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Abstract:

 Since wireless sensor networks (WSNs) have been designed to be deployed in an unsecured, public environment, secured communication is really vital for their wide-spread use. Among all of the communication protocols developed for WSN, the Security Protocols for Sensor Networks (SPINS) is exceptional, as it has been designed with security as a goal. SPINS is composed of two building blocks: Secure Network Encryption Protocol (SNEP) and the “micro” version of the Timed Efficient Streaming Loss-tolerant Authentication (TESLA), named μTESLA. From the inception of SPINS, a number of efforts have been made to validate its security properties. In this paper, we have validated the security properties of SNEP by using an automated security protocol validation tool, named AVISPA. Using the protocol specification language, HLPSL, we model two combined scenarios—node to node key agreement and counter exchange protocols—followed by data transmission. Next, we validate the security properties of these combined protocols, using different AVISPA back-ends. AVISPA reports the models we have developed free from attacks. However, by analyzing the key distribution sub-protocol, we find one threat of a potential DoS attack that we have demonstrated by modeling in AVISPA. Finally, we propose a modification, and AVISPA reports this modified version free from the potential DoS attack.
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1. Introduction

Wireless sensor networks (WSNs) with proliferation in micro-electromechanical systems (MEMS) technology and low-cost smart sensors have emerged as a widely-deployed technology for gathering data from the environment. In recent years, many limitations of WSNs, including cost, limited processing and computing resources, and shorter battery life have been improved significantly [1]. As a result, a wide range of tiny sensors—mechanical, thermal, biological, chemical, optical and magnetic sensors—is being designed to perform various tasks [2]. Due to the versatile uses of sensor nodes, the applications of WSNs are found in military surveillance, home medical care and environmental science [3].

Typically, a node is comprised of one or more sensors that can read data from its surroundings. The read data are then transmitted to a base station, which has more computing and storage resources than a node. In general, node to base station and node to node connections are wireless connections and, thus, are publicly accessible. Since any wireless link is susceptible to attack, a WSN is inherently vulnerable to attacks from outsiders. Sensor networks face a number of security challenges, including secure routing, key establishment, secrecy, authentication, privacy, robustness and denial-of-service (DoS) attacks [4,5]. Conventional end to end security mechanisms, such as SSH or SSL, are not possible to deploy in WSNs, due to in-network aggregation of data that requires intermediate routers to have access to the message content [6]. Moreover, sensor nodes with their low computing and storage resources are not capable of processing asymmetric cryptographic algorithms (e.g., typical RSA keys are 1024 to 2048 bits long [7]).

Most of the sensor networks′ routing protocols are vulnerable to some kind of attack, as these protocols have not been deigned with security as a goal [6]. One exception is Security Protocols for Sensor Networks (SPINS) [8], which has been designed to meet a set of security requirements. SPINS has been designed to provide secured communication in WSNs, which is feasible for limited resources, as well. SPINS, a set of security protocols, has two building blocks: the Secure Network Encryption Protocol (SNEP) and a “micro” version of the Timed Efficient Streaming Loss-tolerant Authentication (TESLA) [9], named μTESLA. The security requirements of SPINS protocols are summarizedas follows:


	Data confidentiality confirms that a sensor network’s information, especially the readings of the sensors, is kept secret from other networks. Encryption is the most commonly-used technique for providing data confidentiality.


	Data authentication confirms that data were really sent by the claimed sender. A symmetric key (shared by the sender and the receiver)-based message authentication code (MAC) ensures data authenticity.


	Data integrity verifies that data have not been altered en route by any adversary. MAC-based data authentication includes data integrity.


	Data freshness ensures that data are recent and not replayed by an adversary. Nonces and counters are two ways to provide freshness.


	Replay protection prevents an adversary from reusing an old message.


	Low communication overhead is a basic security property that should be ensured by any WSN security protocols.


	Semantic security confirms that no two messages are identical. This could be confirmed by sending a counter or timestamp that is modified in every message.




In this paper, we have validated the security properties of SNEP by modeling the protocol using Automated Validation of Internet Security Protocols and Applications (AVISPA) [10]. AVISPA is a push-button tool with industrial-strength technology for the analysis of different Internet security protocols and applications. It is being used by the developers of different security protocols and by academic researchers, as well [11]. Previously, we used AVISPA to validate the security properties of the Lightweight Mutual Authentication Protocol (LMAP), an RFID tag authentication protocol [12]. In our validation, although AVISPA reports the SNEP protocol free from attacks, we finds the threat of a DoS attack that we have demonstrated by modeling in AVISPA.

The rest of the paper is organized as follows: Section 2 presents different SNEP sub-protocols. Section 3 briefly explains the tool, AVISPA: how to develop models of security protocols and how to validate security goals. Section 4 illustrates how we develop the AVISPA model of SNEP: the assumptions and limitations of the model, the security goals and how we model those goals and the validation results. Section 5 explains the potential DoS attack: simulation of the attack and how to prevent this attack. The next section summarizes the related work, and finally, Section 7 concludes the paper, explaining the future work that could be accomplished based on the contributions of the paper.



2. Secure Network Encryption Protocol

SPINS has been designed to provide security for two types of communications among the base station and the nodes:


	Unicast communication: Node to base station (e.g., sensor readings) and base station to node (e.g., specific requests) are kinds of unicast communication between the base station and a specific node. SNEP has been designed to secure all of these unicast communications.


	Multicast communication: Base station to all nodes (e.g., routing beacons, queries or reprogramming of the entire network) needs one to many multicast communication. Note that the TESLA protocol [9] was originally developed to secure multicast data transmission. However, TESLA is not designed for the limited computing environments commonly found in WSNs. To secure multicast communications in WSNs, a tiny and stripped version of the TESLA protocol has been proposed, which is referred to as μTESLA.




Note that in this paper, we model and validate the security properties of SNEP only. Table 1 presents the notations that are being used in SNEP specification. To secure the communication from the direction A to B, two different keys are used for encryption (i.e., symmetric key [image: there is no content]) and message authentication code (MAC) generation (i.e., shared key [image: there is no content]). Similarly, two different keys are used to secure the communication from the direction B to A. Hence, A and B need two pairs of keys (four keys in total) to secure bidirectional communication between them. These keys are either derived from the master secret, [image: there is no content], shared between A and B, or distributed by a trusted server. SNEP is composed of a number of sub-protocols, which are explained in the following.

Table 1. Notations being used in SNEP.


	Notation
	Meaning





	[image: there is no content]
	Principals, such as communicating nodes.



	[image: there is no content]
	Nonce generated by A.



	[image: there is no content]
	Counter generated and updated by A.



	[image: there is no content]
	Master secret key shared between A and B.



	[image: there is no content]
	Symmetric key between A and B used for encryption of messages. This is derived from [image: there is no content].



	[image: there is no content]
	MAC key between A and B used for MAC calculation. This is derived from [image: there is no content].



	{M}[image: there is no content]
	Encryption of message M with the encryption key [image: there is no content].



	{M}⟨[image: there is no content],IV⟩
	Encryption of message M with the encryption key [image: there is no content] and the initialization vector [image: there is no content].



	[image: there is no content]([image: there is no content],M)
	Computation of the message authentication code (MAC) of message M, with the key [image: there is no content].











2.1. Data Transmission with Weak Freshness

Data transmission protocol with weak freshness has been presented in Figure 1. Using the only message of this protocol, any node A can send data D to another node B, where D is encrypted using the shared secret [image: there is no content] and the counter [image: there is no content]. Moreover, the MAC of the encrypted data and the counter is calculated using the MAC key [image: there is no content]. This protocol provides all of the security properties mentioned in the earlier section, except it provides weak freshness. By checking the increased counter value, the receiver can verify that the message has been sent after the previous one.

Figure 1. Data transmission protocol with weak freshness.
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2.2. Data Transmission with Strong Freshness

For strong freshness, two messages are being exchanged, which are shown in Figure 2. In this protocol, A first sends a fresh nonce [image: there is no content] to B with a request message [image: there is no content]. When B returns its response (i.e., the actual data are being transmitted here), it includes [image: there is no content] while calculating the MAC. The inclusion of the nonce ensures that B has sent this message in response to A’s request. This ensures a total order through the request to response pair and is referred to as strong freshness in SNEP. Moreover, this completes the challenge to response exchanges and authenticates the identity of B to A.

Figure 2. Data transmission protocol with strong freshness.



[image: Computers 04 00215 g002 1024]









2.3. Counter Exchange Sub-Protocol

The counter exchange sub-protocol shown in Figure 3 bootstraps the initial counter values [image: there is no content] and [image: there is no content]. In the first two messages, A sends its counter [image: there is no content] and B sends its counter [image: there is no content] to each other. Note that counters are sent without encryption, since they are not secret values. In these messages, counters are used as nonces to ensure strong freshness. In the second and third messages, B and A are being authenticated by A and B, respectively.

Figure 3. Counter exchange sub-protocol.
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2.4. Node to Node Key Agreement Sub-Protocol

The node to node key agreement sub-protocol, shown in Figure 4, is being used when a node wants to communicate with another node and they do not have any shared secret key. With the help of the base station (here, the trusted third party S), two nodes can establish a shard secret key, S[image: there is no content]. Note that with S, A and B share secret [image: there is no content] and [image: there is no content], respectively.

Figure 4. Node to node key agreement sub-protocol.
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The following security properties are expected to be fulfilled by this protocol:


	Due to the use of [image: there is no content] and [image: there is no content], two properties are guaranteed: (i) strong key freshness to both A and B; and (ii) authentication of S to A (at the end of the third message) and S to B (at the end of the fourth message).


	The confidentiality of S[image: there is no content] through encryption.


	The data authenticity and integrity of S[image: there is no content] through keyed MAC, which confirms that it was generated by the base station.


	Defending the base station against the denial-of-service attack through the MAC in the second message; thus, the base station confirmed that the request has come from a legitimate node.


	Saving energy of the nodes by engaging base station to perform the major tasks, e.g., key generation and distribution.







3. AVISPA

AVISPA is being used by the developers of different security protocols and by academic researchers, as well [13]. The AVISPA community has modeled a number of Internet Engineering Task Force (IETF) security protocols, and several protocols have been found flawed. A modular and expressive formal language is being used to specify a protocol and its security properties. AVISPA depends on its back-ends, which use an automatic analytic technique to detect any flaws if they exist.


3.1. Architecture

The architecture of AVISPA is shown in Figure 5 [10]. In AVISPA, protocol roles are modeled in the High-Level Protocol Specification Language (HLPSL) as state transition systems. The HLPSL2IF tool translates a HLPSL specification into an Intermediate Format (IF), a transition system of infinite state. This IF specification is being analyzed by any of the four back-end tools: On-the-Fly Model-Checker (OFMC), CL-based Attack Searcher (CL-AtSe), SAT-based Model Checker (SATMC) and Tree Automata-based Protocol Analyzer (TA4SP).

Figure 5. Architecture of the AVISPA tool.
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3.2. Security Goal Specification

Using the back-end tools of AVISPA, secrecy and different forms of authentication goals could be validated. AVISPA supports four types of goal predicates: witness, wrequest (for weak authentication), request (for strong authentication) and secret. In the following, we explain how the predicates are used to specify security goals: secrecy and authentication.

Secrecy is verified with the help of goal predicate secret(E, id, S), which confirms that the secret information E should be known only by the agents of set S. The label id (of type protocol_id) is used to identify the goal. In the HLPSL goal section, the statement secrecy_of id should be given to refer to it. An intruder attempting to break a secret mounts different attacks. On a successful attack, the intruder learns a value that is considered as secret and that he is not allowed to know, and hence, the secrecy property is violated.

Authentication is verified with the help of different goal predicates: witness(A, B, id, E), request(B, A, id, E) (for strong authentication) and wrequest(B, A, id, E) (for weak authentication). The witness predicate is used for (weak) authentication of A by B on E. This is a confirmation that A is a witness for the information E. The request predicate is used for the strong authentication property (similarly, wrequest is for weak authentication) of A by B on E, which declares that B requests a check of the value E. The authentication property is expressed in the HLPSL goal section, which is written as authentication_on id (similarly, weak_authentication_on id for weak authentication). In this expression, id is a label (of type protocol_id) to tag the goal. If any of the back-end tools finds a trace in which the request event is preceded by a witness event originated by an agent other than A, an attack will be reported. Moreover, an attack trace will be reported if no valid witness is found for a request.




4. Developing SNEP Model in AVISPA

Before explaining how we develop the models, we would like to explain the simplifications we have introduced to the SNEP protocols.


4.1. Simplification of SNEP Protocols


4.1.1. Number of Keys

In original SNEP protocols, when A and B communicate, they use separate keys for encryption and MAC calculation and also in opposite directions. Thus, a set of four keys (i.e., [image: there is no content],KBA,[image: there is no content] and [image: there is no content]) is derived from the master secret, [image: there is no content]. This provides the separation of cryptographic primitives. However, AVISPA does not differentiate among symmetric keys, and thus, to keep our model simple, yet not deviating from the original specification, we reduce the number of keys between A and B to one. Since, AVISPA does not allow key derivation, we simply pass the same symmetric keys to A and B.



4.1.2. Replacing MAC with a Hash Function

In SNEP, the keyed MAC function is used for message authentication. AVISPA provides the hash function, which might be also used as the keyed hash function by adding the symmetric key in the hash calculation. Thus, instead of using MAC([image: there is no content],M), we use h(K′ab.M) in AVISPA models where h() is a hash function and K′ab.M means the concatenation of K′ab and M.



4.1.3. Modeling {M}⟨[image: there is no content],IV⟩ with Regular Encryption

AVISPA does not support encryption with an initialization vector. Therefore, we use {M}_(Kab.IV), where the initial vector (IV) is concatenated with the key Kab, and this concatenated message is used to encrypt the message M. The reason for introducing IV with the symmetric key in encryption was to ensure that even if the same M is being sent, the encrypted message will be changed due to the change in IV, and thus, semantic security is provided. Hence, this modification ensures that the security property remains the same as the original SNEP protocol.




4.2. Node to Node Key Agreement with Strong Freshness

While developing the AVISPA model, we develop a combined model of two sub-protocols: node to node key agreement and data transmission with strong freshness. The protocol messages we have modeled are shown in Figure 6.

Figure 6. Messages for node to node key agreement with strong freshness.
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In the following, we explain each message briefly:


	We assume the scenario where node A sends a request Ra with a nonce Na to node B, but they do not have any shared key. However, A and B share master secrets [image: there is no content] and [image: there is no content] with the trusted third party S, from which symmetric keys Kas and Kbs are derived.


	B requests S to establish a symmetric key between A and B. While sending this request, B sends a fresh nonce, Nb with Na. Note that the keyed hash of the first part, i.e., h(Kbs.Na.Nb.A.B), is included for message authentication.


	Next, S generates a new symmetric key, SKab, and sends this to A and B through two separate messages. While sending A (B), this key is encrypted with Kas (Kbs). Moreover, the keyed hash is calculated using Kas (Kbs), which also includes the nonce Na (Nb).


	Now, B sends Rb encrypted by SKab to A in response to the request it received in the first message. The keyed hash sent with this message is calculated using SKab, which includes Na.




In the AVISPA model we develop, there are three agent roles: server for the trusted third party (S), alice for node A and bob for the other node (B). Figure 7 shows the partial HLPSL specification that we develop to model these three roles. The security goals of the node to node key agreement protocol and the data transmission protocol with strong freshness were mentioned earlier. However, AVISPA is not able to validate all of those properties. The following security properties can be validatedusing AVISPA:

Figure 7. Agent roles modeled in the node to node key agreement with strong freshness.
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	(1)

	Secrecy of the symmetric key SKab, which is validated using the HLPSL goal secrecy_of and the corresponding secret fact secret(SKab, skab, {A, S, B}). Here, the label skab identifies the goal, and {A, S, B} is the set of agents that are allowed to learn the value SKab.



	(2)

	Upon receiving the third message, A authenticates S through the nonce Na. We use the label alice_server_na to identify the goal. To validate this security goal, we add witness(S, A, alice_server_na, Na′) and request(A, S, alice_server_na, Na) statements inside the roles of S and A, respectively.



	(3)

	Upon receiving the fourth message, B authenticates S through the nonce Nb. We use the label bob_server_nb to identify the goal. To validate this security goal, we add witness(S, B, bob_server_nb, Nb′) and request(B, S, bob_server_nb, Nb) statements inside the roles of S and B, respectively.



	(4)

	Upon receiving the fifth message, A authenticates B through the nonce Na. We use the label alice_bob_na to identify the goal. To validate this security goal, we add witness(B, A, alice_bob_na, Na) and request(A, B, alice_bob_na, Na) statements inside the roles of B and A, respectively.



	(5)

	The secrecy of the response of B to A (i.e., Rb) is validated using the fact secret(Rb, rb, {A, B, S}). Here, the label rb identifies the goal, and {A, B, S} is the set of agents that are allowed to learn the value Rb.









4.3. Counter Exchange Protocol with Strong Freshness

In case A and B do not have the updated counter values of each other, the counter exchange protocol is executed between A and B. This is a bootstrap protocol. While we model in AVISPA, we develop a counter exchange protocol followed by data transmission that uses the updated counter value. Figure 8 shows the messages that we have modeled in AVISPA. As we have mentioned before, instead of using keyed [image: there is no content], we use the keyed hash function. Similarly, we use {D}_(Kab.Ca) to replace encryption with the initialization vector (i.e., {D}⟨[image: there is no content],[image: there is no content]⟩), where Ca is the initialization vector. Note that we use two different keys, Kab and Kba in two directions, i.e., from A to B and from B to A. Here, the counters Ca and Cb are being used as nonces, which could be considered as challenges for authentication.

Figure 8. Messages for the counter exchange protocol with data transmission.
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In the AVISPA model we develop, there are two agent roles: alice for node A and bob for the other node, B. Figure 9 shows the partial HLPSL specification that we develop to model these two roles. The following security properties can be validated using AVISPA.

Figure 9. Agent roles modeled in the counter exchange protocol with strong freshness.
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	(1)

	Upon receiving the second message, A authenticates B through the counter (nonce) Ca. We use the label alice_bob_ca to identify the goal. To validate this security goal, we add witness(B, A, alice_bob_ca, CA′) and request(A, B, alice_bob_ca, CA) statements inside the roles of B and A, respectively.



	(2)

	Upon receiving the third message, B authenticates A through the counter (nonce) Cb. We use the label bob_alice_cb to identify the goal. To validate this security goal, we add witness(A, B, bob_alice_cb, CB′) and request(B, A, bob_alice_cb, CB) statements inside the roles of A and B, respectively.



	(3)

	The secrecy of data, D sent to B from A. This goal is validated using the fact secret(D′, d, {A, B})). Here, the label d identifies the goal, and {A, B} is the set of agents that are allowed to learn the value D.









4.4. Freshness, Replay and MitM Attacks

AVISPA supports a new() function that generates a fresh value at runtime. For ensuring the freshness of the nonces (denoted by Na and Nb in Figure 7) and the counters (denoted by Ca and Cb in Figure 9), we use the new() function inside the roles that generate the nonce/counter.

Figure 10 shows the HLPSL definition of the roles session() and environment() that we develop in the node to node key agreement with strong freshness. Similar roles are also being developed for the counter exchange model. In these models, to detect the existence of any replay attack, we invoke two identical session()’s of the model in parallel to the environment() role.

Figure 10. session and environment roles modeled in the node to node key agreement protocol with strong freshness.
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Moreover, an active intruder, who can play simultaneously the role of any communicating node, has been introduced. Since the server has been considered as a trusted entity, the intruder is not allowed to play the role of the server. This will also detect Man-in-the-Middle (MitM) or connection hijack attacks if any such attack exists. Figure 10 shows that in the environment() role, we introduce an active intruder playing the roles of the agents A and B.



4.5. Model Validation and Analysis

Upon completion of the AVISPA model development using HLPSL, we use SPAN (Security Protocol Animator) [14], which symbolically executes an HLPSL protocol specification. SPAN is very useful while writing HLPSL specifications, since it gives better understanding and confirms if the specification is executable. We use SPAN’s protocol simulation that builds message sequence charts (MSC) corresponding to our HLPSL specifications. During protocol simulation, no intruder’s role has been introduced. Figure 11 and Figure 12 show the MSC of the AVISPA models that we have built to validate node to node key agreement and counter exchange protocols with strong freshness. The figures confirm that the number of messages exchanged while the models are executed are equal to the messages we have modeled.

Figure 11. Protocol simulation for node to node key agreement with strong freshness.
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Figure 12. Protocol simulation for the counter exchange protocol with strong freshness.
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AVISPA supports Dolev–Yao channels [15] (denoted by channel (dy) in the roles) for message transfer. In this model, the adversary or intruder has full control over message transfer. She can overhear, intercept and synthesize any message, and her actions are only limited by the constraints of the cryptographic methods used. Next, we introduce an active intruder and verify the model using all four back-ends of AVISPA to find an attack if any exists. AVISPA cannot simultaneously detect multiple attacks during a single run. Therefore, we verify the security goals one-by-one. The first two back-ends, On-the-Fly Model-Checker OFMC and Constraint Logic-based Attack Searcher CL-AtSe have reported SAFE for BOUNDED_NUMBER_OF_SESSIONS. The other two, SAT-based Model-Checker SATMC and Tree Automata based Automatic Approximations for the Analysis of Security Protocols TA4SP , have reported NOT_SUPPORTED and produced INCONCLUSIVE results. Figure 13 shows the validation output of OFMC for node to node key agreement with strong freshness. Due to the complexity of the model, we have to run OFMC with a bounded depth. Finally, we can conclude that the AVISPA models that we have developed are free from the attacks that AVISPA is able to find. Hence, the security goals of the two models that we have mentioned earlier havebeen validated.

Figure 13. Validation output of OFMC for node to node key agreement with strong freshness.



[image: Computers 04 00215 g013 1024]










5. Denial-of-Service Attack on Node to Node Key Agreement Protocol

Although AVISPA could not find any attack on the models we have developed, by analyzing the node to node key agreement protocol, a potential denial-of-service (DoS) attack might be found. A DoS attack is always considered a threat for any kind of wireless network where jamming a network with a strong signal is always possible. Especially, this might be critical in sensor networks due to its use in life-critical applications [16]. Figure 14 shows a possible DoS attack on the node to node key agreement protocol, where the intruder is masquerading as the role of the node A. Pretending to be in the role of A, the intruder triggers the key agreement protocol and, thus, forces node B and server S to generate and exchange the rest of the three messages. Hence, the intruder may engage the server S and other nodes in the network to generate and exchange numerous messages. This is clearly a threat for a potential DoS attack, where the server is being engaged in useless message generation and exchange. Thus, the server denies legitimate nodes from receiving services that they have requested, i.e., key generationand distribution.

Figure 14. DoS attack on the node to node key agreement protocol.
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5.1. Simulating a DoS Attack in AVISPA

To simulate the DoS attack, we develop an AVISPA model of the node to node key agreement protocol (without any data transmission). We introduce an attacker by adding an agent darth, who sends the first message [image: there is no content],A to B by masquerading as the role of the node A. Figure 15 shows the protocol simulation generated by SPAN executing the AVISPA model we developed to simulate the node to node key agreement protocol. This MSC shows that the intruder (darth) can easily convince the server (S) and the other node (B) to generate and transfer the next three messages.

Figure 15. Protocol simulation for DoS attack on the node to node key agreement protocol.
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5.2. Preventing the DoS Attack

The intruder is successful at generating the attack because the identity of the node (i.e., node A’s identity) that commenced the message exchanges is not authenticated. Therefore, we propose a modified version of the protocol, which is presented in Figure 16. In this modified version, in the first message, A appends the MAC of the message (i.e., [image: there is no content],A) at the end of the message. While generating this MAC, A uses the MAC key, [image: there is no content], shared between A and S. The second message, which is sent to S from B, has the following three components:

Figure 16. Proposed modification to prevent a DoS attack.
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	the first message it receives from A, i.e., [image: there is no content],A,MAC([image: there is no content],[image: there is no content]||A);


	B adds its nonce and identity, i.e., [image: there is no content],B;


	finally, B appends the MAC of the first two components using the MAC key, [image: there is no content], shared between B and S.




When S receives this message, S authenticates the messages generated by A and B. Since the MAC key, [image: there is no content], is shared between A and S, only A can generate the first message. As a result, no intruder is able to masquerade as the identity of A. In this modified version, any attack generated by the intruder will be detected in the second message, and thus, S will not generate any new symmetric key (S[image: there is no content]) for A and B. Thus, the third and the fourth messages will not be forwarded by S. This will definitely prevent the potential DoS attack on the key distribution protocol.

Note that there is a replay attack when the adversary intercepts the first message, keeps a copy of it and then replays it to B. Here, the adversary masquerades in the role of A. This attack is only possible if the nonce [image: there is no content] in the first message is not fresh, i.e., not generated from a random or pseudo-random number. If the replay attack is not able to be prevented through the nonce, an increasing counter might be used instead of the nonce (note the similar technique being used in the counter exchange protocol in Section 4.3).






6. Related Work

Since the development of the SNEP protocol, a number of security analyses has been carried out. There are two popular methods of formal modeling and verification of security protocols: through an automated tool and algebraic specification techniques. Both methods have been applied in validating SNEP’s security properties.

In [17], an AVISPA model has been developed to verify two security properties: authenticity and confidentiality of SNEP message components. Two separate models have been developed to verify the scenarios: requesting information from the base station to a normal node and key distribution between two nodes. In this analysis, an attack has been found, where an intruder masquerading in the role of the base station requests information from a node. It has been claimed that exploiting this attack, the intruder may receive confidential data from a node. However, this claim is not justified, since a node sends data to the base station in encrypted format (note that the node to base station data transmission protocol is explained in Section 2.2), and the intruder is not able to divulge the encryption key. The models we are presenting in this paper are different from the models explained in [17] in many ways that areexplained here:


	(1)

	We develop the model of the counter exchange protocol with strong freshness, which they did not.



	(2)

	They develop a node to node key distribution followed by data transmission (in total, six messages are being exchanged), while we develop an integrated model (in total, five messages are being exchanged).



	(3)

	Finally, the attack we discovered was not reported by the previous model.





A popular, open-source software verification tool, Spin [18], has been used to verify the confidentiality and authentication of SNEP [19]. In this study, a fine-state machine-based model for SNEP has been developed first. Next, the security properties (i.e., authenticity and confidentiality) have been expressed using the linear temporal logic (LTL). Finally, these properties have been verified using Spin. Note that the model checking tool (i.e., Spin) they have used is not particularly developed for security property validation. Thus, the focus of this paper is to show how Spin could be used in security property validation. Here, only the key distribution protocol SNEP has been modeled.

As we mentioned earlier, modal logic and algebraic specification techniques have been used to validate the security properties of a protocol. Here, we present two such efforts ([20,21]), where instead of automated tools, the security properties of SNEP have been validated using a mathematical proof. In [20], the Coffey–Saidha–Newe (CSN) modal logic has been used to verify the SNEP key agreement sub-protocol. CSN [22] combines the logic of belief and knowledge during execution of a protocol and, thus, is capable of verifying both security and trust. The analysis has not found any weakness of the key agreement protocol and also has confirmed the property’s strong security due to the use of nonces. Another algebraic specification technique, based on the observational transition systems (OTS)/CafeOBJ method, has been used to formally analyze SNEP’s data transmission and node to node key agreement protocols [23]. In [21], a generalized Gorrieri and Martinelli’s timed generalized non-deducibility on compositions (tGNDC) schema has been utilized for formal verification of well-known key management protocols for WSN, including μTESLA, Localized Encryption and Authentication Protocol (LEAP)+ and Lightweight Security Protocol (LiSP) .

Unlike SPINS, which is a network layer protocol, TinySec, a link layer security architecture, is fully implemented for the first time for WSNs [24]. TinySec is a lightweight protocol with a generic security package designed to impact minimally on performance. The security goals of TinySec protocols are access control, message integrity and confidentiality. In [25], these security properties have been verified by developing an AVISPA model. The verification process confirms that TinySec satisfies all of these security goals. However, AVISPA reports a replay attack where an intruder plays the role of the base station. This is expectable, since replay protection is intentionally excluded in TinySec and is left for the higher layer protocol stack.

By taking the virtue of TinySec, MiniSec has been designed to provide higher security and low energy consumption, as well [26]. Lower energy consumption has been achieved by increasing the memory size slightly. It has two operating modes: single-source communication and multi-source broadcast communication. The security goals it fulfills are confidentiality, data authentication, replay protection and weak message freshness. In [27], an AVISPA model has been developed to validate the authenticity and confidentiality of the MiniSec protocol. The validation has not reported any possibility of attacks.



7. Conclusions

Due to sensor nodes’ resource constraint, widely-deployed cryptographic primitives (e.g., SSL, SSH), especially public key-based authentication protocols, are not feasible to use in sensor networks. Therefore, designing a secured communication protocol in a sensor network is a challenging task. An industry-scale automated tool, such as AVISPA, alleviates the daunting task of rigorous analysis of security protocols. The model we develop definitely establishes the security properties of SNEP. Moreover, the DoS attack we discovered could be minimized by the modification we propose. In the future, we will validate the security properties of μTESLA and other prominent sensor network protocols, including TinySec, MiniSec, etc.
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