
Computers 2014, 3, 117-129; doi:10.3390/computers3040117

computers
ISSN 2073-431X

www.mdpi.com/journal/computers

Review

Beyond Batch Processing: Towards Real-Time and Streaming

Big Data

Saeed Shahrivari

Department of Computer Engineering, Tarbiat Modares Univeristy, Tehran 14115-194, Iran;

E-Mail: s.shahrivari@modares.ac.ir; Tel./Fax: +98-21-8282-3521

External Editor: Aaron Quigley

Received: 24 June 2014; in revised form: 26 September 2014 / Accepted: 9 October 2014 /

Published: 17 October 2014

Abstract: Today, big data are generated from many sources, and there is a huge demand

for storing, managing, processing, and querying on big data. The MapReduce model and

its counterpart open source implementation Hadoop, has proven itself as the de facto

solution to big data processing, and is inherently designed for batch and high throughput

processing jobs. Although Hadoop is very suitable for batch jobs, there is an increasing

demand for non-batch requirements like: interactive jobs, real-time queries, and big data

streams. Since Hadoop is not suitable for these non-batch workloads, new solutions are

proposed to these new challenges. In this article, we discussed two categories of these

solutions: real-time processing, and stream processing of big data. For each category, we

discussed paradigms, strengths and differences to Hadoop. We also introduced some

practical systems and frameworks for each category. Finally, some simple experiments

were performed to approve effectiveness of new solutions compared to available

Hadoop-based solutions.

Keywords: big data; MapReduce; real-time processing; stream processing

1. Introduction

The ―Big Data‖ paradigm has experienced expanding popularity recently. The ―Big Data” term is

generally used for datasets which are so huge that they cannot be processed and managed using

classical solutions like Relational Data Base Systems (RDBMS). Besides volume, large velocity and

variety are other challenges of big data [1]. Numerous sources generate big data. Internet, Web, Online

OPEN ACCESS

Computers 2014, 3 118

Social Networks, Digital Imaging, and new sciences like Bioinformatics, Particle Physics, and

Cosmology are some example of sources for big data to be mentioned [2]. The emerging of cloud

computing have also made big data processing and mining easier [3].

Until now, the most notable solution that is proposed for managing and processing big data is the

MapReduce framework which has been initially introduced and used by Google [4]. MapReduce offers

three major features in a single package. These features are: a simple and easy programming model,

automatic and linear scalability, and built-in fault tolerance. Google announced its MapReduce

framework as three major components: a MapReduce execution engine, a distributed file system called

Google File System (GFS) [5], and a distributed NoSQL database called BigTable [6].

After Google’s announcement of its MapReduce Framework, the Apache foundation started some

counterpart open source implementation of the MapReduce framework. Hadoop MapReduce and

Hadoop YARN as execution engines, the Hadoop Distributed File System (HDFS), and HBase as a

replacement for BigTable, were the three major projects [7]. Apache has also gathered some extra

projects like: Cassandara a distributed data management system resembling to Amazon Dynamo,

Zookeeper a high-performance coordination service for distributed applications, Pig and Hive for data

warehousing, and Mahout for scalable machine learning.

From its inception, the Mapreduce framework has made complex large-scale data processing

easy and efficient. Despite this, MapReduce is designed for batch processing of large volumes of data,

and it is not suitable for recent demands like real-time and online processing. MapReduce is inherently

designed for high throughput batch processing of big data that take several hours and even days,

while recent demands are more centered on jobs and queries that should finish in seconds or at most,

minutes [8,9].

In this article, we give a brief survey with focus on two new aspects: real-time processing and

stream processing solutions for big data. An example for real-time processing is fast and interactive

queries on big data warehouses, in which user wants the result of his queries in seconds rather than in

hours. Principally, the goal of real-time processing is to provide solutions that can process big data

very fast and interactively. Stream processing deals with problems that their input data must be

processed without being totally stored. There are numerous use cases for stream processing like: online

machine learning, and continuous computation. These new trends need systems that are more elaborate

and agile than the currently available MapReduce solutions like the Hadoop framework. Hence, new

systems and frameworks have been proposed for these new demands and we discuss these new solutions.

We have divided the article into three main sections. First, we discuss the strength, features, and

shortcomings of the standard MapReduce framework and its de facto open source implementation

Hadoop. In addition to standard MapReduce, we introduce significant extensions of MapReduce.

Then, we discuss real-time processing solutions. Afterwards, we discuss stream processing systems. At

the end of the article, we give some experimental results comparing the discussed paradigms. Finally,

we present a conclusion.

2. The MapReduce Framework

Essentially, MapReduce is a programming model that enables large-scale and distributed processing

of big data on a set of commodity machines. MapReduce defines the computation as two functions:

Computers 2014, 3 119

map and reduce. The input is a set of key/value pairs, and the output is a list of key/value pairs. The

map function takes an input pair and results in a set of intermediate key/value pairs (which can be

empty). The reduce function takes an intermediate key and a list of intermediate values associated with

that key as its input, and results set of final key/value pairs as the output. Execution of a MapReduce

program involves two phases. In the first phase, each input pair is given to map function and a set of

input pairs is produced. Afterwards, in the second phase, all of the intermediate values that have the

same key are aggregated into a list, and each intermediate key and its associated intermediate value list

are given to a reduce function. More explanation and examples are available in [4].

The execution of a MapReduce program obeys the same two-phase procedure. Usually, distributed

MapReduce is implemented using master/slave architecture [10]. The master machine is responsible of

assignment of tasks and controlling the slave machines. A schematic for execution of a MapReduce

program is given in Figure 1. The input is stored over a shared storage like distributed file system, and

is split into chunks. First, a copy of map and reduce functions’ code is sent to all workers. Then, the

master assigns map and reduce tasks to workers. Each worker assigned a map task, reads the

corresponding input split and passes all of its pairs to map function and writes the results of the map

function into intermediate files. After the map phase is finished, the reducer workers read intermediate

files and pass the intermediate pairs to reduce function and finally the pairs resulted by reduce tasks

are written to final output files.

Figure 1. Execution of a MapReduce program.

2.1. Apache Hadoop

There are several MapReduce-like implementations for distributed systems like Apache Hadoop,

Disco from Nokia, HPCC from LexisNexis, Dryad from Microsoft [11], and Sector/Sphere. However,

Hadoop is the most well-known and popular open source implementation of MapReduce. Hadoop uses

master/slave architecture and obeys the same overall procedure like Figure 1, for executing programs.

Computers 2014, 3 120

By default, Hadoop stores input and output files on its distributed file system, HDFS. However,

Hadoop provides pluggable input and output sources. For example, it can also use NoSQL databases

like HBase and Cassandra and even relational databases instead of HDFS.

Hadoop has numerous strengths. Some of its strengths come from the MapReduce model. For

example, easy programming model, near-linear speedup and scalability, and fault tolerance are three

major features. Besides these, Hadoop itself provides some extra features like: different schedulers,

more sophisticated and complex job definitions using YARN, high available master machines,

pluggable I/O facilities, and etc. Hadoop provides the basic platform for big data processing. For more

usability, other solutions can be mounted over Hadoop [7]. Major examples are HBase for storing

structured data on very large tables, Pig and Hive for data warehousing, and Mahout for machine learning.

Although Hadoop, i.e., standard MapReduce, has numerous strengths, but it has several shortcomings

too. MapReduce is not able to execute recursive or iterative jobs inherently [12]. Total batch behavior

is another problem. All of the input must be ready before the job starts and this prevents MapReduce

from online and stream processing use cases. The overhead of framework for starting a job, like

copying codes and scheduling, is another problem that prevents it from executing interactive jobs and

near real-time queries. MapReduce cannot run continuous computations and queries, too.

2.2. MapReduce Extensions

Several extensions of the standard MapReduce framework have been proposed which try to

improve its usability and performance. Some works have focused on adding iteration and recursion to

MapReduce. The major examples are Twister [13] and HaLoop [14]. Both of these solutions support

iterative jobs efficiently, and provide data caching and fault tolerance between iterations. Some other

frameworks provide easier program expression on top of MapReduce. Tez provides an easy API to

write applications for YARN and supports both interactive and batch jobs [15]. FlumeJava is a library

created by Google that allows building data pipelines on top of MapReduce [16]. Although writing

single jobs in MapReduce is easy, maintaining a series of job designed to handle a complex procedure

is not easy. FlumeJava makes this procedure easier and it translates the defined pipeline to an efficient

series of MapReduce jobs. Apache Crunch is an open source implementation of FlumeJava for

Hadoop. Cascading is another abstraction layer that allows the creation of complex workflows on

Hadoop. MapReduce is implemented for other platforms, too. Phoenix and Metis are two MapReduce

frameworks that are designed for execution on shared memory parallel systems [17]. Mars is another

MapReduce framework that executes on GPU [18].

2.3. Other Models

MapReduce is the most well-known model for distributed big data processing, but there are also

other models. Bulk Synchronous Parallel (BSP) model is older than MapReduce and recently has

gained some popularity [19]. In the BSP model, the program is defined as a series of supersteps. Each

superstep consists of small steps, which are actually local computation. After each superstep, there is a

synchronization barrier. At the synchronization point, system waits until all processor units finish their

steps and communications are performed. Google has found the BSP model more suitable for

processing graph data and running graph algorithms, and used BSP in Pregel framework which is

Computers 2014, 3 121

inherently designed for graph processing [20]. Apache Hama is an open source framework which

implements the BSP model. Giraph is another open source graph processing framework that is based

on the BSP model and executes on Hadoop. The most high performance graph processing framework

is GraphLab which is developed at Carnegie Melon University and uses the BSP model and executes

on MPI [21].

As we discussed above, MapReduce and its extensions are mostly designed for batch processing of

fully staged big data and they are not appropriate for processing interactive workloads and streaming

big data. These shortcomings have triggered creation of new solutions. Next, we will discuss two types

of these solutions: (i) solutions that try to add real-time processing, and interactivity capabilities to

MapReduce; and (ii) solutions that try to provide stream processing of big data.

3. Real-Time Big Data Processing

Solutions in this sector can be classified into two major categories: (i) Solutions that try to reduce

the overhead of MapReduce and make it faster to enable execution of jobs in less than seconds;

(ii) Solutions that focus on providing a means for real-time queries over structured and unstructured

big data using new optimized approaches. Here, we discuss both categories respectively.

3.1. In-Memory Computing

Slowness of Hadoop is rooted in two major reasons. First, Hadoop was initially designed for batch

processing. Hence, starting execution of jobs is not optimized for fast execution. Scheduling, task

assignment, code transfer to slaves, and job startup procedures are not designed and programmed to

finish in less than seconds. The second reason is the HDFS file system. HDFS by itself is designed for

high throughput data I/O rather than high performance I/O. Data blocks in HDFS are very large and

stored on hard disk drives which with current technology can deliver transfer rates between 100 and

200 megabytes per second.

The first problem can be solved by redesigning job startup and task execution modules. However,

the file system problem is inherently caused by hardware. Even if each machine is equipped with

several hard disk modules, the I/O rate would be several hundreds of megabytes per seconds. This

means that if we store 1 terabytes of data on 20 machines, even a simple search over the data will take

minutes rather than seconds. An elegant solution to this problem is In-Memory Computing. In a

nutshell, in-memory computing is based on using a distributed main memory system to store and process

big data in real-time.

Main memory delivers higher bandwidth, more than 10 gigabytes per second compared to hard

disk’s 200 megabytes per second. Access latency is also much better, nanoseconds versus milliseconds

for hard disks. Price of RAM is also affordable. Currently, 1 TB of RAM can be bought with less than

20,000$. These performance superiority combined with the dropping price of RAM makes in-memory

computing a promising alternative to disk-based big data processing. There are few in-memory

computing solutions available like: Apache Spark [22], GridGain, and XAP. Amongst them, Spark is

both open source and free, but others are commercial.

We must mention that in-memory computing does not mean the whole data should be kept in

memory. Even if a distributed pool of memory is available and the framework uses that memory for

Computers 2014, 3 122

caching of frequently used data, the whole job execution performance can be improved significantly.

Efficient caching is especially effective when an iterative job is being executed. Both Spark and

GridGain support this caching paradigm. Spark uses a primary abstraction called Resilient Distributed

Dataset (RDD) that is a distributed collection of items [23]. Spark can be easily integrated with

Hadoop and RDDs can be generated from data sources like HDFS and HBase. GridGain also has its own

in-memory file system called GridGain File System (GGFS) that is able to work as either a standalone

file system or in combination with HDFS, acting as a caching layer. In-memory caching can also help

handling huge streaming data that can easily stifle disk-based storages.

Another important point to be mentioned is the difference between in-memory computing and

in-memory databases and data grids. Although in-memory databases like Oracle Times Ten and

VMware GemFire and in-memory data grids like Hazelcast, Oracle Coherence, and Jboss Infinispan

are fast and have important use cases for today, but they differ from in-memory computing. In-memory

computing is rather a paradigm than a product. As its name implies, in-memory computing deals with

computing, too; in contrast to in-memory data solutions that just deal with data. Hence, it should also

take care of problems like efficient scheduling, and moving code to data rather than wrongly moving

data to code. Despite this, in-memory data grids can be used as a building block of in-memory

computing solutions.

3.2. Real-Time Queries over Big Data

First, we should mention that the ―real-time‖ term in big data is closer to interactivity rather than

milliseconds response. In big data processing realm, real-time queries should respond in order of

seconds and minutes rather than batch jobs which finish in hours and days. The first work in the area

of solutions that try to enable real-time ad-hoc queries over big data is Dremel by Google [24]. Dremel

uses two major techniques to achieve real-time queries over big data: (i) Dremel uses a novel columnar

storage format for nested structures (ii) Dremel uses scalable aggregation algorithms for computing

query results in parallel. These two techniques enable Dremel to process complex queries in real-time.

Cloudera Impala is an open source counterpart that tries to provide an open source implementation of

Dremel techniques. For this purpose, Impala has developed an efficient columnar binary storage for

Hadoop called Parquet and uses techniques of parallel DBMSs to process ad hoc queries in real-time.

Impala claims considerable performance gains for queries with joins, over Apache Hive. Although

Impala shows promising improvements over Hive, it is still a stable solution for long running analytics

and queries.

There are even more solutions in this sector. Apache Drill is also another Dremel-like solution.

However, Drill is not designed to just be a Hadoop-only solution and it provides real-time queries

against other storage systems like Cassandra. Shark is another solution that is built on top of Spark [25].

Shark is designed to be compatible with Apache Hive and it can execute all queries that are possible

for Hive. Using in-memory computing capability and the fast execution engine of Spark, Shark claims

up to 100x faster response times compared to Hive [25]. We should also mention the Stinger project by

Hortonworks which is an effort to make 100x performance improvement and add SQL semantics to

future versions of Apache Hive. The final mentionable solution is Amazon Redshift which is a

Computers 2014, 3 123

propriety solution from Amazon that aims to provide a very fast solution to petabytes-scale

warehousing.

4. Streaming Big Data

Data streams are now very common. Log streams, click streams, message streams, and event

streams are some good examples. However, the standard MapReduce model and its implementations

like Hadoop, is completely focused on batch processing. That is to say, before any computation is

started, all of the input data must be completely available on the input store, e.g., HDFS. The

framework processes the input data and the output results are available only when all of the

computation is done. On the other hand, a MapReduce job execution is not continuous. In contrast to

these batch properties, today’s applications need more stream-like demands in which the input data is

not available completely at the beginning and arrives constantly. Also, sometimes an application

should run continuously, e.g., a query that detects some special anomalies from incoming events.

Although MapReduce does not support stream processing, but it can partially handle streams using

a technique known as micro-batching [26]. The idea is to treat the stream as a sequence of small batch

chunks of data. On small intervals, the incoming stream is packed to a chunk of data and is delivered to

the batch system to be processed. Some MapReduce implementations, especially real-time ones like

Spark and GridGain support this technique. In Spark the streaming support is called discretized stream

or DStream which is represented as a sequence of RDDs. A schematic of stream processing in Spark is

given in Figure 2. The in-memory computing feature of Spark enables it to compute data batches

quicker than Hadoop. However, this technique is not adequate for the demands of a true stream system.

Furthermore, the MapReduce model is not suitable for stream processing.

Figure 2. Schematic of stream processing in Spark.

Currently, there are a few stream processing frameworks that are inherently designed for big data

streams. Two notable ones are Storm from Twitter, and S4 from Yahoo [27]. Both frameworks run on

the Java Virtual Machine (JVM) and both process keyed streams. However, the programming model of

the frameworks is different. In S4, a program is defined in terms of a graph of Processing Elements

(PE) and S4 instantiates a PE per each key. On the other hand, in Storm, a program is defined by two

abstractions: Spouts and Bolts. A spout is a source of stream. Spouts can read data from an input queue

or even generate data themselves. A bolt process one or more input streams and produces a number of

output streams. Most of the process logic is expressed in bolts. Each Storm program is a graph of

spouts and bolts which is called a Topology [28].

Considering the programming models we can say that in S4 the program is expressed for keys while

in Storm the program is expressed for the whole stream. Hence, programming for S4 has a simpler

logic while for Storm; programming is more complex but more versatile too. A major strength of

Storm over S4 is fault tolerance. In S4, at any stage of the process, if the input buffer of a PE gets full,

Computers 2014, 3 124

the incoming messages will be simply dropped. S4 also uses a check pointing strategy for fault

tolerance. If a node crashes, its PEs will be restarted on another node from their latest state. Hence, any

process after the latest state is lost [27]. However, Storm guarantees process of each tuple if the tuple

successfully enters Storm. Storm does not store states for bolts and spouts but if a tuple does not

traverse the Storm topology in a predefined period, the spout that had generated that tuple will replay it.

Actually, S4 and Storm take two different strategies. S4 proposes a simpler programming model

and it restricts the programmer in declaring the process, but instead it provides simplicity and more

automated distributed execution, for example automatic load balancing. In contrast, Storm gives the

programmer more power and freedom for declaring the process, but instead the programmer should

take care of things like load balancing, tuning buffer sizes, and parallelism level for reaching optimum

performance. Each of Storm and S4 has its own strengths and weaknesses, but currently Storm is more

popular and has a larger community of users compared to S4. Due to the demands and applications,

streaming big data will certainly grow much more in the future.

5. Experimental Results

We undertook some simple experiments for better illumination of the discussed concepts. The

experiments are aimed to show the improvements of some of the mentioned systems compared to

Hadoop. We do not intend to compare the performance of technologies in details. We simply want to

show that recent systems in the area of real-time and streaming big data are more suitable than

Hadoop. For the case of real-time in-memory computing, we selected Spark. We executed simple

programs like WordCount and Grep, and compared the performance results to Hadoop. For the case of

real-time queries over big data, a comprehensive benchmark is done by the Berkeley AMP Lab [29].

Hence, for this category, we just reported a summary of that benchmark. For the case of streaming big

data, we used S4, Storm, and Hadoop, and solved a web page stream analysis problem using the

mentioned solutions.

WordCount counts occurrences of each word in a given text and Grep extracts matching strings of a

given pattern in a given text. WordCount is CPU intensive, but Grep is I/O intensive if a simple pattern

is being searched. We searched for simple word; hence, Grep is totally I/O intensive here. For this

experiment, we used a cluster of five machines, each having two 4-core 2.4 GHz Intel Xeon E5620

CPU and 20 GBs of RAM. We installed Hadoop 1.2.0, and Spark 0.8 on the cluster. For running

WordCount and Grep, we used an input text file of size 40 GBs containing texts of about 4 million

Persian web pages. For better comparison, we also executed the standard wc (Version 8.13) and grep

(Version 2.10) programs of Linux on a single machine and reported their times, too. Actually, the wc

command of Linux just counts number of all words, not occurrences of each word. Hence, it performs

a much simpler job. The results are reported in Figure 3.

As the diagrams show, Spark outperforms Hadoop in both experiments when input is on disk and

when input is totally cached in RAM. In the WordCount problem, there is a little difference between

in-memory Spark and on-disk Spark. On the other hand, for the Grep problem, there is a significant

difference between in-memory Spark and on disk cases. Especially, when the input file is totally

cached in memory, Spark executes Grep in a second while Hadoop takes about 160 s.

Computers 2014, 3 125

Figure 3. Hadoop performance compared to Spark.

The Berkeley AMP Lab has compared several frameworks and benchmarked their response time on

different types of queries like: scans, aggregations, and joins on different data sizes. The benchmarked

solutions are: Amazon Redshift, Hive, Shark, and Impala. The input data set is a set of HTML

documents and two SQL tables. For better benchmarking, queries were executed with varying results

sets: (i) BI-like results which can be easily fit in a BI tool; (ii) Intermediate results which may not fit in

memory of a single node; and (iii) ETL-like results which are so large that they require several nodes

to store.

Two different clusters were used for this experiment: a cluster of five machines with total 342 GBs

of RAM, 40 CPU cores, and 10 hard disks for running Impala, Hive, and Shark, and a cluster of

10 machines with total 150 GBs of RAM, 20 CPU cores, and 30 hard disks for executing Redshift.

Both clusters were launched on the Amazon EC2 cloud computing infrastructure. The Berkeley AMP

Lab benchmark is very comprehensive [29]. In this article, we just report the aggregation query results.

The executed aggregation query is like ―SELECT * FROM foo GROUP BY bar‖ SQL statement. The

results are given in Figure 4.

As the results show, new-generation solutions show promising better performance compared to

classic MapReduce-based solution, Hive. The only exception is the ETL-like query, in which Hive

performs the same as Impala and this is because the result is so large that Impala cannot handle it

properly. Despite this, other solutions like Shark and Redshift perform better than Hive for all result sizes.

Figure 4. Berkeley AMP Lab’s benchmark results for real-time queries.

H
ad

o
o

p

Sp
ar

k-
d

is
k

Sp
ar

k
-

m
em

Li
n

u
x-

w
c

0

200

400

600

800

1000

1200

ti
m

e
in

 s
ec

o
n

d
s

WordCount

H
ad

o
o

p

Sp
ar

k-
d

is
k

Sp
ar

k
-

m
em

Li
n

u
x-

gr
ep

0

100

200

300

400

500

ti
m

e
in

 s
ec

o
n

d
s

Grep

R
ed

sh
if

t

Im
p

al
a

-
d

is
k

Im
p

al
a

-
m

em

Sh
ar

k
-

d
is

k

Sh
ar

k
-

m
em

H
iv

e
-

d
is

k

0

100

200

300

400

500

ti
m

e
in

 s
ec

o
n

d
s

BI-like
2M group

R
ed

sh
if

t Im
p

al
a

-
d

is
k

Im
p

al
a

-
m

em

Sh
ar

k
-

d
is

k

Sh
ar

k
-

m
em

H
iv

e
-

d
is

k

0

100

200

300

400

500

600

ti
m

e
in

 s
ec

o
n

d
s

Itermediate
30M groups

R
ed

sh
if

t

Im
p

al
a

-
d

is
k

Im
p

al
a

-
m

em

Sh
ar

k
-

d
is

k

Sh
ar

k
-

m
em

H
iv

e
-

d
is

k

0

100

200

300

400

500

600

ti
m

e
in

 s
ec

o
n

d
s

ETL-like
253M group

Computers 2014, 3 126

For comparing Hadoop, Storm, and S4, we considered a web page stream problem in which a

distributed crawler fetches pages from the web and makes a stream of crawled web pages. The crawled

pages should be analyzed in real-time. Analyzing a web page consists of parsing, link extraction, NLP

tasks, etc., which are complex tasks. The crawler fetches about 400 pages per second and the average

time for analyzing a web page is about 50 ms. Hence, the workload cannot be handled on a single

machine and needs a distributed system with at least 20 processor cores. For this experiment, we used

a cluster of five machines, each having two 4-core 2.4 GHz Intel Xeon E5620 CPU and 20 GBs of

RAM. We used Hadoop 1.2.0, S4 0.6.0, and Storm 0.9.1 in this experiment.

Figure 5. Comparison of CPU utilization in Hadoop, Storm, and S4.

While S4 and Storm can consume the input stream directly, Hadoop cannot handle data streams.

Therefore, we used a micro batching approach for Hadoop. We used an intermediate store in HDFS

and put web pages in the store. Every 5 min, we start a Hadoop job and process all pages in the

intermediate store. A plot of aggregated CPU utilization of the cluster for a period of 30 min is given

in Figure 5. As Figure 5 shows, Storm and S4 have a steady CPU utilization while Hadoop have idle,

and CPU burst periods. For each job execution, Hadoop wastes about 15 s for job setup. The most

notable point which shows the weakness of Hadoop is the average time needed to process each page.

For Hadoop, the average time is about 3.8 min for each page while for Storm the average time is

57 ms, and for S4 is 64 ms. This means that while S4 and Storm finish analysis of each page in less

than 65 ms, Hadoop may take at least 2.5 min to analyze a webpage after it is fetched.

We can say that S4 is a little slower than Storm but expressing the program was simpler for S4.

During this experiment, we shut down one node suddenly to test the reliability of frameworks. Hadoop

and Storm did not miss any pages, but S4 lost some pages when a node failed. This shows that Storm

is more reliable than S4. We should mention that, to date, S4 has not been updated for more than a year.

On the other hand, Storm has a very active community and seems to be more popular.

0

10

20

30

40

50

60

70

80

90

100

0 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
P

U
 U

ti
liz

at
io

n

Time (minutes)

Hadoop Storm S4

Computers 2014, 3 127

6. Conclusions

Big data has become a trend and some solutions have been provided for management and

processing big data. The most popular solutions are MapReduce-based solutions and among them the

Apache Hadoop framework is the most well known. However, Hadoop is inherently designed for batch

and high throughput job execution and it is suitable for jobs that process large volumes of data over a

long time. In contrast, there are also new demands like interactive jobs, real-time queries, and stream

data that cannot be handled efficiently by batch-based frameworks like Hadoop. These non-batch

demands have caused the creation of new solutions. In this article we discussed two categories:

real-time processing, and streaming big data.

In the real-time processing sector, there are two major solutions: in-memory computing, and

real-time queries over big data. In-memory computing uses a distributed memory storage that can be

used either as a standalone input source or as a caching layer for disk-based storages. In particular,

when the input totally fits in distributed memory or when the job has multiple iterations over input,

in-memory computing can significantly reduce execution time. Solutions to real-time querying over

big data mostly use custom storage formats and well-known techniques from parallel DBMSs to join

and aggregation, and hence can respond to queries in less than a few seconds. In the stream-processing

sector, there are two popular frameworks: Storm, and S4. Each one has its own programming model,

strengths and weaknesses. We discussed both frameworks and their superiority to MapReduce-based

systems for stream processing.

We believe that, solutions to batch and high throughput processing of big data, like Hadoop, have

reached to an acceptable maturity level. However, they are not suitable enough for non-batch

requirements. Considering high demands for interactive queries and big data streams, in-memory

computing stands out as a notable solution that can handle both real-time and stream requirements.

Among discussed frameworks, Spark is a good example for this case which supports in-memory

computing using RDDs, real-time and interactive querying using Shark, and stream processing using

fast micro-batching. However, the future will tell which approach will be popular in practice.

Acknowledgements

The author would like to thank Saeed Jalili for reviewing and commenting on this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Jacobs, A. The pathologies of big data. ACM Commun. 2009, 52, 36–44.

2. Wu, X.; Zhu, X.; Wu, G.-Q.; Ding, W. Data mining with big data. Knowl. IEEE Trans. Data Eng.

2014, 26, 97–107.

3. Fernández, A.; del Río, S.; López, V.; Bawakid, A.; del Jesus, M.J.; Benítez, J.M.; Herrera, F.

Big Data with Cloud Computing: An Insight on the Computing Environment, MapReduce and

Programming Frameworks. WIREs Data Min. Knowl. Discov. 2014, doi:10.1002/widm.1134.

Computers 2014, 3 128

4. Dean, J.; Ghemawat, S. MapReduce: A flexible data processing tool. ACM Commun. 2010, 53,

72–77.

5. Ghemawat, S.; Gobioff, H.; Leung, S.-T. The Google file system. ACM SIGOPS Oper. Syst. Rev.

2003, 37, 29–43.

6. Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W.C.; Wallach, D.A.; Burrows, M.; Chandra, T.; Fikes, A.;

Gruber, R.E. Bigtable: A distributed storage system for structured data. ACM Trans. Comput.

Syst. 2008, 26, doi:10.1145/1365815.1365816.

7. White, T. Hadoop: The Definitive Guide; O’Reilly Media: Sebastopol, CA, USA, 2012.

8. Agneeswaran, V. Big Data Analytics Beyond Hadoop: Real-Time Applications with Storm, Spark,

and More Hadoop Alternatives; Pearson FT Press: Upper Saddle River, NJ, USA, 2014.

9. Kambatla, K.; Kollias, G.; Kumar, V.; Grama, A. Trends in big data analytics. J. Parallel Distrib.

Comput. 2014, 74, 2561–2573.

10. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. In Proceedings

of the 6th Symposium on Opearting Systems Design & Implementation, San Francisco, CA, USA,

6–8 December 2004.

11. Isard, M.; Budiu, M.; Yu, Y.; Birrell, A.; Fetterly, D. Dryad: Distributed data-parallel programs

from sequential building blocks. SIGOPS Oper. Syst. Rev. 2007, 41, 59–72.

12. Afrati, F.N.; Borkar, V.; Carey, M.; Polyzotis, N.; Ullman, J.D. Map-Reduce extensions and

recursive queries. In Proceedings of the 14th International Conference on Extending Database

Technology, Uppsala, Sweden, 22–24 March 2011; pp. 1–8.

13. Ekanayake, J.; Li, H.; Zhang, B.; Gunarathne, T.; Bae, S.-H.; Qiu, J.; Fox, G. Twister: A runtime

for iterative MapReduce. In Proceedings of the 19th ACM International Symposium on High.

Performance Distributed Computing, Chicago, IL, USA, 20–25 June 2010; pp. 810–818.

14. Bu, Y.; Howe, B.; Balazinska, M.; Ernst, M.D. HaLoop: Efficient iterative data processing on

large clusters. Proc. VLDB Endow. 2010, 3, 285–296.

15. Vavilapalli, V.K.; Murthy, A.C.; Douglas, C.; Agarwal, S.; Konar, M.; Evans, R.; Graves, T.;

Lowe, J.; Shah, H.; Seth, S.; et al. Apache hadoop yarn: Yet another resource negotiator.

In Proceedings of the 4th Annual Symposium on Cloud Computing; Santa Clara, CA, USA, 1–3

October 2013; p. 5.

16. Chambers, C.; Raniwala, A.; Perry, F.; Adams, S.; Henry, R.R.; Bradshaw, R.; Weizenbaum, N.

FlumeJava: Easy, efficient data-parallel pipelines. ACM Sigplan Not. 2010, 45, 363–375.

17. Yoo, R.M.; Romano, A.; Kozyrakis, C. Phoenix rebirth: Scalable MapReduce on a large-scale

shared-memory system. In Proceedings of IEEE International Symposium on Workload

Characterization, Austin, TX, USA, 4–6 October 2009; pp. 198–207.

18. Fang, W.; He, B.; Luo, Q.; Govindaraju, N.K. Mars: Accelerating MapReduce with Graphics

Processors. IEEE Trans. Parallel Distrib. Syst. 2010, 22, 608–620.

19. Cheatham, T.; Fahmy, A.; Stefanescu, D.C.; Valiant, L.G. Bulk synchronous parallel

computing—A paradigm for transportable software. In Proceedings of the Twenty-Eighth Hawaii

International Conference on System Sciences, Wailea, HI, USA, 3–6 January 1995; pp. 268–275.

20. Malewicz, G.; Austern, M.H.; Bik, A.J.C.; Dehnert, J.C.; Horn, I.; Leiser, N.; Czajkowski, G.

Pregel: A system for large-scale graph processing. In Proceedings of the 2010 International

Conference on Management of Data, Indianapolis, Indiana, USA, 6–11 June 2010; pp. 135–146.

http://dx.doi.org/10.1145/1365815.1365816

Computers 2014, 3 129

21. Low, Y.; Bickson, D.; Gonzalez, J.; Guestrin, C.; Kyrola, A.; Hellerstein, J.M. Distributed

GraphLab: A Framework for Machine Learning and Data Mining in the Cloud. Proc. VLDB

Endow. 2012, 5, 716–727.

22. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing

with working sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud

Computing, Boston, MA, USA, 22–25 June 2010.

23. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin, M.J.; Shenker, S.;

Stoica, I. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation, San Jose, CA, USA, 25–27 April 2012.

24. Melnik, S.; Gubarev, A.; Long, J.J.; Romer, G.; Shivakumar, S.; Tolton, M.; Vassilakis, T.

Dremel: Interactive Analysis of Web-scale Datasets. Proc. VLDB Endow. 2010, 3, 330–339.

25. Engle, C.; Lupher, A.; Xin, R.; Zaharia, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Shark: Fast data

analysis using coarse-grained distributed memory. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, Scottsdale, AZ, USA, 20–24 May 2012;

pp. 689–692.

26. Hadian, A.; Shahrivari, S. High performance parallel k-means clustering for disk-resident datasets

on multi-core CPUs. J. Supercomput. 2014, 69, 845–863.

27. Neumeyer, L.; Robbins, B.; Nair, A.; Kesari, A. S4: Distributed stream computing platform. In

Proceedings of IEEE International Conference on Data Mining Workshops (ICDMW), New

South Wales, Sydney, 13 December 2010; pp. 170–177.

28. Storm Homepage. Available online: http://storm-project.net/ (accessed on 1 December 2013).

29. Berkeley AMP Lab, ―Big Data Benchmark.‖ Available online: https://amplab.cs.berkeley.edu/

benchmark/ (accessed on 1 December 2013).

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

http://dl.acm.org/author_page.cfm?id=81100629945&coll=DL&dl=ACM&trk=0&cfid=439708947&cftoken=46617149
http://dl.acm.org/author_page.cfm?id=81501679630&coll=DL&dl=ACM&trk=0&cfid=439708947&cftoken=46617149
http://link.springer.com/journal/11227/69/2/page/1

