on
Learning

No simulation
capabilities.

3D virtual learning
environment for
practical coding

tasks.

Encourages logical
code structuring
through guided

exercises.

Provides
interactive

learning
experiences in

multimedia
programming.

Supports hands-on
coding exercises and

problem-solving
scenarios.

Integration with
Educational

Systems

No direct LMS or
IDE support.

Compatible with
IDEs and

automation
software.

Embedded in an
online Python

learning platform.

Integrated with
WhatsApp and

Learning
Management

Systems (LMS).

Supports LMS
integration,

classroom analytics,
and API

connectivity.

Assessment &
Feedback

Provides only
text-based

explanations, no
evaluation

metrics.

AI-driven real-time
feedback with

automated
assessment.

Offers hints,
explanations, and

solutions for
debugging
exercises.

Provides real-time
feedback with

additional learning
resources.

Automated grading,
performance

tracking, and skill
improvement

recommendations.

Ref [11,14,20,24–27] [28] [22] [29] [30–32]

Feature Revision-Bot Python-Bot Iris e-JAVA Chatbot PerFuSIT

Year 2022 2020 2024 2020 2024

Primary Purpose

AI-based chatbot
for personalised
programming
revision and

learning support.

AI-based chatbot
for programming

practice and
revision.

AI tutor in Artemis
for personalised

coding help

Virtual tutor for
learning JAVA
programming.

Adaptive Learning,
Personalised

Tutoring

AI Model Used

SnatchBot API
with NLP and

AIML (Artificial
Intelligence

Markup
Language).

SnatchBot API with
NLP and AIML.

GPT-3.5-Turbo
with advanced

prompting.

Rule-based chatbot
with text-matching

techniques.

Fuzzy Logic,
Machine Learning

Specialisation in
Programming

Python-focused,
designed for

exam practice and
interactive

problem-solving.

Python-focused,
designed for exam

practice and
interactive

problem-solving.

CS1 programming
exercises, no direct

solutions.

Focused on JAVA,
particularly control

structures.
Python, Java, C++

Response to
Coding Queries

AI-driven
question-answer

chatbot with a
predefined

question bank.

AI-driven
question-answer

chatbot with a
predefined question

bank.

Hints,
counter-questions,
and explanations.

Provides instant
responses using

pre-defined
patterns.

Real-Time Feedback,
Debugging
Assistance

Real-Time
Interaction

AI-powered
chatbot with
interactive
feedback.

AI-powered chatbot
with interactive

feedback.

Instant,
context-aware

responses.

Offers immediate
feedback through
chat-based input.

Dynamic
Adjustments, Live

Support

Computers 2025, 14, 158 6 of 21

Table 1. Cont.

Feature ChatGPT KIAAA Pyo VoiceBots Xatkit

Adaptability to
Student Level

Tracks student
progress and
customises

revision content
accordingly.

Tracks student
progress and

customises revision
content accordingly.

Adjusts to problem
context, not skill

level.

Limited
adaptability;

follows structured
responses

Beginner to
Advanced,
Skill-Based
Progression

Automated Code
Evaluation

AI-driven
assessment of
code quality,

syntax, and logic.

AI-driven
assessment of code
quality, syntax, and

logic.

Uses Artemis’s
automated
feedback.

Generates code
samples but does
not evaluate user

code.

Syntax Analysis,
Logical Error

Detection

Simulation &
Hands-on
Learning

Practice-based
revision tool with
interactive coding

challenges.

Practice-based
revision tool with
interactive coding

challenges.

Real-time
guidance, no
simulations

Supports learning
via structured

problem-solving.

Interactive Coding
Exercises, Virtual

Labs

Integration with
Educational

Systems

Web-based
chatbot with LMS
compatibility and

social media
deployment.

Web-based chatbot
with LMS

compatibility and
social media
deployment.

Fully embedded in
Artemis.

Standalone tool;
not integrated with
LMS or e-learning

platforms.

LMS Compatibility,
API Integration

Assessment &
Feedback

AI-powered
self-evaluation,

student progress
tracking, and

score prediction.

AI-powered
self-evaluation,

student progress
tracking, and score

prediction.

Provides hints, not
direct grading.

Provides
structured

responses but lacks
personalised

feedback.

Performance
Tracking,

Personalised Reports

Ref [33] [21] [34] [35] [36]

3.2. Broader Educational Context

The rapid advancement in AI technologies has profoundly impacted higher education,
particularly in the domain of programming instruction. AI-powered tools such as ChatGPT
have garnered significant attention for their potential to enhance teaching and learning
outcomes in academic settings [12]. By offering immediate feedback, assisting with coding
tasks, and promoting interactive learning, these tools foster greater student engagement
through AI-driven instructional methods [15,16].

Beyond programming-specific applications, AI-based tutors, such as Iris and the
e-JAVA Chatbot, have been integrated into broader educational contexts. Iris provides real-
time guidance and personalised feedback for CS1 programming exercises, while the e-JAVA
Chatbot supports structured problem-solving in Java programming environments [21].
These tools demonstrate the versatility of AI in various learning contexts, although they still
lack proactive engagement capabilities that would allow them to anticipate and respond to
student difficulties without prompting.

Moreover, the integration of AI in education is reshaping the role of educators—from
traditional content deliverers to mentors who facilitate conceptual understanding and
guide students in developing critical problem-solving skills [7,23].

3.3. Theoretical Frameworks

The development of AI-based educational tools is frequently grounded in established
learning theories, with Vygotsky’s Zone of Proximal Development (ZPD) serving as a key
theoretical framework. ZPD highlights the value of scaffolding—providing structured
support that enables learners to accomplish tasks they would find difficult to complete
unaided. This guided approach fosters the development of cognitive and problem-solving
skills by gradually promoting learner autonomy [10].

Computers 2025, 14, 158 7 of 21

In the context of computer programming education, integrating adaptive support
mechanisms into educational tools can address common challenges faced by novice pro-
grammers, such as planning program logic and debugging complex code [24,37]. AI-driven
systems that are designed around ZPD principles deliver personalised assistance that
bridges the gap between what students can do independently and what they can ac-
complish with appropriate guidance, thereby enhancing both learning effectiveness and
student confidence.

3.4. Gaps in Research

Despite the growing success of AI-driven tools, such as ChatGPT, Pyo, and Python-Bot,
several important gaps persist in the current research and application landscape:

• Lack of Proactive Engagement: Most existing tools—including ChatGPT and Python-
Bot—are reactive in nature, responding only when prompted by the user. They
do not proactively detect or intervene when students encounter difficulties during
coding tasks.

• Limited Adaptability: Tools such as ChatGPT provide static responses that do not ad-
just to a learner’s skill level or learning trajectory. While systems such as KIAAA offer
dynamic difficulty adjustments, they are not specifically designed for programming
education [23].

• Absence of Real-Time Code Execution and Evaluation: Many AI-powered tools, in-
cluding ChatGPT and VoiceBots, lack built-in capabilities for executing and evaluating
code in real time, limiting their usefulness for hands-on programming practice [11,15].

• Integration Challenges: Although some tools can interface with Learning Management
Systems (LMSs), seamless integration with Integrated Development Environments (IDEs)
and other educational platforms remains limited, hindering a cohesive and streamlined
learning experience [7,22].

These limitations underscore the need for specialised AI tools that deliver personalised,
real-time support tailored to the unique demands of programming education—particularly
at the introductory level.

To address these gaps, this study introduces PyChatAI, a purpose-built, bilingual chatbot
developed for novice Python programmers. Building upon the foundational capabilities of
ChatGPT, PyChatAI extends its functionality by offering interactive, adaptive programming
support that aligns with learners’ skill levels, educational contexts, and curriculum require-
ments. It is designed to proactively assist students in overcoming common programming
challenges, thereby enhancing both learning outcomes and student engagement.

4. Methodology
4.1. Introduction to Methodology

This study aims to evaluate the effectiveness of PyChatAI, an AI-powered educational
tool developed to support and enhance introductory Python programming instruction. This
methodology section details the participant demographics, system development process,
technical implementation, and the experimental framework used to assess the impact of
PyChatAI on student learning outcomes. To ensure a robust and comprehensive evaluation,
this study employs a mixed-methods approach, integrating both quantitative and qualitative
techniques. These include the Solomon Four-Group Experimental Design, the Technology
Acceptance Model (TAM3) questionnaire, and structured interviews with faculty members.

4.2. Participants and Setting

This research was conducted at the College of Computer Science and Information
Technology at Jouf University, Saudi Arabia. The study involved 300 female first-year

Computers 2025, 14, 158 8 of 21

undergraduate students enrolled in introductory Python programming courses during the
first semester of the 2024 academic year. Participants were between 18 and 22 years old,
and the majority had limited or no prior programming experience, with Python serving
as their first formal programming language. To ensure the validity of the findings and
minimise selection bias, participants were randomly assigned to control and experimental
groups using a computer-generated randomisation method, ensuring a balanced group
distribution and unbiased comparisons.

4.3. Experimental Design and Evaluation

To rigorously assess the effectiveness of PyChatAI, this study employs the Solomon
Four-Group design—a well-established experimental methodology renowned for its ability
to control for pre-test sensitisation and isolate the true effects of an intervention. This
design is particularly effective in distinguishing whether observed improvements are
attributable to the intervention itself or are influenced by participants’ prior exposure to
testing conditions.

4.3.1. The Structure of the Solomon Four-Group Design

The experimental setup consists of four groups: two control groups and two exper-
imental groups. The groups vary based on whether participants received a pre-test and
whether they were exposed to the intervention (use of PyChatAI). The structure of this
design is summarised in Table 2.

Table 2. Solomon Four-Group design.

Group Pre-Test Intervention
(Using PyChatAI) Post-Test Sample Size

Control Group One No No Yes 50

Control Group Two Yes No Yes 50

Experimental Group One Yes Yes Yes 50

Experimental Group Two No Yes Yes 50

4.3.2. Explanation of Design Components

• Pre-test: Measures participants’ baseline programming knowledge and skills prior to
the intervention. This establishes a reference point and helps assess whether initial
proficiency influences the effectiveness of PyChatAI.

• Intervention (use of PyChatAI): represents the experimental conditions in which
students interacted with PyChatAI during programming sessions to receive real-time
assistance, debugging support, and contextual code feedback.

• Post-test: administered following the intervention to evaluate changes in programming
performance, enabling a comparative analysis across all four groups.

4.3.3. Purpose of Research Design

The Solomon Four-Group design enables a rigorous evaluation of PyChatAI by facili-
tating balanced comparisons across groups exposed to different conditions. Specifically,
the design isolates and measures two critical factors:

1. Effect of the Intervention:
By comparing outcomes between the experimental groups (who used PyChatAI)
and the control groups (who did not), this study quantitatively assessed the di-
rect impact of PyChatAI on students’ computer programming skills. This compari-
son provides robust evidence regarding the efficacy of the application in enhancing
programming competencies.

Computers 2025, 14, 158 9 of 21

2. Effect of Pre-testing:
The inclusion of both pre-tested and non-pre-tested groups controls for potential
testing effects that might influence post-test performance. This allowed this study
to examine whether exposure to the pre-test itself contributes to improvements in
computer programming skills, independent of the intervention.

4.3.4. Research Process Flowchart

Figure 1 illustrates the research process for evaluating PyChatAI. The process began
with the pre-test, followed by the random assignment of 300 students into control and
experimental groups. The experimental group received the PyChatAI intervention, while
the control group continued with traditional instructional methods. After a four-month
intervention phase, both groups completed a post-test to assess changes in computer
programming skills.

Computers 2025, 14, x FOR PEER REVIEW 9 of 21

1. Effect of the Intervention:
By comparing outcomes between the experimental groups (who used PyChatAI) and
the control groups (who did not), this study quantitatively assessed the direct impact
of PyChatAI on students’ computer programming skills. This comparison provides
robust evidence regarding the efficacy of the application in enhancing programming
competencies.

2. Effect of Pre-testing:
The inclusion of both pre-tested and non-pre-tested groups controls for potential test-
ing effects that might influence post-test performance. This allowed this study to ex-
amine whether exposure to the pre-test itself contributes to improvements in com-
puter programming skills, independent of the intervention.

4.3.4. Research Process Flowchart

Figure 1 illustrates the research process for evaluating PyChatAI. The process began
with the pre-test, followed by the random assignment of 300 students into control and
experimental groups. The experimental group received the PyChatAI intervention, while
the control group continued with traditional instructional methods. After a four-month
intervention phase, both groups completed a post-test to assess changes in computer pro-
gramming skills.

Figure 1. Flowchart illustrating the research process for evaluating PyChatAI.

4.4. System Development and Technical Implementation

PyChatAI was developed as a domain-specific smart learning system, integrating AI-
driven feedback and real-time debugging support that leverages the OpenAI API for gen-
erating natural language responses tailored to Python programming tasks. The system
provides real-time feedback, structured learning prompts, and debugging support to en-
hance the learning experience for novice programmers. The PyChatAI system develop-
ment involves the following:

• Programming Language: Python 3.6+.
• User Interface (UI): developed using Tkinter for graphical interface design.
• AI Integration: utilises OpenAI API for generating context-specific programming re-

sponses.
• System Requirements:

a. Operating Systems: Windows, macOS, or Linux.

Figure 1. Flowchart illustrating the research process for evaluating PyChatAI.

4.4. System Development and Technical Implementation

PyChatAI was developed as a domain-specific smart learning system, integrating
AI-driven feedback and real-time debugging support that leverages the OpenAI API for
generating natural language responses tailored to Python programming tasks. The system
provides real-time feedback, structured learning prompts, and debugging support to en-
hance the learning experience for novice programmers. The PyChatAI system development
involves the following:

• Programming Language: Python 3.6+.
• User Interface (UI): developed using Tkinter for graphical interface design.
• AI Integration: utilises OpenAI API for generating context-specific programming responses.
• System Requirements:

a. Operating Systems: Windows, macOS, or Linux.
b. Dependencies: Tkinter, OpenAI API, and Pyperclip for clipboard operations.

Figures 2–6 illustrate various interface features of PyChatAI, including the AI Question
interface (Figure 2), input windows for coding challenges (Figure 4), and predefined
prompts guiding students through Python concepts (Figure 6). These interfaces were
designed to ensure usability and interactive engagement for beginner programmers.

Computers 2025, 14, 158 10 of 21

Computers 2025, 14, x FOR PEER REVIEW 10 of 21

b. Dependencies: Tkinter, OpenAI API, and Pyperclip for clipboard operations.

Figures 2–6 illustrate various interface features of PyChatAI, including the AI Ques-
tion interface (Figure 2), input windows for coding challenges (Figure 4), and predefined
prompts guiding students through Python concepts (Figure 6). These interfaces were de-
signed to ensure usability and interactive engagement for beginner programmers.

Figure 2. Screenshot of the Python Learning App_v1.0, illustrating code input, explanation, and
interactive features for learning how to fetch data using the OpenWeather API.

Figure 3. Screenshot of the “Learn Python” feature interface, displaying topic selection for interac-
tive learning in the Python Learning App.

Figure 2. Screenshot of the Python Learning App_v1.0, illustrating code input, explanation, and
interactive features for learning how to fetch data using the OpenWeather API.

Computers 2025, 14, x FOR PEER REVIEW 10 of 21

b. Dependencies: Tkinter, OpenAI API, and Pyperclip for clipboard operations.

Figures 2–6 illustrate various interface features of PyChatAI, including the AI Ques-
tion interface (Figure 2), input windows for coding challenges (Figure 4), and predefined
prompts guiding students through Python concepts (Figure 6). These interfaces were de-
signed to ensure usability and interactive engagement for beginner programmers.

Figure 2. Screenshot of the Python Learning App_v1.0, illustrating code input, explanation, and
interactive features for learning how to fetch data using the OpenWeather API.

Figure 3. Screenshot of the “Learn Python” feature interface, displaying topic selection for interac-
tive learning in the Python Learning App.

Figure 3. Screenshot of the “Learn Python” feature interface, displaying topic selection for interactive
learning in the Python Learning App.

Computers 2025, 14, x FOR PEER REVIEW 10 of 21

b. Dependencies: Tkinter, OpenAI API, and Pyperclip for clipboard operations.

Figures 2–6 illustrate various interface features of PyChatAI, including the AI Ques-
tion interface (Figure 2), input windows for coding challenges (Figure 4), and predefined
prompts guiding students through Python concepts (Figure 6). These interfaces were de-
signed to ensure usability and interactive engagement for beginner programmers.

Figure 2. Screenshot of the Python Learning App_v1.0, illustrating code input, explanation, and
interactive features for learning how to fetch data using the OpenWeather API.

Figure 3. Screenshot of the “Learn Python” feature interface, displaying topic selection for interac-
tive learning in the Python Learning App.

Figure 4. Screenshot of “Solve Problem” feature displaying a Python script input interface for entering
student data and grades with basic error handling.

Computers 2025, 14, 158 11 of 21

Computers 2025, 14, x FOR PEER REVIEW 11 of 21

Figure 4. Screenshot of “Solve Problem” feature displaying a Python script input interface for en-
tering student data and grades with basic error handling.

Figure 5. Screenshot of “Prompts” feature showing a categorised list of Python learning questions,
covering external libraries and best development practices.

Figure 6. Screenshot of “Generate Comments” window in the Python Learning App, allowing users
to input code and receive AI-generated comments to enhance code clarity.

4.4.1. Technical Contribution of PyChatAI

PyChatAI is not merely an OpenAI API wrapper but a domain-specific, adaptive
learning system built with tailored features to support Python education in multilingual
and culturally diverse contexts. The system was custom developed with the following
technical contributions:

• Custom Prompt Engineering: PyChatAI uses domain-optimised prompt templates
that scaffold learning based on student inputs, reducing hallucinations and ensuring
responses are pedagogically aligned with Python course content.

• No Custom Dataset Training: The system does not train its own models but uses pre-
trained OpenAI models. However, its performance is fine-tuned at runtime through
controlled prompt engineering and contextual filtering.

• Adaptive Layer Built on OpenAI API: PyChatAI adds a real-time logic layer that
monitors engagement patterns (e.g., frequent syntax errors and repeated queries) and
offers tailored scaffolding. This adaptivity goes beyond simple request–response
models.

Figure 5. Screenshot of “Prompts” feature showing a categorised list of Python learning questions,
covering external libraries and best development practices.

Computers 2025, 14, x FOR PEER REVIEW 11 of 21

Figure 4. Screenshot of “Solve Problem” feature displaying a Python script input interface for en-
tering student data and grades with basic error handling.

Figure 5. Screenshot of “Prompts” feature showing a categorised list of Python learning questions,
covering external libraries and best development practices.

Figure 6. Screenshot of “Generate Comments” window in the Python Learning App, allowing users
to input code and receive AI-generated comments to enhance code clarity.

4.4.1. Technical Contribution of PyChatAI

PyChatAI is not merely an OpenAI API wrapper but a domain-specific, adaptive
learning system built with tailored features to support Python education in multilingual
and culturally diverse contexts. The system was custom developed with the following
technical contributions:

• Custom Prompt Engineering: PyChatAI uses domain-optimised prompt templates
that scaffold learning based on student inputs, reducing hallucinations and ensuring
responses are pedagogically aligned with Python course content.

• No Custom Dataset Training: The system does not train its own models but uses pre-
trained OpenAI models. However, its performance is fine-tuned at runtime through
controlled prompt engineering and contextual filtering.

• Adaptive Layer Built on OpenAI API: PyChatAI adds a real-time logic layer that
monitors engagement patterns (e.g., frequent syntax errors and repeated queries) and
offers tailored scaffolding. This adaptivity goes beyond simple request–response
models.

Figure 6. Screenshot of “Generate Comments” window in the Python Learning App, allowing users
to input code and receive AI-generated comments to enhance code clarity.

4.4.1. Technical Contribution of PyChatAI

PyChatAI is not merely an OpenAI API wrapper but a domain-specific, adaptive
learning system built with tailored features to support Python education in multilingual
and culturally diverse contexts. The system was custom developed with the following
technical contributions:

• Custom Prompt Engineering: PyChatAI uses domain-optimised prompt templates
that scaffold learning based on student inputs, reducing hallucinations and ensuring
responses are pedagogically aligned with Python course content.

• No Custom Dataset Training: The system does not train its own models but uses pre-
trained OpenAI models. However, its performance is fine-tuned at runtime through
controlled prompt engineering and contextual filtering.

• Adaptive Layer Built on OpenAI API: PyChatAI adds a real-time logic layer that monitors
engagement patterns (e.g., frequent syntax errors and repeated queries) and offers tailored
scaffolding. This adaptivity goes beyond simple request–response models.

• Arabic/English Multilingual Interface: the chatbot dynamically detects the language
and adjusts UI elements, error messages, and responses accordingly.

• Debugging Assistant: this analyses common logic and syntax errors using pattern-
matching and suggests improvements proactively based on detected coding issues.

Computers 2025, 14, 158 12 of 21

4.4.2. Innovation Compared to Existing Tools

Unlike tools such as ChatGPT, Python-Bot, or Pyo, PyChatAI is purpose-built for
academic Python instruction in Saudi Arabia. Table 3 provides a comparative analysis of
PyChatAI, ChatGPT, and Python-Bot/Pyo across six key features relevant to educational
support in Python programming. This table clearly shows that PyChatAI offers a more
comprehensive and education-specific feature set than ChatGPT and Python-Bot/Pyo,
especially in areas such as proactive feedback, adaptive support, bilingual interaction, and
curriculum integration.

Table 3. Comparison of PyChatAI and other AI tools (ChatGPT and Python-Bot/Pyo) based on key
educational features.

Feature PyChatAI ChatGPT Python-Bot/Pyo

Proactive Error Detection Yes No No
Adaptive Scaffolding Yes No No

Arabic/English Support Yes (bilingual UI/feedback) Limited No
Curriculum-Aligned Prompts Yes No No

Context-Aware Learning Feedback Yes No No
Built-in Debugging Assistance Yes Basic (if prompted) No

4.4.3. Pedagogical Framework

The system incorporates Vygotsky’s Zone of Proximal Development (ZPD) by adjust-
ing the level of assistance based on the complexity of the task and user engagement. This
scaffolding approach ensures students can solve problems they may not be able to handle
independently, gradually building their confidence and skill.

4.5. PyChatAI System Features and Development Phases

The system was developed in two phases to progressively enhance its
educational capabilities:

1. Phase 1: Core Functionalities

a. Live Question Assistance: Users can submit Python-related questions and
receive instant responses. Contextual filters ensure all responses remain specific
to Python programming.

b. Multilingual Support: The system supports both English and Arabic, making
it accessible to a diverse learner base. The interface and chatbot dynamically
adjust to the selected language.

2. Phase 2: Enhanced Features

a. Predefined Learning Prompts: interactive prompts guide users through funda-
mental Python concepts, such as loops, conditionals, and functions (Figure 5).

b. Problem Description Form: students describe their coding challenges, and
PyChatAI generates a basic logic framework to aid problem-solving.

c. Interactive Debugging Assistance: the tool detects syntax errors and provides
corrective suggestions in real-time (Figure 3).

d. Code Analysis and Feedback: students can submit code to receive a fully com-
mented version, helping them understand coding best practices and improve
code readability (Figure 4).

4.6. Data Collection and Analysis

The evaluation of PyChatAI involves both quantitative and qualitative methods to
provide a comprehensive understanding of its educational impact.

Computers 2025, 14, 158 13 of 21

1. Quantitative Data Collection:

• Pre-tests and Post-tests: programming assessments administered before and after
the intervention to measure changes in coding skills and problem-solving abilities.

• Technology Acceptance Model (TAM3) Questionnaire: To investigate factors in-
fluencing student acceptance of PyChatAI, this study incorporates a TAM3-based
questionnaire. This model evaluates key variables, such as perceived usefulness,
ease of use, and behavioural intention to continue using the application.

2. Qualitative Data Collection:

• Faculty Interviews: To gain a comprehensive understanding of the educational
value of PyChatAI, faculty perspectives were gathered through structured inter-
views. These interviews focused on the effectiveness of PyChatAI in enhancing
programming instruction, its integration into the curriculum, and potential areas
for improvement.

This multi-faceted methodological approach enables a comprehensive evaluation of
PyChatAI from both student and educator perspectives. It directly addresses the primary
research objective of this study: to determine the effectiveness of PyChatAI in enhancing
computer programming outcomes and to explore the key factors influencing its acceptance
and adoption in educational settings.

5. Results
5.1. Pre-Test: Equivalence of Study Groups

To ensure the validity of this study’s findings, it was essential to establish baseline
equivalence between the control and experimental groups prior to the intervention. A
pre-test was conducted across six core programming skill dimensions: theoretical under-
standing, code writing, software design, problem-solving and analysis, software testing
and debugging, and overall programming competency.

An independent samples t-test was employed to compare mean scores between the
groups. Assumptions of normality and homogeneity of variance were assessed using the
Shapiro–Wilk and Levene’s tests, respectively, and were satisfactorily met, confirming
the suitability of the t-test for this analysis. In addition, effect sizes (Cohen’s d) were
calculated to determine the practical significance of any observed differences. The results
indicate no statistically significant differences between the control and experimental groups
across all measured domains. As summarised in Table 4, these findings affirm the initial
equivalence of the groups, providing a reliable basis for evaluating the impact of the
PyChatAI intervention.

Computers 2025, 14, 158 14 of 21

Table 4. The results of the independent samples t-test for the pre-test of programming skills.

Skill Group N Mean Std. Deviation T-Value DF p-Value

Theoretical
Understanding

Control 150 2.17 1.14
0.593 298 0.554Experimental 150 2.26 1.56

Code Writing Skills Control 150 1.98 1.13
1.252 298 0.212Experimental 150 1.82 1.08

Software Design Control 150 1.77 1.13
1.534 298 0.126Experimental 150 1.56 1.21

Problem Solving Control 150 1.51 1.02
0.001 298 0.999Experimental 150 1.51 1.28

Software Testing Control 150 1.83 1.11
1.539 298 0.062Experimental 150 2.05 1.42

Total Skills
Control 150 9.25 2.79

0.12 298 0.904Experimental 150 9.20 3.85

Key Findings from the Pre-Test:

• For theoretical understanding, the control group (M = 2.17; SD = 1.14) and the experi-
mental group (M = 2.26; SD = 1.56) showed no significant difference, t(298) = 0.593
and p = 0.554, indicating comparable baseline knowledge between the two groups.

• Similarly, in code-writing skills, the control group (M = 1.98; SD = 1.13) and the
experimental group (M = 1.82; SD = 1.08) did not differ significantly, t(298) = 1.252 and
p = 0.212, suggesting equivalent starting levels for this skill.

• In software design, no significant difference was observed between the control group
(M = 1.77; SD = 1.13) and the experimental group (M = 1.56; SD = 1.21), t(298) = 1.534
and p = 0.126, confirming the groups’ similarity prior to the intervention.

• For problem-solving skills, both groups had identical mean scores (M = 1.51), with no
significant difference, t(298) = 0.001 and p = 0.999, further supporting the equivalence
of the groups.

• In software testing and debugging, while the experimental group scored slightly higher
(M = 2.05; SD = 1.42) than the control group (M = 1.83; SD = 1.11), this difference was
not statistically significant, t(298) = 1.539 and p = 0.062.

• Finally, for total programming skills, the control group (M = 9.25; SD = 2.79) and
the experimental group (M = 9.20; SD = 3.85) showed no significant difference,
t(298) = 0.12 and p = 0.904, confirming overall equivalence across all measured skills.

5.2. Post-Test Results: Impact of PyChatAI

Programming skills were assessed post-intervention using a comprehensive program-
ming skills test conducted after a four-month period. The results for both the control and
experimental groups were analysed using the independent samples t-test to identify any
significant differences between the two groups. This statistical method enabled a compari-
son of means to determine the impact of the PyChatAI application on the development of
programming skills.

Table 5 presents the t-test results, highlighting the differences in programming skills
across the measured dimensions for the two groups. These findings provide critical insights
into the effectiveness of the intervention in enhancing programming skills among female
computer science students at Jouf University.

Key Findings from the Post-Test:
The results, as summarised in Table 4, indicate statistically significant differences

between the control and experimental groups across all measured dimensions of program-
ming skills (p < 0.001 for all skills).

Computers 2025, 14, 158 15 of 21

Table 5. Independent samples t-test results comparing programming skills between two groups.

Skill Group N Mean Std. Deviation T-Value DF p-Value

Theoretical Understanding Control 150 2.51 1.01
12.402 298 0.001>Experimental 150 3.99 1.05

Code Writing Skills Control 150 2.31 1.01
14.719 298 0.001>Experimental 150 4.02 1.01

Software Design Control 150 2.19 0.89
15.211 298 0.001>Experimental 150 4.02 1.17

Problem Solving Control 150 2.09 0.99
15.096 298 0.001>Experimental 150 4.03 1.21

Software Testing Control 150 2.22 0.90
15.120 298 0.001>Experimental 150 4.00 1.12

Total Skills
Control 150 11.33 2.53

21.068 298 0.001>Experimental 150 20.05 4.40

• The experimental group had a mean score of 3.99 in theoretical understanding com-
pared to 2.51 for the control group, with a t-value of 12.402 and a p-value < 0.001,
indicating a significant improvement due to the intervention.

• In code-writing skills, the experimental group achieved a mean score of 4.02, substantially
higher than the control group’s 2.31, with a t-value of 14.719 and a p-value < 0.001.

• The experimental group outperformed the control group in software design, with a mean
score of 4.02 compared to 2.19, reflected by a t-value of 15.211 and a p-value < 0.001.

• In problem-solving, the experimental group’s mean score of 4.03 significantly exceeded
the control group’s 2.09, with a t-value of 15.096 and a p-value < 0.001.

• The experimental group achieved a mean score of 4.00 in software testing, higher than
the control group’s 2.22, with a t-value of 15.120 and a p-value < 0.001.

• The total programming skill score showed a marked improvement in the experimental
group, with a mean of 20.05 compared to 11.33 in the control group and a t-value of 21.068
with a p-value < 0.001, confirming the significant overall effectiveness of the PyChatAI
application in enhancing programming skills.

Figures 7 and 8 show a comparison of computer programming skills between the control
and experimental groups, demonstrating consistent and substantial improvements across all
dimensions for students using PyChatAI. Figure 8 illustrates the distribution of computer
programming skill scores, highlighting the higher median scores and reduced variance in
the experimental group, which suggests both improvements and consistency in learning
outcomes. Figure 9 compares the mean scores across different computer programming skills,
clearly showing the superior performance of the experimental group in all categories.

Computers 2025, 14, x FOR PEER REVIEW 15 of 21

Experimental 150 20.05 4.40

Key Findings from the Post-Test:
The results, as summarised in Table 4, indicate statistically significant differences be-

tween the control and experimental groups across all measured dimensions of program-
ming skills (p < 0.001 for all skills).

• The experimental group had a mean score of 3.99 in theoretical understanding com-
pared to 2.51 for the control group, with a t-value of 12.402 and a p-value < 0.001,
indicating a significant improvement due to the intervention.

• In code-writing skills, the experimental group achieved a mean score of 4.02, sub-
stantially higher than the control group’s 2.31, with a t-value of 14.719 and a p-value
< 0.001.

• The experimental group outperformed the control group in software design, with a
mean score of 4.02 compared to 2.19, reflected by a t-value of 15.211 and a p-value <
0.001.

• In problem-solving, the experimental group’s mean score of 4.03 significantly ex-
ceeded the control group’s 2.09, with a t-value of 15.096 and a p-value < 0.001.

• The experimental group achieved a mean score of 4.00 in software testing, higher
than the control group’s 2.22, with a t-value of 15.120 and a p-value < 0.001.

• The total programming skill score showed a marked improvement in the experi-
mental group, with a mean of 20.05 compared to 11.33 in the control group and a t-
value of 21.068 with a p-value < 0.001, confirming the significant overall effectiveness
of the PyChatAI application in enhancing programming skills.

Figures 7 and 8 show a comparison of computer programming skills between the
control and experimental groups, demonstrating consistent and substantial improve-
ments across all dimensions for students using PyChatAI. Figure 8 illustrates the distri-
bution of computer programming skill scores, highlighting the higher median scores and
reduced variance in the experimental group, which suggests both improvements and con-
sistency in learning outcomes. Figure 9 compares the mean scores across different com-
puter programming skills, clearly showing the superior performance of the experimental
group in all categories.

Figure 7. Boxplot comparison of programming skill mean scores between control and experimental
groups, highlighting score distributions and outliers.

Figure 7. Boxplot comparison of programming skill mean scores between control and experimental
groups, highlighting score distributions and outliers.

Computers 2025, 14, 158 16 of 21Computers 2025, 14, x FOR PEER REVIEW 16 of 21

Figure 8. Mean programming skill scores by group, comparing control and experimental groups
across individual skills and total performance.

6. Discussion
6.1. Interpretation of Pre-Test Results

The pre-test results confirm that both the control and experimental groups possessed
equivalent baseline skills across all dimensions of computer programming, including the-
oretical understanding, code writing, software design, problem-solving, and software
testing. This statistical equivalence is crucial, as it ensures that any differences observed
in the post-test are the result of the PyChatAI intervention, rather than pre-existing dis-
parities between the groups. By establishing that both groups started with comparable
skill levels, this study maintains strong internal validity, allowing for a clear attribution
of post-intervention improvements to the use of the AI-powered educational tool. This
baseline similarity provides a solid foundation for evaluating the impact of PyChatAI and
supports the reliability of the conclusions of this study.

6.2. Impact of PyChatAI on Computer Programming Skills

The post-test results reveal a significant positive impact of PyChatAI as a smart learn-
ing system, demonstrating its effectiveness in the development of computer programming
skills among the experimental group. The data demonstrate substantial improvements
across all measured dimensions, indicating that the intervention effectively enhanced stu-
dents’ abilities in both theoretical knowledge and practical application.

In the areas of theoretical understanding and code writing, the experimental group
showed marked improvements compared to the control group. Theoretical understand-
ing is fundamental for comprehending computer programming principles, and the ob-
served gains suggest that PyChatAI successfully facilitated students’ grasp of complex
concepts. Similarly, the improvement in code-writing skills indicates that the AI tool ef-
fectively supported students in translating their theoretical knowledge into practical cod-
ing abilities. This is likely due to the ability of PyChatAI to provide instant feedback, sug-
gest code modifications, and guide students through common programming errors, fos-
tering a more interactive and engaging learning experience.

The experimental group’s superior performance in problem-solving and software
testing further underscores the effectiveness of PyChatAI as a smart learning system that
fosters computational thinking and coding proficiency. Problem-solving is a critical skill
in computer programming, requiring not only technical knowledge but also analytical
thinking and creativity. The significant gains in this area suggest that the interactive fea-
tures of PyChatAI, such as real-time debugging support and tailored problem-solving
prompts, played a key role in helping students develop these competencies. Likewise,

Figure 8. Mean programming skill scores by group, comparing control and experimental groups
across individual skills and total performance.

Computers 2025, 14, x FOR PEER REVIEW 17 of 21

improvements in software testing and debugging skills highlight the role of the tool in
enhancing students’ error detection and correction abilities, which are essential for writ-
ing efficient and reliable code.

The most compelling evidence of the impact of PyChatAI is reflected in the total pro-
gramming skill score. The experimental group achieved a mean score of 20.05, nearly dou-
ble that of the control group’s 11.33, indicating comprehensive support across multiple
dimensions of computer programming. This dramatic improvement suggests that PyCha-
tAI not only helps students understand individual concepts but also fosters a more holistic
development of computer programming proficiency.

These findings are visually supported by Figures 9 and 10, which illustrate the dif-
ferences in mean scores across various computer programming dimensions. The visual
data reinforce the robustness of the intervention, clearly showing the experimental
group’s superior performance in all skill areas. The consistent improvements across mul-
tiple dimensions highlight the ability of PyChatAI to provide an integrated learning ex-
perience that addresses both foundational and advanced programming skills.

Figure 9. Boxplot showing differences in programming skill scores between control and experi-
mental groups across six dimensions.

Figure 10. Bar chart comparing mean programming scores across dimensions for control and exper-
imental groups.

Figure 9. Boxplot showing differences in programming skill scores between control and experimental
groups across six dimensions.

6. Discussion
6.1. Interpretation of Pre-Test Results

The pre-test results confirm that both the control and experimental groups possessed
equivalent baseline skills across all dimensions of computer programming, including the-
oretical understanding, code writing, software design, problem-solving, and software
testing. This statistical equivalence is crucial, as it ensures that any differences observed
in the post-test are the result of the PyChatAI intervention, rather than pre-existing dis-
parities between the groups. By establishing that both groups started with comparable
skill levels, this study maintains strong internal validity, allowing for a clear attribution
of post-intervention improvements to the use of the AI-powered educational tool. This
baseline similarity provides a solid foundation for evaluating the impact of PyChatAI and
supports the reliability of the conclusions of this study.

6.2. Impact of PyChatAI on Computer Programming Skills

The post-test results reveal a significant positive impact of PyChatAI as a smart learn-
ing system, demonstrating its effectiveness in the development of computer programming
skills among the experimental group. The data demonstrate substantial improvements
across all measured dimensions, indicating that the intervention effectively enhanced
students’ abilities in both theoretical knowledge and practical application.

In the areas of theoretical understanding and code writing, the experimental group
showed marked improvements compared to the control group. Theoretical understanding
is fundamental for comprehending computer programming principles, and the observed
gains suggest that PyChatAI successfully facilitated students’ grasp of complex concepts.
Similarly, the improvement in code-writing skills indicates that the AI tool effectively

Computers 2025, 14, 158 17 of 21

supported students in translating their theoretical knowledge into practical coding abilities.
This is likely due to the ability of PyChatAI to provide instant feedback, suggest code
modifications, and guide students through common programming errors, fostering a more
interactive and engaging learning experience.

The experimental group’s superior performance in problem-solving and software
testing further underscores the effectiveness of PyChatAI as a smart learning system that
fosters computational thinking and coding proficiency. Problem-solving is a critical skill in
computer programming, requiring not only technical knowledge but also analytical think-
ing and creativity. The significant gains in this area suggest that the interactive features
of PyChatAI, such as real-time debugging support and tailored problem-solving prompts,
played a key role in helping students develop these competencies. Likewise, improvements
in software testing and debugging skills highlight the role of the tool in enhancing stu-
dents’ error detection and correction abilities, which are essential for writing efficient and
reliable code.

The most compelling evidence of the impact of PyChatAI is reflected in the total
programming skill score. The experimental group achieved a mean score of 20.05, nearly
double that of the control group’s 11.33, indicating comprehensive support across mul-
tiple dimensions of computer programming. This dramatic improvement suggests that
PyChatAI not only helps students understand individual concepts but also fosters a more
holistic development of computer programming proficiency.

These findings are visually supported by Figures 9 and 10, which illustrate the dif-
ferences in mean scores across various computer programming dimensions. The visual
data reinforce the robustness of the intervention, clearly showing the experimental group’s
superior performance in all skill areas. The consistent improvements across multiple di-
mensions highlight the ability of PyChatAI to provide an integrated learning experience
that addresses both foundational and advanced programming skills.

Computers 2025, 14, x FOR PEER REVIEW 17 of 21

improvements in software testing and debugging skills highlight the role of the tool in
enhancing students’ error detection and correction abilities, which are essential for writ-
ing efficient and reliable code.

The most compelling evidence of the impact of PyChatAI is reflected in the total pro-
gramming skill score. The experimental group achieved a mean score of 20.05, nearly dou-
ble that of the control group’s 11.33, indicating comprehensive support across multiple
dimensions of computer programming. This dramatic improvement suggests that PyCha-
tAI not only helps students understand individual concepts but also fosters a more holistic
development of computer programming proficiency.

These findings are visually supported by Figures 9 and 10, which illustrate the dif-
ferences in mean scores across various computer programming dimensions. The visual
data reinforce the robustness of the intervention, clearly showing the experimental
group’s superior performance in all skill areas. The consistent improvements across mul-
tiple dimensions highlight the ability of PyChatAI to provide an integrated learning ex-
perience that addresses both foundational and advanced programming skills.

Figure 9. Boxplot showing differences in programming skill scores between control and experi-
mental groups across six dimensions.

Figure 10. Bar chart comparing mean programming scores across dimensions for control and exper-
imental groups.

Figure 10. Bar chart comparing mean programming scores across dimensions for control and
experimental groups.

6.3. Implications for Educational Practice

The significant improvements observed in the experimental group suggest that AI-
powered smart learning systems, such as PyChatAI, have the potential to transform com-
puter programming education by providing real-time feedback and personalised assistance.
One of the key advantages of PyChatAI is its ability to provide real-time feedback and
assistance. Unlike traditional teaching methods, which often involve delayed feedback,

Computers 2025, 14, 158 18 of 21

PyChatAI offers instant responses to students’ queries. This immediacy fosters continuous
engagement, helps students correct mistakes as they occur, and reduces the frustration
commonly associated with programming challenges.

Moreover, the adaptive support mechanisms of PyChatAI enable personalised learning
experiences. The tool tailors its feedback and guidance based on individual student needs,
making it particularly effective for novice programmers who may struggle with the steep
learning curve associated with programming. This level of personalisation helps students
build confidence and maintain motivation, which are critical factors in successful learning.

The effectiveness of the tool in improving problem-solving and software debugging
skills also highlights its role in promoting critical thinking and analytical abilities. These
skills are not only essential for programming but are also valuable in a wide range of
academic and professional contexts. By fostering these competencies, PyChatAI contributes
to the development of students’ overall cognitive abilities, preparing them for more complex
tasks and challenges in the future.

While the results of this study demonstrate the effectiveness of PyChatAI as a smart
learning system, several limitations should be acknowledged. First, this study focused
exclusively on female students at a single institution (Jouf University in Saudi Arabia).
While this focus provided valuable insights into a specific demographic, it also limits the
generalisability of the findings. Future research should include more diverse student popu-
lations, encompassing different genders, institutions, and cultural contexts, to determine
whether the effectiveness of PyChatAI is consistent across various groups.

In addition, while PyChatAI showed significant improvements in Python program-
ming, it remains unclear whether similar results would be observed in other programming
languages or more advanced programming topics. Future studies should explore the
applicability of the tool across different programming environments and complexity levels
to better understand its broader potential.

Lastly, the current study focused on the short-term impact of PyChatAI over a four-
month period. While the results are promising, longitudinal studies are needed to examine
the sustained impact of AI-assisted learning on computer programming skills. Understand-
ing whether the improvements observed in this study persist over time would provide
valuable insights into the long-term benefits of integrating AI tools into educational settings.

In summary, the findings of this study highlight the transformative potential of AI-
powered educational tools, such as PyChatAI, in enhancing computer programming skills.
By providing real-time feedback, fostering critical thinking, and offering personalised learn-
ing experiences, PyChatAI represents a significant advancement in computer programming
education. However, further research is needed to explore its applicability in broader
contexts and to assess the long-term impact of AI-assisted learning on student outcomes.

7. Conclusions
In response to the growing demand for personalised, inclusive programming educa-

tion, this study introduced PyChatAI, a bilingual AI-powered learning system designed
to support novice Python learners through real-time feedback, adaptive guidance, and
proactive problem-solving support.

Using a Solomon Four-Group design with 300 female students at Jouf University,
this study demonstrated that PyChatAI significantly enhanced programming competen-
cies across key areas—including code writing, theoretical understanding, and debugging.
Compared to control groups, students using PyChatAI nearly doubled their overall pro-
gramming performance. Unlike general-purpose tools, such as ChatGPT, PyChatAI offers
curriculum-aligned, proactive support tailored to learners’ progress. TAM3 responses
confirmed high student acceptance, citing ease of use and perceived usefulness, while

Computers 2025, 14, 158 19 of 21

faculty feedback underscored its value in large classroom settings. The system’s bilingual
capabilities also helped reduce language barriers, supporting broader educational equity
and aligning with the digital transformation goals of Saudi Vision 2030.

The outcomes of this study suggest significant relevance beyond the immediate setting.
PyChatAI’s design offers a model for developing AI-powered educational systems that are
culturally localised, curriculum-aligned, and proactively assistive features that go beyond
what existing tools, such as ChatGPT or Python-Bot, provide. As AI becomes increasingly
integrated into education, such smart systems may play a transformative role in building
equitable and personalised learning environments.

Despite these promising results, this study has certain limitations. It focused exclu-
sively on female students at a single institution, limiting the generalisability of the findings.
In addition, this study only evaluated short-term gains over a four-month period. Future
research should aim for the following:

• Examine the system’s applicability across diverse learner populations and institutions.
• Test PyChatAI in other programming languages and advanced computing topics.
• Explore long-term retention and the sustained impact of AI-assisted learning.
• Investigate how integrating real-time performance analytics and reinforcement learn-

ing could further personalise the learning experience.

In conclusion, PyChatAI demonstrates strong potential as a scalable and effective
smart learning system capable of transforming computer programming education. By
building on the strengths of existing tools, such as ChatGPT—while introducing proactive
engagement, bilingual support, and alignment with local curricula—PyChatAI offers a
uniquely adaptable solution for supporting novice programmers. Its proven ability to
enhance student outcomes highlights the promise of AI-driven educational technologies in
fostering more inclusive, personalised, and adaptive learning environments in computer
programming education both in Saudi Arabia and globally.

Author Contributions: Conceptualization, M.A. and B.S.; methodology, M.A. and B.S.; software,
M.A.; validation, M.A., B.S. and H.S.; formal analysis, M.A., B.S. and H.S.; investigation, M.A.,
B.S. and H.S.; resources, M.A., B.S. and A.L.; data curation, M.A. and H.S.; writing—original draft
preparation, M.A. and B.S.; writing—review and editing, B.S., A.L. and H.S.; visualization, M.A., B.S.
and H.S.; supervision, B.S. and A.L.; project administration, M.A., B.S., H.S. and A.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Alharthi, F. Challenges related to computer programming education in Saudi Arabia. Proc. Eng. 2024, 6, 37–44. [CrossRef]
2. Alothman, M.; Robertson, J.; Michaelson, G. Computer usage and attitudes among Saudi Arabian undergraduate students.

Comput. Educ. 2017, 110, 127–142. [CrossRef]
3. Alanazi, A.; Li, A.; Soh, B. Effects on Saudi Female Student Learning Experiences in a Programming Subject Using Mobile Devices:

An Empirical Study. Int. J. Interact. Mob. Technol. 2023, 17, 44–58. [CrossRef]
4. Alasmari, O.A.; Singer, J.; Ada, M.B. Do current online coding tutorial systems address novice programmer difficulties? In Proceedings

of the 15th International Conference on Education Technology and Computers, Barcelona, Spain, 26–28 September 2023; pp. 242–248.
5. Zhong, X.; Zhan, Z. An intelligent tutoring system for programming education based on informative tutoring feedback: System

development, algorithm design, and empirical study. Interact. Technol. Smart Educ. 2024. ahead-of-print.
6. Abdulla, S.; Ismail, S.; Fawzy, Y.; Elhag, A. Using ChatGPT in Teaching Computer Programming and Studying Its Impact on

Students Performance. Electron. J. E-Learn. 2024, 22, 66–81. [CrossRef]

https://doi.org/10.24874/PES06.01.005
https://doi.org/10.1016/j.compedu.2017.02.010
https://doi.org/10.3991/ijim.v17i13.38439
https://doi.org/10.34190/ejel.22.6.3380

Computers 2025, 14, 158 20 of 21

7. Mekthanavanh, V.; Meksavanh, B.; Bouddy, S. ChatGPT Enhances Programming Skills of Computer Engineering Students.
Souphanouvong Univ. J. Multidiscip. Res. Dev. 2024, 10, 1–9. [CrossRef]

8. Stone, I. Investigating the Use of ChatGPT to Support the Learning of Python Programming Among Upper Secondary School
Students: A Design-Based Research Study. In Proceedings of the 2024 Conference on United Kingdom & Ireland Computing
Education Research, Manchester, UK, 5–6 September 2024; p. 1.

9. Maguire, J.; Cutts, Q. Supporting the Computing Science Education Research Community with Rolling Reviews. In Proceedings
of the United Kingdom & Ireland Computing Education Research Conference, Glasgow, UK, 3–4 September 2020; ACM:
New York, NY, USA, 2020.

10. Van Der Stuyf, R.R. Scaffolding as a teaching strategy. Adolesc. Learn. Dev. 2002, 52, 5–18.
11. Yilmaz, R.; Yilmaz, F.G.K. The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking

skills, programming self-efficacy and motivation. Comput. Educ. Artif. Intell. 2023, 4, 100147. [CrossRef]
12. Rahman, M.; Watanobe, Y. ChatGPT for education and research: Opportunities, threats, and strategies. Appl. Sci. 2023, 13, 5783. [CrossRef]
13. Silva, C.A.G.D.; Ramos, F.N.; De Moraes, R.V.; Santos, E.L.D. ChatGPT: Challenges and benefits in software programming for

higher education. Sustainability 2024, 16, 1245. [CrossRef]
14. Tick, A. Exploring ChatGPT’s Potential and Concerns in Higher Education. In Proceedings of the 2024 IEEE 22nd Jubilee

International Symposium on Intelligent Systems and Informatics (SISY), Pula, Croatia, 19–21 September 2024.
15. Wieser, M.; Schöffmann, K.; Stefanics, D.; Bollin, A.; Pasterk, S. Investigating the role of ChatGPT in supporting text-based programming

education for students and teachers. In Proceedings of the International Conference on Informatics in Schools: Situation, Evolution, and
Perspectives, Lausanne, Switzerland, 23–25 October 2023; Springer Nature: Cham, Switzerland, 2023; pp. 40–53.

16. Ma, B.; Chen, L.; Konomi, S.I. Enhancing programming education with ChatGPT: A case study on student perceptions and
interactions in a Python course. In Proceedings of the International Conference on Artificial Intelligence in Education, Recife,
Brazil, 8–12 July 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 113–126.

17. Jalon, J.B.; Chua, G.A.; Torres, M.D.L. ChatGPT as a learning assistant: Its impact on students learning and experiences. Int. J.
Educ. Math. Sci. Technol. 2024, 12, 1603–1619. [CrossRef]

18. Akçapınar, G.; Sidan, E. AI chatbots in programming education: Guiding success or encouraging plagiarism. Discov. Artif. Intell.
2024, 4, 87. [CrossRef]

19. Sandu, R.; Gide, E.; Elkhodr, M. The role and impact of ChatGPT in educational practices: Insights from an Australian higher
education case study. Discov. Educ. 2024, 3, 71. [CrossRef]

20. Haindl, P.; Weinberger, G. Does ChatGPT help novice programmers write better code? Results from static code analysis.
IEEE Access 2024, 12, 114146–114156. [CrossRef]

21. Okonkwo, C.W.; Ade-Ibijola, A. Python-bot: A chatbot for teaching python programming. Eng. Lett. 2020, 29, 25.
22. Carreira, G.; Silva, L.; Mendes, A.J.; Oliveira, H.G. Pyo, a chatbot assistant for introductory programming students. In Proceedings

of the 2022 International Symposium on Computers in Education (SIIE), Coimbra, Portugal, 17–19 November 2022; IEEE:
Piscataway, NJ, USA, 2022; pp. 1–6.

23. Abolnejadian, M.; Alipour, S.; Taeb, K. Leveraging chatgpt for adaptive learning through personalized prompt-based instruction:
A cs1 education case study. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing
Systems, Honolulu, HI, USA, 11–16 May 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 1–8.

24. Popovici, M.-D. ChatGPT in the classroom. Exploring its potential and limitations in a functional programming course. Int. J.
Hum. Comput. Interact. 2024, 40, 7743–7754. [CrossRef]

25. Vukojičić, M.; Krstić, J. ChatGPT in programming education: ChatGPT as a programming assistant. InspirED Teach. Voice
2023, 2023, 7–13.

26. Xue, Y.; Chen, H.; Bai, G.R.; Tairas, R.; Huang, Y. Does ChatGPT help with introductory programming? An experiment of students
using ChatGPT in cs1. In Proceedings of the 46th International Conference on Software Engineering: Software Engineering
Education and Training, Lisbon, Portugal, 14–20 April 2024; pp. 331–341.

27. Güner, H.; Er, E.; Akçapinar, G.; Khalil, M. From chalkboards to AI-powered learning. Educ. Technol. Soc. 2024, 27, 386–404.
28. Eilermann, S.; Wehmeier, L.; Niggemann, O.; Deuter, A. KIAAA: An AI assistant for teaching programming in the field of

automation. In Proceedings of the 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), Lemgo, Germany,
18–20 July 2023; pp. 1–7.

29. Essel, H.B.; Vlachopoulos, D.; Nunoo-Mensah, H.; Amankwa, J.O. Exploring the impact of VoiceBots on multimedia programming
education among Ghanaian university students. Br. J. Educ. Technol. 2025, 56, 276–295. [CrossRef]

30. Daniel, G.; Cabot, J.; Deruelle, L.; Derras, M. Xatkit: A multimodal low-code chatbot development framework. IEEE Access
2020, 8, 15332–15346. [CrossRef]

31. Daniel, G.; Cabot, J. The software challenges of building smart chatbots. In Proceedings of the 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion), Madrid, Spain, 25–28 May 2021; pp. 324–325.

https://doi.org/10.69692/SUJMRD100101
https://doi.org/10.1016/j.caeai.2023.100147
https://doi.org/10.3390/app13095783
https://doi.org/10.3390/su16031245
https://doi.org/10.46328/ijemst.4471
https://doi.org/10.1007/s44163-024-00203-7
https://doi.org/10.1007/s44217-024-00126-6
https://doi.org/10.1109/ACCESS.2024.3445432
https://doi.org/10.1080/10447318.2023.2269006
https://doi.org/10.1111/bjet.13504
https://doi.org/10.1109/ACCESS.2020.2966919

Computers 2025, 14, 158 21 of 21

32. Daniel, G.; Cabot, J. Applying model-driven engineering to the domain of chatbots: The Xatkit experience. Sci. Comput. Program.
2024, 232, 103032. [CrossRef]

33. Okonkwo, C.W.; Ade-Ibijola, A. Revision-Bot: A Chatbot for Studying Past Questions in Introductory Programming. IAENG Int.
J. Comput. Sci. 2022, 49, 644.

34. Bassner, P.; Frankford, E.; Krusche, S. Iris: An ai-driven virtual tutor for computer science education. In Proceedings of the
2024 on Innovation and Technology in Computer Science Education, Milan, Italy, 8–10 July 2024; Association for Computing
Machinery: New York, NY, USA, 2024; Volume 1, pp. 394–400.

35. Daud, S.H.M.; Teo, N.H.I.; Zain, N.H.M. Ejava chatbot for learning programming language: Apost-pandemic alternative virtual
tutor. Int. J. 2020, 8, 3290–3298.

36. Chrysafiadi, K.; Virvou, M. PerFuSIT: Personalized Fuzzy Logic Strategies for Intelligent Tutoring of Programming. Electronics
2024, 13, 4827. [CrossRef]

37. Biňas, M.; Pietriková, E. Impact of virtual assistant on programming novices’ performance, behavior and motivation.
Acta Electrotech. Inform. 2022, 22, 30–36. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scico.2023.103032
https://doi.org/10.3390/electronics13234827
https://doi.org/10.2478/aei-2022-0005

	Introduction
	Motivation and Research Objectives
	Research Objectives
	Research Questions

	Literature Review
	Existing Research and Tools
	Broader Educational Context
	Theoretical Frameworks
	Gaps in Research

	Methodology
	Introduction to Methodology
	Participants and Setting
	Experimental Design and Evaluation
	The Structure of the Solomon Four-Group Design
	Explanation of Design Components
	Purpose of Research Design
	Research Process Flowchart

	System Development and Technical Implementation
	Technical Contribution of PyChatAI
	Innovation Compared to Existing Tools
	Pedagogical Framework

	PyChatAI System Features and Development Phases
	Data Collection and Analysis

	Results
	Pre-Test: Equivalence of Study Groups
	Post-Test Results: Impact of PyChatAI

	Discussion
	Interpretation of Pre-Test Results
	Impact of PyChatAI on Computer Programming Skills
	Implications for Educational Practice

	Conclusions
	References

