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Abstract: Today, big data are generated from many sources, and there is a huge demand 

for storing, managing, processing, and querying on big data. The MapReduce model and 

its counterpart open source implementation Hadoop, has proven itself as the de facto 

solution to big data processing, and is inherently designed for batch and high throughput 

processing jobs. Although Hadoop is very suitable for batch jobs, there is an increasing 

demand for non-batch requirements like: interactive jobs, real-time queries, and big data 

streams. Since Hadoop is not suitable for these non-batch workloads, new solutions are 

proposed to these new challenges. In this article, we discussed two categories of these 

solutions: real-time processing, and stream processing of big data. For each category, we 

discussed paradigms, strengths and differences to Hadoop. We also introduced some 

practical systems and frameworks for each category. Finally, some simple experiments 

were performed to approve effectiveness of new solutions compared to available  

Hadoop-based solutions. 
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1. Introduction 

The ―Big Data‖ paradigm has experienced expanding popularity recently. The ―Big Data” term is 

generally used for datasets which are so huge that they cannot be processed and managed using 

classical solutions like Relational Data Base Systems (RDBMS). Besides volume, large velocity and 

variety are other challenges of big data [1]. Numerous sources generate big data. Internet, Web, Online 
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Social Networks, Digital Imaging, and new sciences like Bioinformatics, Particle Physics, and 

Cosmology are some example of sources for big data to be mentioned [2]. The emerging of cloud 

computing have also made big data processing and mining easier [3]. 

Until now, the most notable solution that is proposed for managing and processing big data is the 

MapReduce framework which has been initially introduced and used by Google [4]. MapReduce offers 

three major features in a single package. These features are: a simple and easy programming model, 

automatic and linear scalability, and built-in fault tolerance. Google announced its MapReduce 

framework as three major components: a MapReduce execution engine, a distributed file system called 

Google File System (GFS) [5], and a distributed NoSQL database called BigTable [6]. 

After Google’s announcement of its MapReduce Framework, the Apache foundation started some 

counterpart open source implementation of the MapReduce framework. Hadoop MapReduce and 

Hadoop YARN as execution engines, the Hadoop Distributed File System (HDFS), and HBase as a 

replacement for BigTable, were the three major projects [7]. Apache has also gathered some extra 

projects like: Cassandara a distributed data management system resembling to Amazon Dynamo, 

Zookeeper a high-performance coordination service for distributed applications, Pig and Hive for data 

warehousing, and Mahout for scalable machine learning. 

From its inception, the Mapreduce framework has made complex large-scale data processing  

easy and efficient. Despite this, MapReduce is designed for batch processing of large volumes of data, 

and it is not suitable for recent demands like real-time and online processing. MapReduce is inherently 

designed for high throughput batch processing of big data that take several hours and even days,  

while recent demands are more centered on jobs and queries that should finish in seconds or at most, 

minutes [8,9]. 

In this article, we give a brief survey with focus on two new aspects: real-time processing and 

stream processing solutions for big data. An example for real-time processing is fast and interactive 

queries on big data warehouses, in which user wants the result of his queries in seconds rather than in 

hours. Principally, the goal of real-time processing is to provide solutions that can process big data 

very fast and interactively. Stream processing deals with problems that their input data must be 

processed without being totally stored. There are numerous use cases for stream processing like: online 

machine learning, and continuous computation. These new trends need systems that are more elaborate 

and agile than the currently available MapReduce solutions like the Hadoop framework. Hence, new 

systems and frameworks have been proposed for these new demands and we discuss these new solutions. 

We have divided the article into three main sections. First, we discuss the strength, features, and 

shortcomings of the standard MapReduce framework and its de facto open source implementation 

Hadoop. In addition to standard MapReduce, we introduce significant extensions of MapReduce. 

Then, we discuss real-time processing solutions. Afterwards, we discuss stream processing systems. At 

the end of the article, we give some experimental results comparing the discussed paradigms. Finally, 

we present a conclusion. 

2. The MapReduce Framework 

Essentially, MapReduce is a programming model that enables large-scale and distributed processing 

of big data on a set of commodity machines. MapReduce defines the computation as two functions: 
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map and reduce. The input is a set of key/value pairs, and the output is a list of key/value pairs. The 

map function takes an input pair and results in a set of intermediate key/value pairs (which can be 

empty). The reduce function takes an intermediate key and a list of intermediate values associated with 

that key as its input, and results set of final key/value pairs as the output. Execution of a MapReduce 

program involves two phases. In the first phase, each input pair is given to map function and a set of 

input pairs is produced. Afterwards, in the second phase, all of the intermediate values that have the 

same key are aggregated into a list, and each intermediate key and its associated intermediate value list 

are given to a reduce function. More explanation and examples are available in [4]. 

The execution of a MapReduce program obeys the same two-phase procedure. Usually, distributed 

MapReduce is implemented using master/slave architecture [10]. The master machine is responsible of 

assignment of tasks and controlling the slave machines. A schematic for execution of a MapReduce 

program is given in Figure 1. The input is stored over a shared storage like distributed file system, and 

is split into chunks. First, a copy of map and reduce functions’ code is sent to all workers. Then, the 

master assigns map and reduce tasks to workers. Each worker assigned a map task, reads the 

corresponding input split and passes all of its pairs to map function and writes the results of the map 

function into intermediate files. After the map phase is finished, the reducer workers read intermediate 

files and pass the intermediate pairs to reduce function and finally the pairs resulted by reduce tasks 

are written to final output files. 

Figure 1. Execution of a MapReduce program. 

 

2.1. Apache Hadoop 

There are several MapReduce-like implementations for distributed systems like Apache Hadoop, 

Disco from Nokia, HPCC from LexisNexis, Dryad from Microsoft [11], and Sector/Sphere. However, 

Hadoop is the most well-known and popular open source implementation of MapReduce. Hadoop uses 

master/slave architecture and obeys the same overall procedure like Figure 1, for executing programs. 
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By default, Hadoop stores input and output files on its distributed file system, HDFS. However, 

Hadoop provides pluggable input and output sources. For example, it can also use NoSQL databases 

like HBase and Cassandra and even relational databases instead of HDFS. 

Hadoop has numerous strengths. Some of its strengths come from the MapReduce model. For 

example, easy programming model, near-linear speedup and scalability, and fault tolerance are three 

major features. Besides these, Hadoop itself provides some extra features like: different schedulers, 

more sophisticated and complex job definitions using YARN, high available master machines, 

pluggable I/O facilities, and etc. Hadoop provides the basic platform for big data processing. For more 

usability, other solutions can be mounted over Hadoop [7]. Major examples are HBase for storing 

structured data on very large tables, Pig and Hive for data warehousing, and Mahout for machine learning. 

Although Hadoop, i.e., standard MapReduce, has numerous strengths, but it has several shortcomings 

too. MapReduce is not able to execute recursive or iterative jobs inherently [12]. Total batch behavior 

is another problem. All of the input must be ready before the job starts and this prevents MapReduce 

from online and stream processing use cases. The overhead of framework for starting a job, like 

copying codes and scheduling, is another problem that prevents it from executing interactive jobs and 

near real-time queries. MapReduce cannot run continuous computations and queries, too. 

2.2. MapReduce Extensions 

Several extensions of the standard MapReduce framework have been proposed which try to 

improve its usability and performance. Some works have focused on adding iteration and recursion to 

MapReduce. The major examples are Twister [13] and HaLoop [14]. Both of these solutions support 

iterative jobs efficiently, and provide data caching and fault tolerance between iterations. Some other 

frameworks provide easier program expression on top of MapReduce. Tez provides an easy API to 

write applications for YARN and supports both interactive and batch jobs [15]. FlumeJava is a library 

created by Google that allows building data pipelines on top of MapReduce [16]. Although writing 

single jobs in MapReduce is easy, maintaining a series of job designed to handle a complex procedure 

is not easy. FlumeJava makes this procedure easier and it translates the defined pipeline to an efficient 

series of MapReduce jobs. Apache Crunch is an open source implementation of FlumeJava for 

Hadoop. Cascading is another abstraction layer that allows the creation of complex workflows on 

Hadoop. MapReduce is implemented for other platforms, too. Phoenix and Metis are two MapReduce 

frameworks that are designed for execution on shared memory parallel systems [17]. Mars is another 

MapReduce framework that executes on GPU [18]. 

2.3. Other Models 

MapReduce is the most well-known model for distributed big data processing, but there are also 

other models. Bulk Synchronous Parallel (BSP) model is older than MapReduce and recently has 

gained some popularity [19]. In the BSP model, the program is defined as a series of supersteps. Each 

superstep consists of small steps, which are actually local computation. After each superstep, there is a 

synchronization barrier. At the synchronization point, system waits until all processor units finish their 

steps and communications are performed. Google has found the BSP model more suitable for 

processing graph data and running graph algorithms, and used BSP in Pregel framework which is 
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inherently designed for graph processing [20]. Apache Hama is an open source framework which 

implements the BSP model. Giraph is another open source graph processing framework that is based 

on the BSP model and executes on Hadoop. The most high performance graph processing framework 

is GraphLab which is developed at Carnegie Melon University and uses the BSP model and executes 

on MPI [21]. 

As we discussed above, MapReduce and its extensions are mostly designed for batch processing of 

fully staged big data and they are not appropriate for processing interactive workloads and streaming 

big data. These shortcomings have triggered creation of new solutions. Next, we will discuss two types 

of these solutions: (i) solutions that try to add real-time processing, and interactivity capabilities to 

MapReduce; and (ii) solutions that try to provide stream processing of big data. 

3. Real-Time Big Data Processing 

Solutions in this sector can be classified into two major categories: (i) Solutions that try to reduce 

the overhead of MapReduce and make it faster to enable execution of jobs in less than seconds;  

(ii) Solutions that focus on providing a means for real-time queries over structured and unstructured 

big data using new optimized approaches. Here, we discuss both categories respectively. 

3.1. In-Memory Computing 

Slowness of Hadoop is rooted in two major reasons. First, Hadoop was initially designed for batch 

processing. Hence, starting execution of jobs is not optimized for fast execution. Scheduling, task 

assignment, code transfer to slaves, and job startup procedures are not designed and programmed to 

finish in less than seconds. The second reason is the HDFS file system. HDFS by itself is designed for 

high throughput data I/O rather than high performance I/O. Data blocks in HDFS are very large and 

stored on hard disk drives which with current technology can deliver transfer rates between 100 and 

200 megabytes per second. 

The first problem can be solved by redesigning job startup and task execution modules. However, 

the file system problem is inherently caused by hardware. Even if each machine is equipped with 

several hard disk modules, the I/O rate would be several hundreds of megabytes per seconds. This 

means that if we store 1 terabytes of data on 20 machines, even a simple search over the data will take 

minutes rather than seconds. An elegant solution to this problem is In-Memory Computing. In a 

nutshell, in-memory computing is based on using a distributed main memory system to store and process 

big data in real-time. 

Main memory delivers higher bandwidth, more than 10 gigabytes per second compared to hard 

disk’s 200 megabytes per second. Access latency is also much better, nanoseconds versus milliseconds 

for hard disks. Price of RAM is also affordable. Currently, 1 TB of RAM can be bought with less than 

20,000$. These performance superiority combined with the dropping price of RAM makes in-memory 

computing a promising alternative to disk-based big data processing. There are few in-memory 

computing solutions available like: Apache Spark [22], GridGain, and XAP. Amongst them, Spark is 

both open source and free, but others are commercial. 

We must mention that in-memory computing does not mean the whole data should be kept in 

memory. Even if a distributed pool of memory is available and the framework uses that memory for 
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caching of frequently used data, the whole job execution performance can be improved significantly. 

Efficient caching is especially effective when an iterative job is being executed. Both Spark and 

GridGain support this caching paradigm. Spark uses a primary abstraction called Resilient Distributed 

Dataset (RDD) that is a distributed collection of items [23]. Spark can be easily integrated with 

Hadoop and RDDs can be generated from data sources like HDFS and HBase. GridGain also has its own 

in-memory file system called GridGain File System (GGFS) that is able to work as either a standalone 

file system or in combination with HDFS, acting as a caching layer. In-memory caching can also help 

handling huge streaming data that can easily stifle disk-based storages. 

Another important point to be mentioned is the difference between in-memory computing and  

in-memory databases and data grids. Although in-memory databases like Oracle Times Ten and 

VMware GemFire and in-memory data grids like Hazelcast, Oracle Coherence, and Jboss Infinispan 

are fast and have important use cases for today, but they differ from in-memory computing. In-memory 

computing is rather a paradigm than a product. As its name implies, in-memory computing deals with 

computing, too; in contrast to in-memory data solutions that just deal with data. Hence, it should also 

take care of problems like efficient scheduling, and moving code to data rather than wrongly moving 

data to code. Despite this, in-memory data grids can be used as a building block of in-memory 

computing solutions. 

3.2. Real-Time Queries over Big Data 

First, we should mention that the ―real-time‖ term in big data is closer to interactivity rather than 

milliseconds response. In big data processing realm, real-time queries should respond in order of 

seconds and minutes rather than batch jobs which finish in hours and days. The first work in the area 

of solutions that try to enable real-time ad-hoc queries over big data is Dremel by Google [24]. Dremel 

uses two major techniques to achieve real-time queries over big data: (i) Dremel uses a novel columnar 

storage format for nested structures (ii) Dremel uses scalable aggregation algorithms for computing 

query results in parallel. These two techniques enable Dremel to process complex queries in real-time. 

Cloudera Impala is an open source counterpart that tries to provide an open source implementation of 

Dremel techniques. For this purpose, Impala has developed an efficient columnar binary storage for 

Hadoop called Parquet and uses techniques of parallel DBMSs to process ad hoc queries in real-time. 

Impala claims considerable performance gains for queries with joins, over Apache Hive. Although 

Impala shows promising improvements over Hive, it is still a stable solution for long running analytics 

and queries. 

There are even more solutions in this sector. Apache Drill is also another Dremel-like solution. 

However, Drill is not designed to just be a Hadoop-only solution and it provides real-time queries 

against other storage systems like Cassandra. Shark is another solution that is built on top of Spark [25]. 

Shark is designed to be compatible with Apache Hive and it can execute all queries that are possible 

for Hive. Using in-memory computing capability and the fast execution engine of Spark, Shark claims 

up to 100x faster response times compared to Hive [25]. We should also mention the Stinger project by 

Hortonworks which is an effort to make 100x performance improvement and add SQL semantics to 

future versions of Apache Hive. The final mentionable solution is Amazon Redshift which is a 
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propriety solution from Amazon that aims to provide a very fast solution to petabytes-scale 

warehousing. 

4. Streaming Big Data 

Data streams are now very common. Log streams, click streams, message streams, and event 

streams are some good examples. However, the standard MapReduce model and its implementations 

like Hadoop, is completely focused on batch processing. That is to say, before any computation is 

started, all of the input data must be completely available on the input store, e.g., HDFS. The 

framework processes the input data and the output results are available only when all of the 

computation is done. On the other hand, a MapReduce job execution is not continuous. In contrast to 

these batch properties, today’s applications need more stream-like demands in which the input data is 

not available completely at the beginning and arrives constantly. Also, sometimes an application 

should run continuously, e.g., a query that detects some special anomalies from incoming events. 

Although MapReduce does not support stream processing, but it can partially handle streams using 

a technique known as micro-batching [26]. The idea is to treat the stream as a sequence of small batch 

chunks of data. On small intervals, the incoming stream is packed to a chunk of data and is delivered to 

the batch system to be processed. Some MapReduce implementations, especially real-time ones like 

Spark and GridGain support this technique. In Spark the streaming support is called discretized stream 

or DStream which is represented as a sequence of RDDs. A schematic of stream processing in Spark is 

given in Figure 2. The in-memory computing feature of Spark enables it to compute data batches 

quicker than Hadoop. However, this technique is not adequate for the demands of a true stream system. 

Furthermore, the MapReduce model is not suitable for stream processing. 

Figure 2. Schematic of stream processing in Spark. 

 

Currently, there are a few stream processing frameworks that are inherently designed for big data 

streams. Two notable ones are Storm from Twitter, and S4 from Yahoo [27]. Both frameworks run on 

the Java Virtual Machine (JVM) and both process keyed streams. However, the programming model of 

the frameworks is different. In S4, a program is defined in terms of a graph of Processing Elements 

(PE) and S4 instantiates a PE per each key. On the other hand, in Storm, a program is defined by two 

abstractions: Spouts and Bolts. A spout is a source of stream. Spouts can read data from an input queue 

or even generate data themselves. A bolt process one or more input streams and produces a number of 

output streams. Most of the process logic is expressed in bolts. Each Storm program is a graph of 

spouts and bolts which is called a Topology [28]. 

Considering the programming models we can say that in S4 the program is expressed for keys while 

in Storm the program is expressed for the whole stream. Hence, programming for S4 has a simpler 

logic while for Storm; programming is more complex but more versatile too. A major strength of 

Storm over S4 is fault tolerance. In S4, at any stage of the process, if the input buffer of a PE gets full, 
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the incoming messages will be simply dropped. S4 also uses a check pointing strategy for fault 

tolerance. If a node crashes, its PEs will be restarted on another node from their latest state. Hence, any 

process after the latest state is lost [27]. However, Storm guarantees process of each tuple if the tuple 

successfully enters Storm. Storm does not store states for bolts and spouts but if a tuple does not 

traverse the Storm topology in a predefined period, the spout that had generated that tuple will replay it. 

Actually, S4 and Storm take two different strategies. S4 proposes a simpler programming model 

and it restricts the programmer in declaring the process, but instead it provides simplicity and more 

automated distributed execution, for example automatic load balancing. In contrast, Storm gives the 

programmer more power and freedom for declaring the process, but instead the programmer should 

take care of things like load balancing, tuning buffer sizes, and parallelism level for reaching optimum 

performance. Each of Storm and S4 has its own strengths and weaknesses, but currently Storm is more 

popular and has a larger community of users compared to S4. Due to the demands and applications, 

streaming big data will certainly grow much more in the future. 

5. Experimental Results 

We undertook some simple experiments for better illumination of the discussed concepts. The 

experiments are aimed to show the improvements of some of the mentioned systems compared to 

Hadoop. We do not intend to compare the performance of technologies in details. We simply want to 

show that recent systems in the area of real-time and streaming big data are more suitable than 

Hadoop. For the case of real-time in-memory computing, we selected Spark. We executed simple 

programs like WordCount and Grep, and compared the performance results to Hadoop. For the case of 

real-time queries over big data, a comprehensive benchmark is done by the Berkeley AMP Lab [29]. 

Hence, for this category, we just reported a summary of that benchmark. For the case of streaming big 

data, we used S4, Storm, and Hadoop, and solved a web page stream analysis problem using the 

mentioned solutions. 

WordCount counts occurrences of each word in a given text and Grep extracts matching strings of a 

given pattern in a given text. WordCount is CPU intensive, but Grep is I/O intensive if a simple pattern 

is being searched. We searched for simple word; hence, Grep is totally I/O intensive here. For this 

experiment, we used a cluster of five machines, each having two 4-core 2.4 GHz Intel Xeon E5620 

CPU and 20 GBs of RAM. We installed Hadoop 1.2.0, and Spark 0.8 on the cluster. For running 

WordCount and Grep, we used an input text file of size 40 GBs containing texts of about 4 million 

Persian web pages. For better comparison, we also executed the standard wc (Version 8.13) and grep 

(Version 2.10) programs of Linux on a single machine and reported their times, too. Actually, the wc 

command of Linux just counts number of all words, not occurrences of each word. Hence, it performs 

a much simpler job. The results are reported in Figure 3. 

As the diagrams show, Spark outperforms Hadoop in both experiments when input is on disk and 

when input is totally cached in RAM. In the WordCount problem, there is a little difference between  

in-memory Spark and on-disk Spark. On the other hand, for the Grep problem, there is a significant 

difference between in-memory Spark and on disk cases. Especially, when the input file is totally 

cached in memory, Spark executes Grep in a second while Hadoop takes about 160 s. 
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Figure 3. Hadoop performance compared to Spark. 

  

The Berkeley AMP Lab has compared several frameworks and benchmarked their response time on 

different types of queries like: scans, aggregations, and joins on different data sizes. The benchmarked 

solutions are: Amazon Redshift, Hive, Shark, and Impala. The input data set is a set of HTML 

documents and two SQL tables. For better benchmarking, queries were executed with varying results 

sets: (i) BI-like results which can be easily fit in a BI tool; (ii) Intermediate results which may not fit in 

memory of a single node; and (iii) ETL-like results which are so large that they require several nodes 

to store. 

Two different clusters were used for this experiment: a cluster of five machines with total 342 GBs 

of RAM, 40 CPU cores, and 10 hard disks for running Impala, Hive, and Shark, and a cluster of  

10 machines with total 150 GBs of RAM, 20 CPU cores, and 30 hard disks for executing Redshift. 

Both clusters were launched on the Amazon EC2 cloud computing infrastructure. The Berkeley AMP 

Lab benchmark is very comprehensive [29]. In this article, we just report the aggregation query results. 

The executed aggregation query is like ―SELECT * FROM foo GROUP BY bar‖ SQL statement. The 

results are given in Figure 4. 

As the results show, new-generation solutions show promising better performance compared to 

classic MapReduce-based solution, Hive. The only exception is the ETL-like query, in which Hive 

performs the same as Impala and this is because the result is so large that Impala cannot handle it 

properly. Despite this, other solutions like Shark and Redshift perform better than Hive for all result sizes. 

Figure 4. Berkeley AMP Lab’s benchmark results for real-time queries. 
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For comparing Hadoop, Storm, and S4, we considered a web page stream problem in which a 

distributed crawler fetches pages from the web and makes a stream of crawled web pages. The crawled 

pages should be analyzed in real-time. Analyzing a web page consists of parsing, link extraction, NLP 

tasks, etc., which are complex tasks. The crawler fetches about 400 pages per second and the average 

time for analyzing a web page is about 50 ms. Hence, the workload cannot be handled on a single 

machine and needs a distributed system with at least 20 processor cores. For this experiment, we used 

a cluster of five machines, each having two 4-core 2.4 GHz Intel Xeon E5620 CPU and 20 GBs of 

RAM. We used Hadoop 1.2.0, S4 0.6.0, and Storm 0.9.1 in this experiment. 

Figure 5. Comparison of CPU utilization in Hadoop, Storm, and S4. 

 

While S4 and Storm can consume the input stream directly, Hadoop cannot handle data streams. 

Therefore, we used a micro batching approach for Hadoop. We used an intermediate store in HDFS 

and put web pages in the store. Every 5 min, we start a Hadoop job and process all pages in the 

intermediate store. A plot of aggregated CPU utilization of the cluster for a period of 30 min is given 

in Figure 5. As Figure 5 shows, Storm and S4 have a steady CPU utilization while Hadoop have idle, 

and CPU burst periods. For each job execution, Hadoop wastes about 15 s for job setup. The most 

notable point which shows the weakness of Hadoop is the average time needed to process each page. 

For Hadoop, the average time is about 3.8 min for each page while for Storm the average time is 

57 ms, and for S4 is 64 ms. This means that while S4 and Storm finish analysis of each page in less 

than 65 ms, Hadoop may take at least 2.5 min to analyze a webpage after it is fetched. 

We can say that S4 is a little slower than Storm but expressing the program was simpler for S4. 

During this experiment, we shut down one node suddenly to test the reliability of frameworks. Hadoop 

and Storm did not miss any pages, but S4 lost some pages when a node failed. This shows that Storm 

is more reliable than S4. We should mention that, to date, S4 has not been updated for more than a year. 

On the other hand, Storm has a very active community and seems to be more popular. 
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6. Conclusions 

Big data has become a trend and some solutions have been provided for management and 

processing big data. The most popular solutions are MapReduce-based solutions and among them the 

Apache Hadoop framework is the most well known. However, Hadoop is inherently designed for batch 

and high throughput job execution and it is suitable for jobs that process large volumes of data over a 

long time. In contrast, there are also new demands like interactive jobs, real-time queries, and stream 

data that cannot be handled efficiently by batch-based frameworks like Hadoop. These non-batch 

demands have caused the creation of new solutions. In this article we discussed two categories:  

real-time processing, and streaming big data. 

In the real-time processing sector, there are two major solutions: in-memory computing, and  

real-time queries over big data. In-memory computing uses a distributed memory storage that can be 

used either as a standalone input source or as a caching layer for disk-based storages. In particular, 

when the input totally fits in distributed memory or when the job has multiple iterations over input,  

in-memory computing can significantly reduce execution time. Solutions to real-time querying over 

big data mostly use custom storage formats and well-known techniques from parallel DBMSs to join 

and aggregation, and hence can respond to queries in less than a few seconds. In the stream-processing 

sector, there are two popular frameworks: Storm, and S4. Each one has its own programming model, 

strengths and weaknesses. We discussed both frameworks and their superiority to MapReduce-based 

systems for stream processing. 

We believe that, solutions to batch and high throughput processing of big data, like Hadoop, have 

reached to an acceptable maturity level. However, they are not suitable enough for non-batch 

requirements. Considering high demands for interactive queries and big data streams, in-memory 

computing stands out as a notable solution that can handle both real-time and stream requirements. 

Among discussed frameworks, Spark is a good example for this case which supports in-memory 

computing using RDDs, real-time and interactive querying using Shark, and stream processing using 

fast micro-batching. However, the future will tell which approach will be popular in practice. 
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